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Outline

1 Reasons why nonlinearities matter more when modelling
idiosyncratic risk

2 Problems with higher-order perturbation solutions

3 Using penalty functions instead of inequality constraints
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Non-linearities more important for
individual

Reasons:

1 Higher variance state variables

2 Frictions

3 Inequality constraints matter
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Need for higher-order perturbation
solutions?

� for risk to matter =) need at least 2nd-order
� welfare comparison =) need at least 2nd-order
� for risk premiums to be cyclical =) need at least 3th-order
� idiosyncratic risk =) need at least ?th-order
� models with interesting frictions =) need at least ?th-order
� models about the �nancial crisis =) need at least ?th-order
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Problems of higer-order perturbation

� Well-known problem for lots of model solvers
� Higher-order perturbation solutions are often explosive
� Standard solution is pruning:

� this creates an ugly distortion of underlying perturbation
solution

� Perturbation solutions have more problems
� for example weird shapes

� What can be done?
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Outline

� Polynomial approximations and its problems
� Pruning and its problems
� Understanding what perturbation is
� Understanding the �exibility of perturbation
� Some ideas on how to exploit this �exibility
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Polinomial approximations

x+1 = h(x) � pN(x; αN)

How to �nd αN?

� Perturbation, Taylor series expansion around x̄
� Projection method
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Problems of higher-order polynomials

� oscillating patterns =) not shape preserving
� often explosive behavior

x+1 = h(x) � pN(x)

lim
x!∞

∂pN(x)
∂x

= �∞

lim
x!+∞

∂pN(x)
∂x

= +∞ =) no global convergence

lim
x!+∞

∂pN(x)
∂x

= �∞ =) function must turn negative
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Is convergence guaranteed?

� Projection methods:
� even uniform convergence (with Chebyshev nodes)
� of course only within the grid

� Taylor series expansion
� limited radius of convergence
� unless function is analytic

� Huge di¤erence!!!
� grid is controlled by model solver
� radius of convergence is not
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Couple examples

� sometimes you get great global approximations
� Sometimes you do not. We will look at

� limited radius of convergence
� problems with weird/undesirable shapes
� stability problems
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Example with simple Taylor expansion

Truth is a polynomial:

f (x) = �690.59+ 3202.4x� 5739.45x2

+4954.2x3 � 2053.6x4 + 327.10x5

de�ned on [0.7, 2]
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Approximation in log levels

Truth is no a polynomial.
Think of f (x) as a function of z = log(x). Thus,

f (x) = �690.59+ 3202.4 exp(z)� 5739.45 exp(2z)
+4954.2 exp(3z)� 2053.6 exp(4z) + 327.10 exp(5z).
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ln(x) & Taylor series expansion

ln(x)� ln(x̄) �
x̃
x̄
� 1

2!

�
x̃
x̄

�2

+
2!
3!

�
x̃
x̄

�3

� 3!
4!

�
x̃
x̄

�4

+ � � �+ (�1)N�1 (N� 1)!
N!

�
x̃
x̄

�N

=

x̃
x̄
� 1

2

�
x̃
x̄

�2

+
1
3

�
x̃
x̄

�3

� 1
4

�
x̃
x̄

�4

+ � � �+ (�1)N�1 1
N

�
x̃
x̄

�N

with x̃ = x� x̄

For which x̃ can we expect things to go wrong?
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ln(x) & Taylor series expansions at x = 1
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ln(x) &Taylor series expansions at x = 1.5
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ln(x) &Taylor series expansions at x = 1.5
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Perturbation verus projection

� Projection methods =) uniform convergence within the grid
� You control the grid
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ln(x) & projection approximation in [0,2]
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ln(x) & projection approximation in [0,3]
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Problems with preserving shape

h(x) = 0.5xα + 0.5x

� α is an integer =) h(x) is a polynomial
� α is odd =) ∂h(x)/∂x > 0
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Perturbation approximation & preserving
shape
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Projection approximation & preserving
shape
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Problems with preserving shape

� nonlinear �nite-order polynomials always have "weird" shapes
� weirdness may occur close to or far away from steady state
� thus also in the standard growth model
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Standard growth model and odd shapes
due to perturbation (log utility)
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Standard growth model and odd shapes
due to perturbation (log utility)
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Problems with stability

h(x) = α0 + x+ α1e�α2x

x+1 = h(x) + shock+1

� Unique globally stable �xed point
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Perturbation approximation & stability
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Model

max
fct,atg∞

t=1

E
∞

∑
t=1

βt�1 c1�ν
t � 1
1� ν

� P(at)

s.t.

ct +
at

1+ r
= at�1 + θt

θt = θ̄ + εt and εt � N(0, σ2)

a0 given.
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Penalty function

Standard inequality constraint

a � 0

corresponds to

P(a) =
�

∞ if a < 0
0 if a � 0

Flexible alternative:

P(a) =
η1
η0

exp(�η0a)� η2a.
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Our penalty function

� can be approximated globally with Taylor series expansion
� linear part, �η2a

� not necessary
� steady state can be equal to the one without penalty function
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Interpreting the penalty function

1 penalty function implements inequality constraint

� η0 must be very high

2 penalty function is alternative to penalty function

� η0 could be high or low
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Calibrating the penalty function

� η0, η1, and η2 can be chosen to match data characteristics
� Here:

� di¤erent values for curvature parameter, η0
� η1 and η2 chosen to match mean and standard deviation of at

� many properties of this model similar to "a � 0" model
� but tail behavior is di¤erent
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FOC

c�ν
t

1+ r
+

∂P(at)

∂at
= βEt

�
c�ν

t+1
�
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Penalty term in FOC; eta0=10
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Penalty term in FOC; eta0=20
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Perturbation solutions when η0 = 10
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Perturbation solutions when η0 = 20
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Perturbation and higher uncertainty

� oscillations more problematic when σ "
� (more likely to get into problematic part)

� but higher-order perturbation solution adjust when σ "
� (problematic part may move away from steady state)
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Fifth-order perturbation and uncertainty
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Simulating

� 2nd & 3rd explode
� 4th & 5th are inaccurate
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Pruning - procedure

All steady states are set equal to 0 to simplify notation
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Pruning - procedure

1. Split up perturbation solution into two parts
pN,pert(at�1, θt) =

linear part γN,kat�1 + γN,θθt

nonlinear part +p̃N,pert (at�1, θt)
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Pruning - procedure

2. Simulate a�t using

a�t = γN,ka�t�1 + γN,θθt

3. Simulate aprune,t using

aprune,t
= γN,kaprune,t�1 + γN,θθt + p̃N,pert

�
a�t�1, θt

�
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Pruning - procedure

aprune,t
= γN,kaprune,t�1 + γN,θθt + p̃N,pert

�
a�t�1, θt

�
� aprune,t is not a function of just the state variables

� aprune,t�1 and θt

� aprune,t also depends on a�t�1 =)
aprune,t is a correspondence of state variables
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Perturbation principle
� Objective of perturbation: If h(x) is such that

f (h(x)) = 0 8x

then we want to solve for

happrox(x) = h (x̄) +
∂h(x)

∂x

����
x=x̄

(x� x̄) +
∂2h(x)

∂x2

����
x=x̄

(x� x̄)2

2!

+ � � �+ ∂nh(x)
∂xn

����
x=x̄

(x� x̄)n

n!

� Pruning does not generate a function of the form

h(x)

� As a function of x you get a correspondence
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Why don�t you get a policy function?

Additional state variables introduced by pruning procedure
=) hprune is not a function of x
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Why don�t you get a policy function?

1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

a

Modified 1st

2nd

Pruned 2nd

A

B

C



Introduction problems DSGE model perturbation solution pruning Alternatives to pruning Penalty functions

Pruning - graphs

Our model only has one state variable, xt = at�1 + θt

� Generate faprune,tgT
t=1

� plot aprune,t as function of xprune,t = aprune,t + θt
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Pruning - second-order
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Pruning - third-order
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Pruning - fourth-order
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Pruning - �fth-order
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Improvements

� simple improvements
� improvements based on alternative perturbation solutions
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Measuring data

Data:
length of observed data set Tnobs :

observed data yTnobs = fyt,datagTnobs
t=1 :

moment of interest M
�

yTnobs
i

�
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Original Kydland and Prescott approach:

Model:
data generated in ith replication yTnobs

i = fyt,igTnobs
t=1 :

mean of moment of interest MI =
∑I

i=1 M
�

yTnobs
i

�
I

st. dev. of moment of interest
∑I

i=1

�
M
�

yTnobs
i

�
�MI

�
I



Introduction problems DSGE model perturbation solution pruning Alternatives to pruning Penalty functions

Most common approach

Model:
data generated in 1 replication yTlarge

i = fyt,ig
Tlarge
t=1 :

mean of moment of interest M
�

yTlarge
i

�
st. dev. of moment of interest 0
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Di¤erences

� In general:
lim

Tlarge!∞
M
�

yTlarge
i

�
6= lim

I!∞
MI

except for �rst-order moments
� KP approach deals with fact that small sample results may
di¤erent
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Back to explosive perturbation solutions

� (perturbation) approximations explode =)
use KP instead of the Tlarge approach

� But sharply diverging behavior still possible
� Solution: simply exclude those replications
� Drawbacks:

� need a criterion to exclude
� need initial conditions
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Exclusion criterion

