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Optimal policy

Introduction

Dynare currently implements two manners to compute optimal
policy in DSGE models

◮ optimal simple rules
◮ optimal rule under commitment (Ramsey policy)

Optimal simple rule

Exemple (Clarida, Gali, Gertler)

yt = δyt−1 + (1 − δ)Et yt+1 + σ(rt − Et inft+1) + eyt

inft = αinf−1 + (1 − α)Et inft+1 + κyt + einft

rt = γ1inft + γ2yt

Objectif
arg min

γ1,γ2
var(y) + var(inf )

= arg min
γ1,γ2

lim
β→1

E0

∞∑

t=1

(1 − β)βt (y2
t + inf 2

t )



DYNARE example

var y inf r;
varexo e_y e_inf;

parameters delta sigma alpha kappa gamma1 gamma2;

delta = 0.44;
kappa = 0.18;
alpha = 0.48;
sigma = -0.06;

(continued)

model(linear);
y = delta*y(-1)+(1-delta)*y(+1)+sigma *(r-inf(+1))+e_y;
inf = alpha*inf(-1)+(1-alpha)*inf(+1)+kappa*y+e_inf;
r = gamma1*inf+gamma2*y;
end;

shocks;
var e_y;
stderr 0.63;
var e_inf;
stderr 0.4;
end;

(continued)

optim_weights;
inf 1;
y 1;
end;

gamma1 = 1.1;
gamma2 = 0;

osr_params gamma1 gamma2;

osr;

Another example

yt = δyt−1 + (1 − δ)Et yt+1 + σ(rt − Et inft+1) + eyt

inft = αinf−1 + (1 − α)Et inft+1 + κyt + einft

rt = γ1inft + γ2yt

drt = rt − rt−1

Objectif
min
γ1,γ2

var(y) + var(inf ) + 0.2var(dr)



Ramsey policy: General nonlinear case

max
{xt}

∞

t=0

E1

∞∑

t=1

βt−1U(yt)

s.t.
Et f (yt+1, yt , yt−1, εt) = 0

yt ∈ Rn : endogenous variables

εt ∈ Rp : stochastic shocks

and
f : R3n+p → Rm

There are n − m free policy instruments.

Lagrangian

L = E1

∞∑

t=1

βt−1U(yt) − λ′
t (f (yt+1, yt , yt−1, εt))

∂L
∂y1

= E1
[
U1(y1) − µ

′

1f2(y2, y1, y0, ε1)

−βµ
′

2f3(y3, y2, y1, ε2)

∂L
∂yt

= E1
[
U1(yt) − µ

′

t f2(yt+1, yt , yt−1, εt )

−βµ
′

t+1f3(yt+2, yt+1, yt , εt+1)

−β−1µ
′

t−1f1(yt , yt−1, yt−2, εt−1)
]

t ≥ 2

with µt = λt/β
t−1

First order conditions

The first order conditions of this optimization problem are

Et
[
U1(yt) − µ

′

t f2(yt+1, yt , yt−1, εt )

−βµ
′

t+1f3(yt+2, yt+1, yt , εt+1)

−β−1µ
′

t−1f1(yt , yt−1, yt−2, εt−1)
]

= 0

Et
[
f (yt+1, yt , yt−1, εt)

]
= 0

with µ0 = 0 and where U1() is the Jacobian of function U() with
respect to yt and fi() is the first order partial derivative of f ()
with respect to the i th argument. It is convenient to redefine the
multipliers as µt = λt/β

t−1.

Nature of the solution

The above system of equations is nothing but a larger system
of nonlinear rational expectation equations. As such, it can be
approximated either to first order or to second order. The
solution takes the form

[
yt

µt

]
= ĝ (yt−2, yt−1, µt−1, εt−1, εt)

The optimal policy is then directly obtained as part of the set of
g() functions.



Cautionary remark

The First Order Conditions for optimality are only necessary
conditions for a maximum. Benigno and Woodford (2006) and
Levine, Pearlman and Pierse (2007) propose algorithms to
check a sufficient condition.

