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Why are expectations important?

e Most economic problems have intertemporal consequences
o — future matters

e Moreover, future is uncertain
o Characteristics/behavior other agents can also be uncertain

e —> expectations can also matter in one-period problems
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History of economic thought

e adaptive expectations:

B [x1] = B1 [v] +w (xt ~Ei [xt]>

e very popular until the 70s
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History of economic thought

problematic features of adaptive expectations:

e agents can be systematically wrong
e agents are completely passive:

e E [xt1] ,j > 1 only changes (at best) when x; changes

e —> Pigou cycles are not possible

e — model predictions underestimate speed of adjustment
(e.g. for disinflation policies)
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History of economic thought

problematic features of adaptive expectations:

e adaptive expectations about x;1 7 adaptive expecations
about Ax;iq

e (e.g. price level versus inflation)

e why wouldn't (some) agents use existing models to form
expectations?

e expectations matter but still no role for randomness (of future
realizations)

e so no reason for buffer stock savings
¢ no role for (model) uncertainty either
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History of economic thought

rational expectations became popular because:

e agents are no longer passive machines, but forward looking

e i.e., agents think through what could be consequences of their
own actions and those of others (in particular government)

e consistency between model predictions and of agents being
described

e randomness of future events become important

e eg. E {C;ﬂ # (Et [Ct+1])_7
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History of economic thought

problematic features of rational expectations

e agents have to know complete model
e make correct predictions about all possible realizations

e on and off the equilibrium path

e costs of forming expecations are ignored

e how agents get rational expectations is not explained
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History of economic thought

problematic features of rational expectations

e makes analysis more complex

e behavior this period depends on behavior tomorrow for all

possible realizations
e — we have to solve for policy functions, not just simulate the

economy
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Expectations matter

e Simple example to show that how expectations are formed can
matter in the long run

e See Adam, Evans, & Honkapohja (2006) for a more elaborate
analysis
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Model

Overlapping generations

Agents live for 2 periods

Agents save by holding money

No random shocks
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Model

max Incy; +1Incy

C1,t/Co t
s.t.
Py
cop <1+ ——(2—c1y)
t+1

no randomness —> we can work with expected value of variables
instead of expected utility
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Agent’s behavior

First-order condition:

1 Py 1 1 1

e Pijcor T Cop

Solution for consumption:
Solution for real money balance (=savings):

thZ—CLt = 1—7'[?_1_1/2

Topics
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Money supply
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Equilibrium

Equilibrium in period t implies

2 &
z
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Equilibrium

Combining with equilibrium in period t — 1 gives

Pt . 1—7'(?/2
Py 1—m¢,/2

Ty =

Thus: 7tf & 717, | = money demand = actual inflation 7
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Rational expectations solution

Optimizing behavior & equilibrium:

Py
L LA
1

Rational expectations equilibrium (REE):

o= 7
—
e = T(m, 1)
—
2
T = 3-—
t+1 -

Ty = R(m)

Topics
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Multiple steady states

e There are two solutions to
T=3——
T

== there are two steady states

e 77 =1 (no inflation) and perfect consumption smoothing
e 71 = 2 (high inflation) and no consumption smoothing at all

e Initial value for 71; not given, but given an initial condition the
time path is fully determined
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With Feedback

Rational expectations and stability

18

Topics
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Rational expectations and stability

1

1

Us|

usi

<

value in period 1

1:

1:

1:

divergence

economy stays at low-inflation steady state

convergence to high-inflation steady state

Topics
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Alternative expecations

e Suppose that

4 1 1 e
i1 = 57-1+ 57

e still the same two steady states, but

e 7T =1 is stable
e 7T = 2 is not stable
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Adaptive expectations and stability

11+

0.95

091

Tt

Initial conditions:
7 =15 75 =15

08

075

time
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Learning without feedback

Setup:
©® Agents know the complete model, except
they do not know dgp exogenous processes
® Agents use observations to update beliefs

