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Introduction

Dynare currently implements two manners to compute optimal
policy in DSGE models

» optimal simple rules
» optimal rule under commitment (Ramsey policy)

Optimal policy

Optimal simple rule

Exemple (Clarida, Gali, Gertler)

Yt = O0Yi—1+ (1 —9)Etyir1 + o(re — Erinfyq) + ey,
infi = ainf_; 4+ (1 — a)E¢infi 1 + Kyt + €jny,
e = minf 4+ vy
Objectif

arg min var(y) + var(inf)
V1,72

— arg min lim E 1 — 3)3Y(y2 + inf?
ng:’Yzﬁ—d 0;( B)3 (yf +inf?)



DYNARE example (continued)

nodel (1i near);

var y inf r; y = deltary(-1)+(1-delta)*y(+1)+sigma *(r-inf(+1))+e_y;

varexo e_y e_inf: i nf = al pha*i nf (-1)+(1-al pha)*inf(+1) +tkappa*y+e_i nf;
r = gammalxi nf +gamma2+y;

paraneters delta sigma al pha kappa gamal gammua?2; end,

delta = 0. 44; shocks;

kappa = 0.18; var ey,

al pha = 0. 48; stderr 0. 63;

sigma = -0. 06; var e_inf;
stderr 0. 4;
end;

(continued) Another example

opti mwei ghts;

inf 1; )

y 1; Yo = 0Yi—1+ (1= 0)Eyrpa + o(r — Edinfiyg) + ey,
end; inff = «ainf_q + (1 — a)Etinft+1 + KYt + €inf,

gammal = 1.1; o= yuinf+ 72y

gama2 = 0; dre = re—rn_1

osr_parans gamal ganma2; Objectif

min var(y) + var(inf) + 0.2var(dr)
osr; Y172



Ramsey policy: General nonlinear case

max £ 3" 410 (y)

(LS e
S.t.
Eef (Ye41,Yt,Yt-1,6t) =0
yi € R" : endogenous variables
et € RP : stochastic shocks

and
f:R3P _ R™M

There are n — m free policy instruments.

First order conditions

The first order conditions of this optimization problem are

Ei[Ui(yt) — pief2 (Yes 1, Yo, Vi1, €0)
B 1fa(Ves2, Yert, Vis €tet)
—5_1#;—1f1(Yt,yt—1,yt—2,Et—l)] = 0
Ee[f(Yir1, Ve Yie1,60)] = O
with 1o = 0 and where Uy () is the Jacobian of function U () with
respect to y; and f;() is the first order partial derivative of f()

with respect to the ith argument. It is convenient to redefine the
multipliers as it = A/t

Lagrangian
L=E1) 67 UMW) — A (F(Yern, Yo Yeo1.1))
t—1
oL /
Evalie E1[U1(y1) — paf2(y2. Y1, Yo, €1)
Y1
—Buofa(ys, Y2, Y1, €2)
oL ,
oy E1[U1(yt) — mf2(Yir1, Vi, Vie1, €t)

—ﬁu;+1f3(yt+2, Vi1, Yt, Et41)
_Bilﬂé—lfl(ytaYt—l,Yt—Zai‘?t—l)] t> 2

with pe = A/Bt1

Nature of the solution

The above system of equations is nothing but a larger system
of nonlinear rational expectation equations. As such, it can be
approximated either to first order or to second order. The
solution takes the form

[ Yt ] =0 (Yt—2,Yt—1, it—1,Et-1,€t)
Ht

The optimal policy is then directly obtained as part of the set of
g() functions.



Cautionary remark

The First Order Conditions for optimality are only necessary
conditions for a maximum. Benigno and Woodford (2006) and
Levine, Pearlman and Pierse (2007) propose algorithms to
check a sufficient condition.

Computing the steady state

For a given value y, it is possible to use the first matrix equation
above to obtain the value of /i that minimizes the sum of square
residuals, e:

= Uy(
e’ = Uy(y)-i'M
Furthermore, y must satisfy the m equations
f(y,y.y,0) = 0

It is possible to build a sytem of equations whith only n unkowns
y, but we must provide n — m independent measures of the
residuals e. Independent in the sense that the derivatives of
these measures with respect to y must be linearly independent.