The steady state problem

The steady state is solution of

U1(ȳ) − µ̄
′[

f2(ȳ , ȳ , ȳ , 0) − βf3(ȳ , ȳ , ȳ , 0)

−β−1f1(ȳ , ȳ , ȳ , 0)
]

= 0

f (ȳ , ȳ , ȳ , 0) = 0

Computing the steady state
For a given value ỹ , it is possible to use the first matrix equation
above to obtain the value of µ̃ that minimizes the sum of square
residuals, e:

M = f2(ỹ , ỹ , ỹ , x̃ , 0) − βf3(ỹ , ỹ , ỹ , x̃ , 0)

−β−1f1(ỹ , ỹ , ỹ , 0)

µ̃′ = U1(ỹ)M
(
M ′M

)−1

e′ = U1(ỹ) − µ̃′M

Furthermore, ỹ must satisfy the m equations

f (ỹ , ỹ , ỹ , 0) = 0

It is possible to build a sytem of equations whith only n unkowns
ỹ , but we must provide n − m independent measures of the
residuals e. Independent in the sense that the derivatives of
these measures with respect to ỹ must be linearly independent.

A QR trick

At the steady state, the following must hold exactly

U1 (ỹ) = µ̄′M

This can only be if

M⋆ =

[
M

U1 (ỹ)

]

is of rank m The reordered QR decomposition of M⋆ is such
that

M⋆ E = Q R
(m + 1) × n n × n (m + 1) × (m + 1) (m + 1) × n

where E is a permutation matrix, Q an orthogonal matrix and R
a triangular matrix with diagonal elements ordered in
decreasing size.



A QR trick (continued)

◮ When U1 (ỹ) = µ̄′M doesn’t hold exactly M⋆ is full rank
(m + 1) and the n − m last elements of R may be different
from zero.

◮ When U1 (ỹ) = µ̄′M holds exactly M⋆ has rank m and the
n − m last elements of R are zero.

◮ The last n − m elements of the last row of R provide the
n − m independent measures of the residuals e

◮ In practice, we build a nonlinear function with ỹ as input
and that returns the n − m last elements of the last row of
R and f (ỹ , ỹ , ỹ , 0). At the solution, when ỹ = ȳ , this
function must return zeros.

First order approximation of the FOCs

Et
[
U11ŷt − µ̂

′

t f2 − βµ̂
′

t+1f3 − β−1µ̂
′

t−1f1 − µ̄′[βf31
(
I ⊗ ŷt+2

)

+β−1f13
(
I ⊗ ŷt−2

)
+ (f12 + βf32)

(
I ⊗ ŷt+1

)

+(f23 + β−1f12)
(
I ⊗ ŷt−1

)
+ (f33 + βf22 + β−1f11)

(
I ⊗ ŷt

)

+f24 (I ⊗ ε̂t) + βf34 (I ⊗ ε̂t+1) + β−1f14 (I ⊗ ε̂t−1])
]

= 0

Et
[
f1ŷt+1 + f2ŷt + f3ŷt−1 + f4ε̂t

]
= 0

where I is an identity matrix of suitable order, ŷt = yt − ȳ ,
µ̂t = µt − µ̄ and fij indicates a matrix of second order
derivatives corresponding to the i th and the j th argument of the
f () function.

Representation of 2nd order derivatives

the Hessians of each f i() function are unrolled across the
columns of the matrix:

fij =
[

∂f
∂x1∂x ′

1

∂f
∂x1∂x ′

2
. . . ∂f

∂x1∂x ′
n

∂f
∂x2∂x ′

1
. . . ∂f

∂xn∂x ′
n

]

Here, xi , (i = 1, . . . , 4), represents one of the 4 vector
arguments of the function f ().

The first pitfall

A naive approach ot linear-quadratic appoximation that would
consider a linear approximation of the dynamics of the system
and a second order approximation of the objective function,
ignores the second order derivatives fij that enter in the first
order approximation of the dynamics of the model under
optimal policy.