©® Exogenous processes do not depend on beliefs
— no feedback from learning to behavior of variable being
forecasted
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Learning without feedback & convergence

o If agents can learn the dgp of the exogenous processes, then
you typically converge to REE

e They may not learn the correct dgp if

e Agents use limited amount of data
o Agents use misspecified time series process
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Learning without feedback - Example

e Consider the following asset pricing model

Py = E; [B(Pty1+ Diy1)]

o If '
lim /Dy =0

j——

then

P =E LE BDyj
i=1

Topics
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Learning without feedback - Example

e Suppose that

D; = pD;_1 + ¢, & ~ N(0,0?) (1)
e REE: D
py=—
1—pp

(note that P; could be negative so P; is like a deviation from steady
state level)
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Learning without feedback - Example

e Suppose that agents do not know value of p

e Approach here:
e If period t belief = p,, then

1-pp,

e Agents ignore that their beliefs may change,

Py
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Learning without feedback - Example

How to learn about p?

Least squares learning using {Dt}thl & correct dgp

Least squares learning using {Dt}thl & incorrect dgp

Least squares learning using {Dt}tT:T_T & correct dgp

Least squares learning using {Dt}Z:T—T & incorrect dgp

Bayesian updating (also called rational learning)

Lots of other possibilities
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Convergence again

e Suppose that the true dgp is given by
Dy = pDi1+¢

Py € {plow/phigh}

o = { Phigh W-P- P(0})
t+l Orow W-p- 1—p(p})

e Suppose that agents think the true dgp is given by
Dy = pD; 1 + ¢

e —> Agents will never learn
(see homework for importance of sample used to estimate p)



Intro Simple No Feedback Recursive LS With Feedback Topics

Recursive least-squares

e time-series model:
/
Yt = Xp7y + Uy

e least-squares estimator
S p—1ly/
')’T — RT XTYt
where

Xr =[x x - xr]

T = (v vy yr]
Ry = XpXr
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Recursive least-squares

(xTx/T — RTfl)

Rr = Ry_
T T-1+ T

- Rfle (yr — X797-1)
T = Y11+ T

Topics
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Proof for R

X}XT ; XT 1XT 1 + xTxT . X}71XT71
T 7 (T-1) Ty
T-1 ! - T-14T-1
(*r+) XT/XT N Xy Xroa+ L T Laray — ol
XX ? Xt _
/ _ ATAT - _ATXr - A1 _14T-1
/XTXT T = X741 X711 /‘“ XXy — =7 ST
. X%_1XT71+XTX% - . XTX%-‘FX%_lXT,l

T T
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Proof for gamma

X X711 ! X Yr_1+
(XZFXT)—l ? ( T-1 ) T-1 \

_ XTYT
x X-Yr X! X7) ! 1
! (XrXr) —xrxp (Xp_1Xr-1)  Xp_q Y71
-1
o (XX arg) (Xpog Xraa) X Yo
X%YT = X XTYyT .
—xrxp (X7 1 Xro1)  Xp Y7

-1
(14 xrf (X5 X 1) ™) X5 Yoo

?
XL YT = N XTYT 1
—xrxp (Xp 1 Xro1)  Xp Y7
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Reasons to adopt recursive formulation

e makes proving analytical results easier
e less computer intensive,

e but standard LS gives the same answer

e there are intuitive generalizations:

Rr = Rr_q1+ CU(T) (XTX/T — RT—l)
Yr = Yr1+w(T)Ry xr (yr — x797_1)

w(T) is the "gain"
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Learning with feedback

O Explanation of the idea
® Adaptive learning
e E-stability and convergence
© Least-squares learning
e E-stability and convergence
O Bayesian versus least-squares learning
@ Decision theoretic foundation of Adam & Marcet
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Learning with feedback - basic setup

Model: R
pr = PEi—1 [pt] + 0xp1 + &

RE solution:

P = 7 _pxt—l +é&

= AreXi—1t+ &

Topics
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What is behind model

Model: R
pr = PEi—1 [pt] + 0xp1 + &

Stories:

o Lucas aggregate supply model

e Muth market model

See Evans and Honkapohja (2009) for details
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Learning with feedback - basic setup

Perceived law of motion (PLM) at ¢+ — 1:

Pt = ar1Xt—1 + &

Actual law of motion (ALM):

pt = PAr—1X;—1 +0xp_1 + & = (a1 +0) xp_1 + &
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Updating beliefs |: Adaptive