� M1st
I : moment according to �rst-order perturbation solution

� Exclude ith sample if

M
�

yTnobs
i

�
> ΛM1st

I

� We experimented with Λ = 2, 3
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Initial conditions

� Ideally: initial conditions drawn from ergodic distribution
� One can approximate this using �rst-order solution (which is
stable)
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Understanding perturbation

Let

h(k) = truth

g(k; γ) = approximation

� Find coe¢ cients γ such that

∂gn(k; γ)

∂kn

����
x=x̄

=
∂hn(k)

∂kn

����
x=x̄

for n = 0, 1, � � � , N
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Understanding perturbation�s �exibility

1 You are not restricted to use polynomials

2 Values of
∂gn(k; γ)

∂kn

����
x=x̄

for n > N

are not restricted to be anything
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Exploiting higher-order degrees of freedom
� Suppose you are given

h(k̄),
∂h(k̄)

∂k
,

∂h2(k̄)
∂k

and consider

g(k; η) = η0 + η1(k� k̄) + η2(k� k̄)2 + η3(k� k̄)3

� Standard perturbation
η3 = 0

� But this is arbitrary
� Derivatives have no information on this
� You could use this additional degree of freedom to implement
another desired property
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Exploit functional form �exibility
� Suppose you are given

∂hn(k)
∂kn

����
x=x̄

for n = 0, 1, � � � , N

� You would like to use

g(k; η) = η0g0(k) + η1g1(k) + � � �+ ηNgN(k)

� Solve for the values of a from the following N+ 1 equations

∂hn(k)
∂kn

����
k=k̄

=
�
η0, η1, � � � , ηN

�
26664

∂gn
0(k)

∂kn

���
k=k̄

...
∂gn

N(k)
∂kn

���
k=k̄

37775
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Simple example

1/x

� Fourth-order Taylor series expansion

1/x � 1� (x� 1) + 2 (x� 1)2 � 6 (x� 1)3 + 24 (x� 1)4

� Alternative

1/x � η0e�2x + η1e�2xx+ η2e�2xx2 + η3e�2xx3 + η4e�2xx4

� note that this is not a transformation
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Standard Taylor expansion
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Alternative Taylor expansion
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Generate stable perturbation solutions

1 Use alternative basis functions

� trivial modi�cation for 2nd-order perturbation

2 Use a perturbation-consistent weighted combination
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Alternative basis functions

� Original model:
F(k�1, k, k+1) � 0

F (k�1, h(k�1), h(h(k�1))) � 0

� From (say) Dynare you get

g(k; η) = η0 + η1k� k̄) + η2
�
k� k̄

�2
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Alternative basis functions

� Instead of g(k; η) use eg(k; η)

eg(k; eη) = eη0 + eη1
�
k� k̄

�
+ eη2

�
k� k̄

�2 exp
�
�
�
k� k̄

�2
�

� Globally stable for jeη1j < 1
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Alternative basis functions

� Implementing perturbation principle: solve eη from
eg(k̄; eη) = h(k̄)

∂eg(k̄; eη)
∂k̄

=
∂h(k̄)

∂k̄

∂eg2(k̄; eη)
∂k̄2 =

∂2h(k̄)
∂k̄2

� Amazing but true:
η = η̃
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Alternative basis functions
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Alternative basis functions

� How to remain closer to underlying second-order perturbation?

� Use
exp

�
�α

�
k� k̄

�2
�

and choose low value of α
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Perturbation consistent weighting

� Original model:
F(k�1, k, k+1) � 0

� add new variable y and new equation

k =
y � expf�α(k�1 � k̄)2g

η1st,0 + η1st,1k�1 � 1� expf�α(k�1 � k̄)2g

� α controls speed of convergence towards stable part
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Perturbation consistent weighting

� Solve for perturbation solutions of hk(k�1) and hy(k�1)

� Do not use hk(k�1), but use

k = ehk(k�1) =
hy(k�1) � expf�α(k�1 � k̄)2g

η1st,0 + η1st,1k�1 � 1� expf�α(k�1 � k̄)2g
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Perturbation consistent weighting

� Approximation is a function not a correspondence
� Derivatives of hy(k�1) correspond to true derivatives at k̄ =)
� Derivatives of ehk(k�1) correspond to true derivatives at k̄
� and k = ehk(k�1) is globally stable
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Note the di¤erence with

k = bhk(k�1) =
pkth(k�1) � expf�α(k�1 � k̄)2g

η1st,0 + η1st,1k�1 � 1� expf�α(k�1 � k̄)2g

� Derivatives of bhk(k�1) are not correct derivatives of h(k�1)
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Perturbation consistent weighting
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Perturbation consistent weighting
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Perturbation consistent weighting

400 420 440 460 480 500
−0.2

0

0.2

0.4

0.6

0.8

time

as
se

ts
Simulation assets

 

 
truth
3rd−order
3rd−order weighting



Introduction problems DSGE model perturbation solution pruning Alternatives to pruning Penalty functions

How to choose alpha?