The approximated solution function

yt = ȳ + g1ŷt−2 + g2ŷt−1 + g3µ̂t−1 + g4εt−1 + g5εt

µt = µ̄ + h1ŷt−2 + h2ŷt−1 + h3µ̂t−1 + h4εt−1 + h5εt

Drawback from this approach

In first period, the initial condition is µ0 = 0 and the state of the
sytem is given by y0. However the suggested dependency of
first period decision on ε0 and y−1 is spurious. It comes from
the fact that the first order approximation of

µ
′

t−1f1(yt , yt−1, yt−2, εt−1)

is given by

µ̄f1 + µ̂t−1f1 + µ̄
(
f11

(
I ⊗ ŷt

)
+ f12

(
I ⊗ ŷt−1

)
+ f13

(
I ⊗ ŷt−2

)

+f14 (I ⊗ εt−1))

that doesn’t vanishes for µ0 = 0.
It may be better to solve first the continuation problem for t > 2,
then the first period problem.

A second order approximation of the Lagrangian

Computing a first order approximation of the FOCs is
equivalent to computing the solution of a second order
approximation of the Lagrangian:

E1

∞∑

t=1

βt−1
(

Ū + U1ŷt +
1
2

U11
(
ŷt ⊗ ŷt

)

−µ̄′

(
f̄ + f1ŷt+1 + f2ŷt + f3ŷt−1 + f4εt

+
1
2

(
f11

(
ŷt+1 ⊗ ŷt+1

)
+ f22

(
ŷt ⊗ ŷt

)
+ f33

(
ŷt−1 ⊗ ŷt−1

)
+ f44 (εt ⊗ εt)

)

+f12
(
ŷt+1 ⊗ ŷt

)
+ f13

(
ŷt+1 ⊗ ŷt−1

)
+ f14

(
ŷt+1 ⊗ εt

)
+ f23

(
ŷt ⊗ ŷt−1

)

+f24
(
ŷt ⊗ εt

)
+ f34

(
ŷt−1 ⊗ εt

))
− µ̂′

t f̄

−µ̂′

t

(
f1ŷt+1 + f2ŷt + f3ŷt−1 + f5εt

) )

with Ū = U(ȳ) and f̄ = f (ȳ , ȳ , ȳ , 0)

Simplifying
From steady state definition

f̄ = 0

From first order conditions

Et
[
f1ŷt+1 + f2ŷt + f3ŷt−1 + f4ε̂t

]
= 0

We get

E1

∞∑

t=1

βt−1
(

Ū + U1ŷt +
1
2

U11
(
ŷt ⊗ ŷt

)

−µ̄′
(1

2

(
f11

(
ŷt+1 ⊗ ŷt+1

)
+ f22

(
ŷt ⊗ ŷt

)
+ f33

(
ŷt−1 ⊗ ŷt−1

)

+f44 (εt ⊗ εt)) + f12
(
ŷt+1 ⊗ ŷt

)
+ f13

(
ŷt+1 ⊗ ŷt−1

)
+ f14

(
ŷt+1 ⊗ εt

)

f23
(
ŷt ⊗ ŷt−1

)
+ f24

(
ŷt ⊗ εt

)
+ f34

(
ŷt−1 ⊗ εt

) ))



The second pitfall

◮ The FOCs set the first order Taylor expansion of f () equal
to zero, but not the second order terms

◮ Plugging the first order laws of motion for yt into a second
order approximation of the objective function ignores
ignore the interaction between the Lagrange multipliers
and the second order derivatives of the dynamic
constraints.

◮ This equation must be approximated as such, it can’t be
computed together with a second order approximation of
the FOCs: A second order approximation of the FOC bring
in the third order derivatives of the objective function.

A recursive formula for computing welfare

Writing welfare in recusive form as

Wt = Et (Lt + βWt+1)

where Lt is one period expression for the Lagrangian. and
replacing yt , µt , yt+1, µt+1 and yt+2 by their expression as a
function of the state variables, it is possible to write welfare as a
function of the state:

W
(

yt−1, µt−1, εt−1, εt , σ
2
)

where σ2 is the stochastic scale of the system (as usual in a
2nd order approximation).
Note that in first period, µt−1 should be set to zero.

Timeless perspective

◮ Time inconsistency problem stems from the fact that the initial
value of the lagged Lagrange multipliers is set to zero.

◮ If, later on, the authorities re–optimize, they reset the Lagrange
multipliers to zero.

◮ This mechanism reflects the fact that authorities make their
decision after that private agents have formed their expectations
(on the basis of the previous policy).