ALM: pr = (Pat—l + 5) Xt 1+ &

Adaptive learning:
® 4y =par_1+0
e could be rationalized if

e agents observe x;_1 and g
e { is more like an iteration and in each iteration agents get
(long) time-series to update
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Adaptive learning: Convergence

ap = pag1+9

or in general
ar —ap—1 =T (A1)

Key questions:
© Does a; converge?
@ If yes, does it converge to arg
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Adaptive learning: E-stability

a—a1 =T (@4—1)

Limiting behavior can be analyzed using

da
£ = T(a(v))

A solution a* (e.g. arg) is E-stable if T(a) is stable at a*

Topics
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E-stability

e T(a) is stable if real part of the eigenvalues is negative:

e da>0ifa<0
e da<0Qifa>0

e Here:
T(a)=(p—1)a+/o

= convergence if p —1 <0
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Adaptive learning: weakness

ALM: py = (pd;—1 +6) xp—1 + &

o Agents (typically) do not observe (pd;_1 + 6)
e — 5o not too convincing to set @y = pa;_q + 9

Topics
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Updating beliefs: LS learning

Suppose agents use least-squares learning

R i1 (pr — xe—1de-1)

Zl\t = /ﬂ\t_1—|— t
R (01 + ) X+ & — X G 1)
= a1+

t
(xt—lxt—l - Rt—l)

Ry = Ry + ;
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Updating beliefs: LS learning

~ 1. _ ~
ap = a1+ ?Rt Y1 (pr — xe1d4-1)
. 1 . .
= a1+ ?Rt "x1 ((0ar—1+0) xp-1 + & — x-1d;-1)

1
Ry = Ry1+ n (xp—1xp—1 — Re—1)

To get system with only lags on RHS, let Ry = S;_4

-~

N 1. . ~
ap = a1+ ?St_llxt—l ((pay—1 +0) xp—1 + & — X4_18_1)
t
t+1

1
St = S+ n (xexe — Sp—1)
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Updating beliefs: LS learning

This can be written as

S 1 N
0 =01+ ?Q(thlfxt, xp—1,8) = T(04—1,x¢t, X1, €, 1)
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Key question

o If

91’ - T(@t_l,Xt, Xt—1, €ty t)
then what can we "expect": about @t?
e In particular, can we "expect" that

lim Zl\t — are

——o00
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Corresponding differential equation

Much can be learned from following differential equation

de
L —he()

where

h(6) = limE [Q(@t_l,xt, xt_l,st)}

t—o00

Topics
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Corresponding differential equation

In our example

h(0) = lim E[Q(6,xt,x1—1,€t)]

t—o0

S7lxi 1 ((pa+6)xt_1+ & — x;_1a)
(tht — S) t—FLl

t—o00

= limE[

_ {Msl(j(\z:é)wré)}

where
M = lim E [xﬂ

t—o0
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Analyze the differential equation

o [ MS~'((p—1)a+9)

dt M-S
do . )
E—OI'FM—S&Q—E

Thus, the (unique) rest point of () is the rational expectations
solution
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Implications of E-stability?

e Adaptive learning: no stochastics in T (-) mapping

e Recursive least-squares: stochastics in T (+) mapping

o — what will happen is less certain, even if with E-stability
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Implications of E-stability?

e If a solution is not E-stable:

e —> non-convergence is a probability 1 event

e If a solution is E-stable:

e the presence of stochastics make the theorems non-trivial
o we only have info about mean dynamics
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Mean dynamics

See Evans and Honkapohja textbook for formal results.

e Theorems are a bit tricky, but are of the following kind:
If a solution f* is E-stable, then the time path under learning
will either leave the neighborhood in finite time or will converge
towards f*. Moreover, the longer it does not leave this
neighborhood, the smaller the probability that it will

e So there are two parts

e mean dynamics: convergence towards fixed point

e escape dynamics: (large) shocks may push you away from fixed
point
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Importance of Gain

Yr = Jr_1 + @(T)Ry 1 (yr — X971

Gain in least squares updating formula, w (T), plays a key role
in theorems

w (T) — 0 too fast: you may end up in somthing that is not
an equilibrium

w (T) — 0 too slowly:,you may not converge towards it

So depending on the application, you may need conditions like

(o]