The steady state problem

The steady state is solution of

A QR trick

At the steady state, the following must hold exactly
Uy (¥) = @'M

This can only be if

M= { Ull\?f’) }

is of rank m The reordered QR decomposition of M* is such
that

M* E = Q R

(m+1)xn nxn M+1)x(m+1) (m+1)xn

where E is a permutation matrix, Q an orthogonal matrix and R
a triangular matrix with diagonal elements ordered in
decreasing size.



A QR trick (continued)

» When U, (y) = i’M doesn't hold exactly M* is full rank
(m + 1) and the n — m last elements of R may be different
from zero.

» When U; (y) = &’M holds exactly M* has rank m and the
n — m last elements of R are zero.

» The last n — m elements of the last row of R provide the
n — m independent measures of the residuals e

» In practice, we build a nonlinear function with y as input
and that returns the n — m last elements of the last row of
R andf (y,y,y,0). At the solution, wheny =y, this
function must return zeros.

Representation of 2nd order derivatives

the Hessians of each f'() function are unrolled across the
columns of the matrix:

£ of of of of of
[ Ox10x]  Ox(Oxy "7 X0, OX0%{ T OxnOX{

Here, x;, (i = 1,...,4), represents one of the 4 vector
arguments of the function f().

First order approximation of the FOCs

Ec[Unit — fifa — Bhigsafs — B _1f1 — @'[Bfa1 (1 ® Vey2)
+8 M1z (1 @ Vi2) + (fi2 + Bfzz) (1 © Yit1)
+(f23 + 87 12) (1 @ Yio1) + (faz + Bz + 87 Hur) (1 @ W)
o0 (1 © &) + Bfaa (| ® Ey1) + B s (1 © &_1]) |
E[fiVirr + oVt + faVi1 + fa&t] =
where | is an identity matrix of suitable order, y; = y; — ¥,
pt = u — i and f; indicates a matrix of second order

derivatives corresponding to the ith and the jth argument of the
f() function.

The first pitfall

A naive approach ot linear-quadratic appoximation that would
consider a linear approximation of the dynamics of the system
and a second order approximation of the objective function,
ignores the second order derivatives f; that enter in the first
order approximation of the dynamics of the model under
optimal policy.



The approximated solution function

Yi = Y +01Yi2+ 02Yi-1 + Osfit_1 + Jact_1 + User
p = fi+hiyio 4+ ho¥io1 + hafii_1 + hagi_1 + hsey

A second order approximation of the Lagrangian

Computing a first order approximation of the FOCs is
equivalent to computing the solution of a second order
approximation of the Lagrangian:

Nt - .1 SN
E: Zﬁt_l <U + Uiyt + §U11 Vi @ W)
t=1

i (f + f1¥e1 + foVi + faYi—1 + faer

Drawback from this approach

In first period, the initial condition is pg = 0 and the state of the
sytem is given by yg. However the suggested dependency of
first period decision on g and y_; is spurious. It comes from
the fact that the first order approximation of

,U;—lfl(yt ,Yi—1,Yt—2,€t—1)
is given by

fify + fie—afy + 4 (f (19 V) +fi2 (1 @ Vie1) 4+ faz (1 © Yi—2)
+f14 (I ® €1-1))
that doesn’t vanishes for ;o = 0.

It may be better to solve first the continuation problem fort > 2,
then the first period problem.