◮ When private agents expect the authorities to reoptimize the
economy switch to a Nash equilibrium (discretionary solution)

◮ For optimal policy in a timeless perspective, Svensson and
Woodford suggest that authorities relinquish their first period
advantage and act as if the Lagrange mulitpliers had been
initialized to zero in the far away past.

◮ What should be the initial value of the Lagrange multipliers for
optimal policy in a timeless perspective?

Implementing timeless–perspective

First approach, (Juillard & Pelgrin, 2006):

1. Estimate model until date of implementation of optimal
policy in a timeless–perspective with an empirical policy
rule and compute smoothed value of unobservable
variables.

2. Derive recursive solution for Ramsey policy rule (optimal
policy under commitment).

3. Compute ex–post values for the Lagrange multipliers over
the estimation sample, setting initial values of Lagrange
multipliers at the beginning of estimation sample to zero.

4. Compute optimal policy in a timeless–perspective after the
end of the estimation sample. Last values of Lagrange
multipliers computed in Step 3 and smoothed variables
provide initial values.



Second approach: Eliminating the Lagrange
multipliers

A linear approximation of the solution to a Ramsey problem
takes the form:

[
ŷt

µ̂t

]
=

[
A11 A12

A21 A22

] [
ŷt−1

µ̂t−1

]
+

[
B1

B2

]
εt

= A1ŷt−1 + A2µ̂t−1 + Bεt

where A1 and A2 are the conforming sub-matrices.
The problem is to eliminate µ̂t−1 from the expression for ŷt by
substituting values of ŷt−1, ŷt−2, εt−1.

A QR algolrithm (I)

A2E = QR =

[
Q11 Q12

Q21 Q22

] [
R1 R2

0 0

]

where E is a permutation matrix, R1 is upper triangular and R2

is empty if A2 is full (column) rank.
Replacing A2 by its decomposition, one gets

Q′

[
ŷt

µ̂t

]
= Q′A1ŷt−1 + RE ′µ̂t−1 + Q′Bεt

The bottom part of the above system can be written

Q′
12ŷt + Q′

22µ̂t =
[

Q′
12 Q′

22

] (
A1ŷt−1 + Bεt

)

This system in turn contains necessarily more equations than
elements in µ̂t .

A QR algolrithm (II)

A new application of the QR decomposition to Q′
22 gives:

Q′
22Ẽ = Q̃R̃ =

[
Q̃11 Q̃12

Q̃21 Q̃22

][
R̃1 R̃2

0 0

]

where Ẽ is a permutation matrix. When R2 isn’t empty, the
system is undetermined and it is possible to choose some of
the multipliers µt , the ones corresponding to the columns of R̃2.
We set them to zero, following a minimal state space type of
arguments. Note however, that the QR decomposition isn’t
unique. Once the economy is managed according to optimal
policy, all choices of decomposition would be equivalent, but
the choice may matter for the initial period. This is an issue that
deserves further studying.

A QR algolrithm (III)

Then, we have

µ̂t = Ẽ

[
R̃−1

1

[
Q̃′

11 Q̃′
21

] ([
Q′

12 Q′
22

] (
A1ŷt−1 + Bεt

)
− Q′

12ŷt
)

0

]

and

µ̂t−1 = Ẽ

[
R̃−1

1

[
Q̃′

11 Q̃′
21

] ([
Q′

12 Q′
22

] (
A1ŷt−2 + Bεt−1

)
− Q′

12ŷt−1
)

0

]



A QR algolrithm (IV)

Replacing, µ̂t−1 in the original equation for ŷt , one obtains
finally

ŷt = M1ŷt−1 + M2ŷt−2 + M3εt + M4εt−1

where

M1 = A11 − A12Ẽ

[
R̃−1

1

[
Q̃′

11 Q̃′
21

]
Q′

12

0

]

M2 = A12Ẽ

[
R̃−1

1

[
Q̃′

11 Q̃′
21

] [
Q′

12 Q′
22

]
A1

0

]

M3 = B1

M4 = A12Ẽ

[
R̃−1

1

[
Q̃′

11 Q̃′
21

] [
Q′

12 Q′
22

]
B

0

]