Y w(t? <ocoand ¥ wl(t) = oo

t=1 t=1
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Bayesian learning

e LS learning has some disadvantages:

e why "least-squares" and not something else?
e how to choose gain?
e why don't agents incorporate that beliefs change?

e Beliefs are updated each period
— Bayesian learning is an obvious thing to consider
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Bayesian versus LS learning

e LS learning # Bayesian learning with uninformed prior
at least not always

e Bullard and Suda (2009) provide following nice example
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Bayesian versus LS learning

Model:

pr = prpi-1+ PoEi1 [pe] + p1Er—1 [prsa] + &

o Key difference with earlier model:

e two extra terms

Topics

()
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Bayesian versus LS learning

Solution:

[
pr = bpi_1 + &

where g is a solution to

b=p; + pob+ p,b°

Topics
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Bayesian learning - setup

e PLM: R
pt =bi1pi—1+ &
and & has a known distribution
e plug PLM into (2) = ALM

e but a Bayesian learner is a bit more careful

Topics
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Bayesian learner understands he is learning

Er1lp] = B [prt + ot [pes1] + 1 Er [Pt+2]]
= pibiapior + B oo [pra] + i [praa]
= PLBt—lpt—l + Et—l [Pogtpt + Plgtr’tﬂ}

. Bt and pyy1 are both affected by &4 1!
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Bayesian learner understands he is learning

e Bayesian learner realizes that
Eia [Etptﬂ} # Ei—1 [pr1] Ei—1 [prea]
and calculates Et_l |:/b\tpt+1:| explicitly

e LS learner forms expectations thinking that

Ei g [Efpt—l—l} = E1 [Et—lptﬂ]

= b 1B [<PLP + POE—l ™ pl@t_l) pt]
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Bayesian versus LS learning

Bayesian learner cares about a covariance term

Bullard and Suda (2009) show that Bayesian is simillar to LS
learning in terms of E-stability

Such covariance terms more important in nonlinear frameworks

Unfortunately not much done with nonlinear models
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Learning what?

Model:
P = BE; [Pry1 + Diya]

e Learning can be incorporated in many ways.
e Obvious choices here:

@ learn about dgp D; and use true mapping for P; = P (Dy)
@® know dgp D; and learn about Py = P (Dy)
© learn about both
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Learning what?

©® Adam, Marcet, Nicolini (2009): one can solve several asset
pricing puzzles using a simple model if learning is learning
about E¢ [P;41] (instead of learning about dgp Dy)

® Adam and Marcet (2011): provide micro foundations that this
is a sensible choice
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Simple model

Model:

Py = BE; [Pry1 + Diga]

Dy

D, = A&t
with

E: [€t+1] =1

g i.i.d.

Topics
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Model properties REE

e Solution:

e P;/D; is constant
o P;/P; 1 isiid.
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Adam, Marcet, & Nicolini 2009

PLM: p
= t+1
&[5 =
ALM:
Peo_ 1B, (a L BAY > ¢,
Py 4 1— By, 1—pBv

apAy; )
= a + _—
’)/H—l ( 1— ﬁ’)/t
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Model properties with learning

e Solution is quite nonlinear
o especially if 1y, is close to f!
e Serial correlation.

e in fact there is momentum. For example:

v = a& Ay >0= Ay, >0

e P;/Dy is time varying
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Adam, Marcet, & Nicolini 2011

Agent i does following optimization problem

max Ei,t []

e E;; is based on a sensible probability measure

e E;; is not necessarily the true conditional expectation
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Adam, Marcet, & Nicolini 2011

e Setup leads to standard first-order conditions but with Ei,t
instead of E;

e For example

Py = BE; [Pis1 + D]
if agent 7 is not constrained

o Key idea:

price determination is difficult

agents do not know this mapping

— they forecast E;; [P 1] directly

= law of iterated expectations cannot be used because next
period agent i may be constrained in which case the equality
does not hold
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Topics - Overview

@ E-stability and sun spots

@® Learning and nonlinearities
Parameterized expectations

® Two representations of sun spots

With Feedback

Topics



Intro Simple No Feedback Recursive LS With Feedback

E-stability and sunspots

Model:
xt = PEt [x411]
X; cannot explode
no initial condition
Solution:

’|O| < 1:x,=0Vt
"0| > 1:xt:p_1xt_1+etVt

where ¢; is the sun spot (which has E; [e;] =0

Topics
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Adaptive learning

PLM:

Xt = ApXy—1 + e

ALM:

Xt = a@PXt1
— 411 = a4ip

e thus divergence when |p| > 1 (sun spot solutions)
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Adaptive learning

PLM:

Xt = ApXy—1 + e

ALM:

Xt = a@PXt1
— 411 = a4ip

e thus divergence when |p| > 1 (sun spot solutions)
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Stability puzzle

e There are few counter examples and not too clear why sun
spots are not learnable in RBC-type models

e Sun spot solutions are learnable in some New Keynesian
models (Evans and McGough 2005)

o McGough, Meng, and Xue 2011 provide a counterexample and
show that an RBC model with negative externalities has
learnable sun spot solutions
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PEA and learning

e Learning is usually done in linear frameworks

e PEA parameterized the conditional expectations in nonlinear
frameworks

e —> PEA is a natural setting to do both

e adaptive learning
e recursive learning
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Model

Py = E

Dii\ " p D
p D, (P41 + Di11)

X; :  state variables

=G (X))
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Conventional PEA in a nutshell

e Start with a guess for G (X;), say g(xt17,)

¢ ¢(-) may have wrong functional form
e x; may only be a subset of X;
* 1], are the coefficients of g (-)
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Conventional PEA in a nutshell

e lterate to find fixed point for 7,

© use 77; to generate time path {Pt}tT:1
@ let )
;= argﬁ}}nz (41 — 8 (x6517))
t

where

(D)’
Y1 = B D, (Pty1+ Dii1)

© Dampen if necessary

N1 = wil;+ (1—w)n;
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Interpretation of conventional PEA

Agents have beliefs

Agents get to observe long sample generated with these beliefs

Agents update beliefs

Corresponds to adaptive expectations

e no stochastics if T is large enough
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Recursive PEA

Agents form expectations using g (x¢;7;)

Solve for P; using
Py = g (xt;17,)

Update beliefs using this one additional observation

Go to the next period using 77, 4
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Recursive methods and convergence

Look at recursive formulation of LS:
1 /~
Y =71+ R Ix; (y xt’Yt—l)

o Il A4, gets smaller as t gets bigger

Topics



Intro Simple No Feedback Recursive LS With Feedback

General form versus common factor
represenation

Sun spot literature distinquishes between:

©® General form representation of a sun spot

® Common factor representation of a sun spot

Topics
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First consider non-sun-spot indeterminacy

Model:
kiy1+arki + a2k 1 = 0 or
(1-ML)(1—=AL)ky 1 = 0O
Also:
e ko given

e k; has to remain finite
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Multiplicity

Model:

kiy1+arki + a2k 1 = 0 or

(1—ML) (1= ALYk = 0

Also:

e ko given

e k; has to remain finite
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Multiplicity

Solution:

ki = DAL+ Do)l
kp = bi1+b

Thus many possible choices for by and by if [A1] <1 and |Aq] <1
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Multiplicity
e What if we impose recursivity?

ke = dk—1

e Does that get rid of multiplicity? No, but it does reduce the
number of solutions from oo to 2

(512 tad + a2> ke, = 0Vt
S
(&2 + alﬁl + Elz) = 0

the two solutions correspond to setting either A1 or A, equal to
0
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Back to sun spots

Doing the same trick with sun spots gives a solution with following
two properties:

@ it has a serially correlated sun spot component
with the same factor as the endogenous variable (i.e. the
common factor)

® there are two of these



Intro Simple No Feedback Recursive LS With Feedback

General form representation

Model:

E; [kt—i-l + alkt + aZkt—l] = 0 or
(1— ML) (1= AsL)kyr = O

General form representation:

kt = bl)\i + bz/\é + (&
ko b1+ by + ep

where ¢; is serially uncorrelated

Topics
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Common factor representation
Model:

E; [kt_|_1 + a1k + ﬂzkt_l] = 0 or
(1= ML) (1= Aol ks = 0

Common factor representation:

ke = biAl+(,
G = Ml te
ko = bi+0p

/\,‘ < {)\1,)\2}

where ¢; is serially uncorrelated

Topics
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