Simplifying

From steady state definition

=h|
I
o

From first order conditions
Et[f1Yirr + foVt + faVio1 + 148 ) =0

We get

1 —~ —~ ~ o~ —~ —~
+3 (fi1 (Vi1 @ Yig1) + T2 (Ve @ W) + faz (YVic1 @ Vio1) + fas (et @ 1)) o0 1
t—1( ~ ~ ~
E1 E B (U + Uiyt + =U11 (Ve @ Vi)

+f12 (S’\t+1 ® S’\t) + f13 (S/\'[Jrl ® S/\tfl) +f14 (S/\t+1 ® €t) + a3 (S/\t ® thl) — 2
+foa (Vi ® €t) +fag (Vo1 ® 5t) - ,17/f 1 ~ ~ ~ o~ ~ -~
( ( ) t —M/(§ (f12 (Vi1 ® Vig1) +f2 (Ve @ Vi) + faz (V-1 © Yi-1)

+as (et @ 1)) + f12 (Yirr @ V) + i3 (Vi1 @ Vio1) + f1a (Vi1 @ &)

—fit (fLYeen + fa¥e + fayi 1 + fer) >
f23 (Yt © Yi-1) + foa (Yt @ 1) + faa (Vi1 @ &) ))

with U = U(y) and f = f(¥,¥,¥,0)



The second pitfall A recursive formula for computing welfare

Writing welfare in recusive form as
» The FOCs set the first order Taylor expansion of f() equal
to zero, but not the second order terms Wi = E¢ (Lt + fWi41)

» Plugging the first order laws of motion for y; into a second
order approximation of the objective function ignores
ignore the interaction between the Lagrange multipliers
and the second order derivatives of the dynamic
constraints.

where L; is one period expression for the Lagrangian. and
replacing yi, ut, Yir1, pee1 and yiio by their expression as a
function of the state variables, it is possible to write welfare as a
function of the state:

» This equation must be approximated as such, it can’'t be W (yt,l, [t—1,Et—1,Et, 02>
computed together with a second order approximation of
the FOCs: A second order approximation of the FOC bring where o2 is the stochastic scale of the system (as usual in a
in the third order derivatives of the objective function. 2nd order approximation).

Note that in first period, i, should be set to zero.

Timeless perspective Implementing timeless—perspective

» Time inconsistency problem stems from the fact that the initial First approach, (Juillard & Pelgrin, 2006):

value of the lagged Lagrange multipliers s set to zero. 1. Estimate model until date of implementation of optimal

> If, later on, the authorities re—optimize, they reset the Lagrange policy in a timeless—perspective with an empirical policy
multipliers to zero. rule and compute smoothed value of unobservable

» This mechanism reflects the fact that authorities make their variables.
decision after that private agents have formed their expectations 2. Derive recursive solution for Ramsey policy rule (optimal

(on the basis of the previous policy). policy under commitment).

. Compute ex—post values for the Lagrange multipliers over
the estimation sample, setting initial values of Lagrange

» For optimal policy in a timeless perspective, Svensson and multipliers at the beginning of estimation sample to zero.
Woodford suggest that authorities relinquish their first period
advantage and act as if the Lagrange mulitpliers had been
initialized to zero in the far away past.

» When private agents expect the authorities to reoptimize the 3
economy switch to a Nash equilibrium (discretionary solution)

4. Compute optimal policy in a timeless—perspective after the
end of the estimation sample. Last values of Lagrange
multipliers computed in Step 3 and smoothed variables

» What should be the initial value of the Lagrange multipliers for provide initial values.

optimal policy in a timeless perspective?



Second approach: Eliminating the Lagrange
multipliers

A linear approximation of the solution to a Ramsey problem
takes the form:

{)Ah} _ [All Alz]{y\tl}+{81}gt
m A1 A Ht—1 B2
= ArYi-1+Aofit_1 + Bey

where A; and A, are the conforming sub-matrices.
The problem is to eliminate fi;_41 from the expression for y; by
substituting values of Y;_1, Yi_2, €t_1.

A QR algolrithm (11)

A new application of the QR decomposition to Q5, gives:
E_ AP 6/211 6/212 Ri Ry
QuE =QR=| I * {
2 Q21 Q22 0 0

where E is a permutation matrix. When R, isn’t empty, the
system is undetermined and it is possible to choose some of

the multipliers y, the ones corresponding to the columns of FNQZ.