How to choose α?

� Not that di¢ cult if you can plot the policy function
� Make estimated guess

� e.g., 3 standard deviations away from s̄, weight on �rst-order
should be 0.28

� Try di¤erent values for α and use accuracy test (e.g. dynamic
Euler equation test)
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Perturbation consistent weighting
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Multi-dimensional problems

� Let s be the N� 1 vector of state variables
� Solve �rst-order solution: k = a1st,0 + a01st,1s
� Calculate Ω, the variance covariance matrix of st
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How to choose alpha?

Use

k = hy(x) � exp
�
� α

N (s�1 � s̄)0Ω�1(s�1 � s̄)
	

a1st,0 + a1st,1s � 1� exp
�
� α

N (s�1 � s̄)0Ω�1(s�1 � s̄)
	

or

k =
hy(x) � exp

�
� α

N (s�1 � s̄kth)
0Ω�1(s�1 � s̄kth)

	
akth ,0 + akth ,1s � 1� exp

�
� α

N (s�1 � s̄kth)
0Ω�1(s�1 � s̄kth)
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Multidimensional problems

� Try di¤erent values for α and use accuracy test

� e.g. dynamic Euler equation test
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Penalty functions

� to approximate inequality constraint
� to describe feature in actual economy
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Overview

� Example
� How to choose parameters
� Di¤erent from inequality constraint?
� Blanchard-Kahn conditions
� Functional form

� try to get them analytic
� stay in space of perturbation approximation
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Example

P(a) =
η1
η0

exp(�η0a)� η2a.
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Calibrating the penalty function

� η0, η1, and η2 can be chosen to match data characteristics

� η0 clearly a key parameter
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Penalty versus inequality

� di¤erent values for curvature parameter, η0

� η1 and η2 chosen to match mean and standard deviation of at
� =) these two properties "correct"
� how di¤erent is tail behavior when no numerical errors are
made?
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Lower tail

We look at

� Amin: minimum value of A attained
� Q1: �rst quintile
� D1: �rst decile
� D2: second decile
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Lower-tail CDF errors
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Figure 4.2 lower-tail CDF errors 

 

In table 4.2a and 4.2b the relative deciles stand out as there seems to be no convergence 

to the constraint model. Yet, this is only a matter of numerical difficulties. Small errors in 

the lower-tail of the cumulative density function result in large errors in the relative 

deciles. This amplification is caused by the steepness of the cumulative density function 

around zero, that is the large mass around zero. Even if the errors in the cumulative 

density function of the punishment model become very small, the large errors in the 

relative deciles will not disappear, because the cumulative density function of the 

constraint model is vertical at zero. 

 

In figure 4.3, we present for a few correlations the percentage error in comparison with 

the constraint model. It catches the eye that all correlations are too high. We brief on the 

correlation that is the least off and the correlation that is the most off. First, the 

correlation between consumption and income is the least off. This implies that 

consumption smoothing is not too much affected by using a punishment function instead 

of the borrowing constraint. The punishment function facilitates consumption smoothing 
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First-order condition

c�ν
t

1+ r
+ η1 exp

�
�η0a

�
� η2 = βEt

�
c�ν

t+1
�
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Suppose there is no penalty function

Eigenvalues

λ+ = 1+ r

λ� =
1

(1+ r)β

typical impatience assumption:

β <
1

1+ r

=)BK conditions not satis�ed
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How to satisfy Blanchard-Kahn conditions?

� Put in penalty function
� Will Blanchard-Kahn condition be satis�ed?

� possibly not for high value of η0
� penalty term too �at at high η0 values
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How to satisfy Blanchard-Kahn conditions?

� Are local dynamics necessarily unstable for high η0?
� NO

� with uncertainty:
� higher-order perturbation change �rst-order term

� How to implement this with Dynare?
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Functional forms used

� Preston and Roca (2007)

P(a) =
η

(a� ā)2

� Kim, Kollmann, and Kim (2010)

η

�
ln

a
ass
� a� ass

ass

�
� Drawback of both:

� not analytic
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Functional forms used

� Den Haan and De Wind (2010)

P(a) =
η1
η0

exp(�η0a)� η2a

� Advantage
� analytic

� Drawback
� not clear how perturbation solution will behave
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Possible �x

� Suppose you use second-order approximation
� Let P(a) be such that

� ∂P(a)
∂a = η0 + η1a+ η2a2

� problematic behavior far enough away from steady state
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