A linear–quadratic example (I)

var y inf r dr;
varexo e_y e_inf;

parameters delta sigma alpha kappa gamma1 gamma2;

delta = 0.44;
kappa = 0.18;
alpha = 0.48;
sigma = -0.06;

A linear–quadratic example(II)

model(linear);
y = delta*y(-1)+(1-delta)*y(+1)+sigma *(r-inf(+1))+e_y;
inf = alpha*inf(-1)+(1-alpha)*inf(+1)+kappa*y+e_inf;
dr = r - r(-1);
end;

shocks;
var e_y;
stderr 0.63;
var e_inf;
stderr 0.4;
end;

A linear–quadratic example(III)

planner_objective y^2 + inf^2 + 0.2*dr^2;

ramsey_policy(planner_discount=1);



Deterministic shocks

Structural change

◮ Most existing DSGE models have constant parameters
and zero-mean shocks.

◮ Can’t handle long run tendencies such as demographic
change or policy shift.

◮ Expected change triggers anticipatory behaviour.
◮ Unexpected change only in a radical sense: its occurrence

isn’t even thought possible. Otherwise it must be modeled
as a stochastic shock.

◮ Usually discussed only in deterministic models.

Formal treatment of structural change

◮ Representing structural change as deterministic
exogenous variables

◮ Unexpected change simply shift the simulation but doesn’t
enter expectations

◮ Expected change is part of information set when decisions
are taken

Proposed solution: add future values of deterministic
exogenous variables to the list of state variables.

A general model

A DSGE model can be represented by a set of stochastic
equations:

Et {f (yt+1, yt , yt−1, xt , ut)} = 0

where yt is the vector of endogenous variables in the model, xt

is a vector of exogenous deterministic variables. By
assumption, these variables settle to a constant value after
some horizon, xτ = x̄ for τ > TN . ut is a vector of stochastic
shocks defined as ut = σǫt , whith

E{ǫt} = 0 E{ǫtǫ
T
t } = Σǫ.

σ is a stochastic scale factor.



Perturbation approach

Unknown decision functions:

yt = g(yt−1, xt , . . . , xt+N , ut , σ)

Recover the Taylor expansion coefficients of the unknown
decision functions g(. . .) from the Taylor expansion of the
structural model E {f (. . .)} = 0.
WARNING: the perturbation approach involves a local
approximation that may not be satisfactory for large changes in
exogenous variables

Deterministic steady state

f (ȳ , ȳ , ȳ , x̄ , 0) = 0

ȳ = g(ȳ , x̄ , . . . , x̄ , 0, 0)

Note that the deterministic steady state is computed at the
value at which the exogenous variables finally settle.

The model as function of state variables

yt = g(yt−1, xt , . . . , xt+N , ut , σ)

yt+1 = g(yt , xt+1, . . . , xt+N , x̄ , ut+1, σ)

= g(g(yt−1, xt , . . . , xt+N , ut , σ), xt+1, . . . , xt+N , x̄ , ut+1, σ)

F (yt−1, xt , . . . , xt+N , ut , ut+1, σ) =

f (g(g(yt−1, xt , . . . , xt+N , ut , σ), xt+1, . . . , xt+N , x̄ , ut+1, σ),

g(yt−1, xt , . . . , xt+N , ut , σ), yt−1, xt , ut , σ)

Et {F (yt−1, xt , . . . , xt+N , ut , ut+1, σ)} = 0

First order approximation

F (1)
(yt−1, xt , . . . , xt+N , ut , ut+1, σ) =

F(ȳ , x̄, . . . , x̄, 0, 0) + Fy ŷ + Fx1 x̂1 + . . . + Fx+N x̂N + Fu u + Fu′ u′
+ Fσσ

with ŷ = yt−1 − ȳ , x̂1 = xt − x̄, . . . , x̂N = xt+N − x̄, u = ut , u′ = ut+1.

Et

{
F (1)

(yt−1, x̂t , . . . , x̂t+N , ut , ut+1, σ)
}

= F(ȳ, x̄, . . . , x̄, 0, 0) + Fy ŷ + Fx1
x̂1 + . . . + Fx+N x̂N + Fuu + Fσσ

= 0

Fy = 0

Fu = 0

Fσ = 0

Fx1
= 0

. . .