We set them to zero, following a minimal state space type of
arguments. Note however, that the QR decomposition isn’t

unique. Once the economy is managed according to optimal
policy, all choices of decomposition would be equivalent, but

the choice may matter for the initial period. This is an issue that

deserves further studying.

A QR algolrithm (1)

_ _ | Quu Q2 R:1 Rz
AZE_QR_{Qzl sz}[o 0 ]

where E is a permutation matrix, R, is upper triangular and R,
is empty if A, is full (column) rank.
Replacing A, by its decomposition, one gets

Q' { %tt } = Q'A1Yi_1 + RElii_1 + Q'Bey

The bottom part of the above system can be written

Q1oYt + Qofit = [ Q1 Qby | (A1Vi—1 + Bey)

This system in turn contains necessarily more equations than
elements in ;.

A QR algolrithm (111)

Then, we have
o= E [ R Qu Qh ([ Q@ Qb ] (Agia+Bea) — Q%) ]
0

and

- [ R Q@ ([ Qf Qa ] (AFiz+Beis) ~ Qi) ]
0



A QR algolrithm (1V) A linear—quadratic example (I)

Replacing, ji;_1 in the original equation for y;, one obtains

finally
Vi = M1V Moy _ M Myei_
Yt 1Yt—1 + MaYt—2 + Maer + Maer—1 var y inf r dr;
where varexo e_y e_inf;
~ T~ -
M; = A —ApE Ry [Qlu Q21 ]Qllzl paranmeters delta sigm al pha kappa gammal gamma?2;
0
sl x = , , delta = 0. 44,
M, = ApE Ry [Qll Q21 ] [ Q2 Q2 [A kappa = 0. 18;
i 0 al pha = 0. 48;
M3 = B; ] sigma = -0. 06;
M, = AIZE Rl_l[Q;/Ll Qél][Qllz QIZZ}B]
0
A linear—quadratic example(ll) A linear—quadratic example(lIl)
nodel (1i near);
y = delta*xy(-1)+(1-delta)*y(+1)+sigma *(r-inf(+1))+e_)
I nf = al pha*i nf(-1)+(1-al pha)*inf (+1) tkappa*xy+e_i nf;
dr =r - r(-1); pl anner _obj ective y*2 + infA2 + 0.2xdr"2;
end;
ransey_pol i cy(pl anner _di scount=1);
shocks;
var e_y;
stderr 0.63;
var e_inf;
stderr 0. 4;

end;



Structural change

» Most existing DSGE models have constant parameters
and zero-mean shocks.

» Can’t handle long run tendencies such as demographic
change or policy shift.

» Expected change triggers anticipatory behaviour.

» Unexpected change only in a radical sense: its occurrence
isn’t even thought possible. Otherwise it must be modeled
as a stochastic shock.

» Usually discussed only in deterministic models.

Deterministic shocks

Formal treatment of structural change A general model

A DSGE model can be represented by a set of stochastic

» Representing structural change as deterministic equations:
exogenous variables Ee {f(Yeg1, Y6, Yi—1, %, Ut)} =0

» Unexpected change simply shift the simulation but doesn’t where y; is the vector of endogenous variables in the model, x;
enter expectations is a vector of exogenous deterministic variables. By

assumption, these variables settle to a constant value after
some horizon, x, = X for 7 > Ty. U is a vector of stochastic
shocks defined as u; = o¢;, whith

» Expected change is part of information set when decisions
are taken

Proposed solution: add future values of deterministic
exogenous variables to the list of state variables. E{e} =0 E{ee } = X..

o is a stochastic scale factor.



Perturbation approach

Unknown decision functions:

Yt = g(yt—lvxtv cee ,Xt+N,Ut,O')

Recover the Taylor expansion coefficients of the unknown
decision functions g(. . .) from the Taylor expansion of the
structural model E {f(...)} = 0.

WARNING: the perturbation approach involves a local
approximation that may not be satisfactory for large changes in
exogenous variables

The model as function of state variables

Yo = O(Yi—1,%t, ..., Xt4N, Ut, 0)
Yirr = 9(VtsXeq1, -5 XN, X, Upg1,0)
= 0(9(Yt—1,Xt, - Xt4N> Ut, 0), Xe 1, - - - 5 XeN, X, Up g1, 0)
F(Yio1,Xt,- s Xtan, Ui, Ugr1,0) =
F(I(I(Ye1, Xty -+ s XeaNs Uty 0)y Xet1y - - 5 Xty X, Up a1, 0),
O(Yt—1, Xt - - - XeN, Ut, 0), Ye—1, Xt, U, 0)
Et {F(Yt—1,%t, -+, XtN, Ut, Ut1,0)} = 0

Deterministic steady state

fy.y.y.x,0) =

y = 9(y,X,...,X,0,0)

Note that the deterministic steady state is computed at the
value at which the exogenous variables finally settle.

First order approximation

FOWe1, X - Xepns U, Ugr, 0) =
F(J,%,...,%,0,0) +Fyy + Fxy & + ... + Fenfn + Fuu + Fyu’ + Foo
Withy =y — V.8 =% — X, ..., &\ = Xpn — X, U = U, U’ = Upyq.
Et{F(l)(yt—1aﬁtv~~-,91+N7U1,Uu170)}
= F(,%X...,%0,0)+F¥ +F & +...+Fynfn + Fuu + Foo
= 0
FFo= 0
Fu = 0
Fo = 0
= 0

T

x
Il
o



Recovering 9y, du, 9, Ox

> gy is recovered from Fy, =0 Fx, = f10y0x +fo0x +fx
» gy is recovered from F, =0 =0
—0)i — -1
» g,(= 0) is recovered from F, =0 Ox, = —(froy+Tfo) ~fx
> Qy, is recovered form Fy, =0 ... Fx, = fi(9y0x +0x )+ fo0x i=2,...
> Ox, Is recovered form Fy, =0 =0
-1 .
gXi - - (f+gy + fO) f—|—gXi_1 I = 27 ce
Second order approximation Recovering gyx,, Jux
FOM 1. X0 X U, Ug, 0) = F — f +f +R
F(l)(yt,l, Xty -« Xt4N> Ut, Ugy1, o) + 0.5(Fyy (¥ ® ¥) + Fuu(u ® u) + Fu,u,(u/ ®u’) ya — +gygyXl OgyX1 1
+F:rcr<72)+|:yu(9®U)+Fyu/()7®U/)+Fyx1(§’®>?1)+~~+Fny()A’®>?N) = O
+Fyo(J ® o) + Fuur (U@ U") + Fuxy (U ® R1) + - - - + Fuxy (U ® An) + Fuo (U ® o) gyxl = — (f+gy + fo)il Rl
FFyry (U ®R) + -+ Fure (U @ RN) + Fur o (U ® o) + Fxyxy (R ® R2) E = f Q1) + +f + R;
1 N = . . f
o Fry gy B2 @ RN) + iy o (52.0) + - - + Py o (o) yX 0+ (Gyx_1(9y ® 1) +9yyx ) + foGyx, i
E {F(z)(Yt—l,xl ----- xt+Nvutsut-1a‘7)} = N _1
FO (1, X, -+ s Xeans Uty Ue1s @) 4+ 0.5(Fyy (F @ §) + Fuu (U ® u) + Furyr o5 Oy, = — (f+gy + fo) (f"l‘gyxi—l (gy ® I) + R')
oo 0?) + Fyu§ @ ) + Fyxy (F ® %) + - - + Fyu, ( ® %) + Fyor (9 ® o) i=2,...,N
+Fuxl(u QK1)+ ...+ FuxN (U®XN) + Fue(U® o) + Fxlxz(il ® X2)
+o e Pyt (BN ® )+ Py o (Ra0) + -+ Fxy o (R o) where the terms Ry, ..., Ry, don’t contain second order
=0 derivatives of g() with respect to xi.,.

Oux, Is recovered in a similar manner from F,, = 0.