FxN
= 0



Recovering gy , gu, gσ

◮ gy is recovered from Fy = 0
◮ gu is recovered from Fu = 0
◮ gσ(= 0) is recovered from Fσ = 0
◮ gx1 is recovered form Fx1 = 0 . . .
◮ gxN is recovered form FxN = 0

gx

Fx1 = f+gygx1 + f0gx1 + fx
= 0

gx1 = − (f+gy + f0)
−1 fx

Fxi = f+
(
gygxi + gxi−1

)
+ f0gxi i = 2, . . . , N

= 0

gxi = − (f+gy + f0)
−1 f+gxi−1 i = 2, . . . , N

Second order approximation

F (2)
(yt−1, xt , . . . , xt+N , ut , ut+1, σ) =

F (1)
(yt−1, xt , . . . , xt+N , ut , ut+1, σ) + 0.5(Fyy (ŷ ⊗ ŷ) + Fuu (u ⊗ u) + Fu′u′ (u

′
⊗ u′

)

+Fσσσ
2
) + Fyu(ŷ ⊗ u) + Fyu′ (ŷ ⊗ u′

) + Fyx1 (ŷ ⊗ x̂1) + . . . + FyxN (ŷ ⊗ x̂N )

+Fyσ(ŷ ⊗ σ) + Fuu′ (u ⊗ u′
) + Fux1 (u ⊗ x̂1) + . . . + FuxN (u ⊗ x̂N ) + Fuσ(u ⊗ σ)

+Fu′x1
(u′

⊗ x̂1) + . . . + Fu′xN
(u′

⊗ x̂N ) + Fu′σ
(u′

⊗ σ) + Fx1x2 (x̂1 ⊗ x̂2)

+ . . . + FxN−1xN
(x̂N−1 ⊗ x̂N ) + Fx1σ(x̂1σ) + . . . + FxN σ(x̂Nσ)

Et

{
F (2)

(yt−1, xt , . . . , xt+N , ut , ut+1, σ)
}

=

F (1)
(yt−1, xt , . . . , xt+N , ut , ut+1, σ) + 0.5(Fyy (ŷ ⊗ ŷ) + Fuu (u ⊗ u) + Fu′u′σ

2~Σǫ

+Fσσσ
2
) + Fyu(ŷ ⊗ u) + Fyx1

(ŷ ⊗ x̂1) + . . . + FyxN
(ŷ ⊗ x̂N ) + Fyσ(ŷ ⊗ σ)

+Fux1
(u ⊗ x̂1) + . . . + FuxN

(u ⊗ x̂N ) + Fuσ(u ⊗ σ) + Fx1x2
(x̂1 ⊗ x̂2)

+ . . . + FxN−1xN
(x̂N−1 ⊗ x̂N ) + Fx1σ(x̂1σ) + . . . + FxN σ(x̂Nσ)

= 0

Recovering gyxi , guxi

Fyx1 = f+gygyx1 + f0gyx1 + R1

= 0

gyx1 = − (f+gy + f0)
−1 R1

Fyxi = f+
(
gyxi−1(gy ⊗ I) + gygyxi

)
+ f0gyxi + Ri

= 0

gyxi = − (f+gy + f0)
−1 (

f+gyxi−1(gy ⊗ I) + Ri
)

i = 2, . . . , N

where the terms R1, . . . , RN , don’t contain second order
derivatives of g() with respect to x1,.

guxi is recovered in a similar manner from Fuxi = 0.



Recovering gxixj

Fx1x1
= f+gy gx1x1

+ f0gx1x1
+ R11

= 0

gx1x1 = −
(
f+gy + f0

)
−1 R11

Fx1xi = f+
(

gyxi−1 (gx1 ⊗ I) + gy gx1xi

)
+ f0gx1xi + R1i

= 0

gx1xi
= −

(
f+gy + f0

)
−1

(
f+gyxi−1

(gx1
⊗ I) + R1i

)

Fxi xj
= f+

(
gyxj−1

(gxi
⊗ I) + gxi−1y (I ⊗ gxj

) + gy gxi xj
+ gxi−1xj−1

)
+ f0gxi xj

+ Rij

= 0

gxi xj = −
(
f+gy + f0

)
−1

(
f+

(
gyxj−1 (gxi ⊗ I) + gxi−1y (I ⊗ gxj ) + gxi−1xj−1

)
+ Rij

)

i = 2, . . . , N j = 2, . . . , N

where the terms R11, . . . , RNN , don’t contain second order derivatives of g() with respect to x1, . . . , xN .