Recovering gyxx

Fxlxl = f+gygx1x1 + fogxlxl + Ry
= 0
-1
9gx; = —(f+9y +f) "Ru
Fxpx, = f+ (gyxi,1(9x1 ®1)+ gygxlxi) + fodxy % + Rui
= 0
-1
O = —(f+9y +fo) (f+gyxi_1(gx1 ®1)+ Rli)
Py = fy (gyxjfl(gxi ®@N+0x_,y(® ng) + 9y Oxx + gxi—l*j—l) + fogxixj + Rjj
= 0
-1
O = - (f+9y +fo) (f+ (gijfl(gxi ®@N+9x_y(l® ’él><j)7L gxiflxjfl) + Rij)
i=2..., N i=2,..., N
where the terms Rqq, . . ., Rnn ., don't contain second order derivatives of g() with respectto x4, . . ., XN

Hairault, Langot and Portier (2001) model

Welfare:
W; = In Ct + nln(l — ht) + ﬁEt {Wt—l—l}

with W, welfare, ¢, consumption, and h, labor effort. n = 2

Optimality condition for consumption
1 1
—=E —(z 1-9
Ct t {ﬁctﬂ( b )}

where z is the rate of return on capital, net of taxes. 5 = 0.988,
0 =0.025

Approximated decision functions

Yt & Y+05000 +0yY +0ul+9x R+ ..+ Oxg XN+ 0.5(0yy (Y ® Y)
F0uu (U ® U) + Oxyx; (R ® Rq) + - -+ + Gxyxy (A ® &N)) + Gyu (Y @ u)
Fayxy (F @ X1) + - - 4 Gyxy (F @ XN) + Guxy (U @ X1) + -+ - + Guxy (U @ Xn)
F0xy x5 (R @ X2) + -+ + Gxy 1y (Rn—1 @ XN)

Model (continued)

Optimality condition for labor effort

noo_ %
l—ht Ct

where w is the wage rate, net of taxes.

Net wage rate

a-o (%) - a+na

where k;_1 is the stock of capital at the end of the previous
period and 7 is the tax rate. « = 0.36, = 0.1



Model (continued) Model (continued)

Net rate of return on capital Goods market equilibium

k1) Gt + it = Akf hi =
o(52) - arnas = Ay
t

Total factor productivity
Accumulation

i = ke — (1 — 6)ke_s INA; = (1—p)InA+pInA_1 + e
with i, investment. § = 0.025 where p = 0.95.
An announced change in the tax rate hipl.mod (I)

var Wlf we hi k z A
var exo_det tau;

1. The economy is at the deterministic steady state var exo e,

corresponding to a tax rate = = —0.15 (arbitrary initial
state)

2. In period 1, it is announced that the tax rate will be moved

to the optimal value 7 = —ﬁ ~ —0.0909 in period 10.

paranmeters beta delta al pha nmu eta rho Abar
delta = 0. 025;
eta = 2;



hipl.mod (Il) hipl.mod (llI)

i nitval
nodel ; Wl f = -100;
Vel f = | og(c)+etaxl og(1-h)+beta~Welf(+1); = 0.5;
c+i = Axk(-1)”"al phaxh”(1-al pha); c = 0.6;
i =k - (1-delta)*k(-1); h = 0.3;
| og(A) = (1-rho) =l og(Abar)+rhoxl og(A(-1)) +e; i = 0.4
1/¢c = betax(1/c(+1))*(z(+1)+1-delta); k = 3;
eta/ (1-h) = w c; z = 0.1,
al pha*(k(-1)/h)~(al pha-1) = (1+mu)=*(1+tau)*z; A =1,
(1-al pha) *(k(-1)/h)"al pha = (1+mu)*( 1+t au) *w, tau = -0.15;
end; end;

st eady

hipl.mod (IV) hipl.mod (V)

endval ;
vl f = -100; shocks:
w = 0.5; var e; stderr 0.01;
¢ = 0.6 var tau;
h = 0.3 periods 1:9;
b= 0.4 val ues -0. 15;
k=3 end;
z = 0.1;
A=l st och_si mul (i rf=0);
tau = -nu/ (1+nu);
end

: f orecast (peri ods=40);

st eady;