Approximated decision functions

yt ≈ ȳ + 0.5gσσ + gy ŷ + gu û + gx1 x̂1 + . . . + gxN x̂N + 0.5(gyy (ŷ ⊗ ŷ)

+guu(u ⊗ u) + gx1x1 (x̂1 ⊗ x̂1) + . . . + gxN xN (x̂N ⊗ x̂N )) + gyu(ŷ ⊗ u)

+gyx1 (ŷ ⊗ x1) + . . . + gyxN (ŷ ⊗ xN ) + gux1 (u ⊗ x1) + . . . + guxN (u ⊗ xN )

+gx1x2
(x̂1 ⊗ x2) + . . . + gxN−1xN

(x̂N−1 ⊗ xN )

Hairault, Langot and Portier (2001) model

Welfare:
Wt = ln ct + η ln(1 − ht) + βEt {Wt+1}

with W , welfare, c, consumption, and h, labor effort. η = 2

Optimality condition for consumption

1
ct

= Et

{
β

1
ct+1

(zt+1 + 1 − δ)

}

where z is the rate of return on capital, net of taxes. β = 0.988,
δ = 0.025

Model (continued)

Optimality condition for labor effort

η

1 − ht
=

ωt

ct

where ω is the wage rate, net of taxes.

Net wage rate

(1 − α)

(
kt−1

ht

)α

= (1 + µ)(1 + τt)ωt

where kt−1 is the stock of capital at the end of the previous
period and τ is the tax rate. α = 0.36, µ = 0.1



Model (continued)

Net rate of return on capital

α

(
kt−1

ht

)α−1

= (1 + µ)(1 + τt)zt

Accumulation
it = kt − (1 − δ)kt−1

with i , investment. δ = 0.025

Model (continued)

Goods market equilibium

ct + it = Atkα
t−1h1−α

t

Total factor productivity

ln At = (1 − ρ) ln Ā + ρ ln At−1 + et

where ρ = 0.95.

An announced change in the tax rate

1. The economy is at the deterministic steady state
corresponding to a tax rate τ = −0.15 (arbitrary initial
state)

2. In period 1, it is announced that the tax rate will be moved
to the optimal value τ = − µ

1+µ
≈ −0.0909 in period 10.

hlp1.mod (I)

var Welf w c h i k z A;
varexo_det tau;
varexo e;

parameters beta delta alpha mu eta rho Abar;
delta = 0.025;
eta = 2;
mu = 0.1;
alpha = 0.36;
rho = 0.95;
beta = 0.988;
Abar = 1;



hlp1.mod (II)

model;
Welf = log(c)+eta*log(1-h)+beta*Welf(+1);
c+i = A*k(-1)^alpha*h^(1-alpha);
i = k - (1-delta)*k(-1);
log(A) = (1-rho)*log(Abar)+rho*log(A(-1))+e;
1/c = beta*(1/c(+1))*(z(+1)+1-delta);
eta/(1-h) = w/c;
alpha*(k(-1)/h)^(alpha-1) = (1+mu)*(1+tau)*z;
(1-alpha)*(k(-1)/h)^alpha = (1+mu)*(1+tau)*w;
end;

hlp1.mod (III)

initval;
Welf = -100;
w = 0.5;
c = 0.6;
h = 0.3;
i = 0.4;
k = 3;
z = 0.1;
A = 1;
tau = -0.15;
end;

steady;

hlp1.mod (IV)

endval;
Welf = -100;
w = 0.5;
c = 0.6;
h = 0.3;
i = 0.4;
k = 3;
z = 0.1;
A = 1;
tau = -mu/(1+mu);
end;

steady;

hlp1.mod (V)

shocks;
var e; stderr 0.01;
var tau;
periods 1:9;
values -0.15;
end;

stoch_simul(irf=0);

forecast(periods=40);


