GMM \& Standard Errors for Business Cycle Statistics

Wouter J. Den Haan
London School of Economics

(c) 2011 by Wouter J. Den Haan

June 25, 2011

Overview

- Formulation of GMM estimation problem
- large class of problems
- Formula for standard errors
- Calculating HAC estimator (correcting for heteroskedasticity and autocorrelation)

GMM problem

Underlying true model:

$$
\mathrm{E}\left[h\left(x_{t} ; \theta\right]=0_{p}\right.
$$

- $\theta: m \times 1$ vector with parameters
- $x: n \times 1$ vector of observables
- $h(\cdot): p \times 1$ vector-valued function with $p \geq m$
- $0_{p}: p \times 1$ vector with zeros

Examples

OLS:

$$
\begin{gathered}
y_{t}=a+b x_{t}+u_{t} \\
\mathrm{E}\left[\begin{array}{c}
u_{t} \\
u_{t} x_{t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

- IV:

$$
\begin{gathered}
y_{t}=a+b x_{t}+u_{t} \\
\mathrm{E}\left[\begin{array}{c}
u_{t} \\
u_{t} z_{t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

Examples

DSGE:

$$
\begin{gathered}
u_{t+1}=\beta\left(1+r_{t+1}\right) c_{t+1}^{-\gamma}-c_{t}^{-\gamma} \\
\mathrm{E}\left[u_{t+1} z_{t}\right]=0_{p}
\end{gathered}
$$

where z_{t} is a vector with variables in information set in period t

GMM estimation

$$
\widehat{\theta}_{T}=\arg \min _{\theta \in \Theta} g\left(\theta ; Y_{T}\right)^{\prime} W_{T} g\left(\theta ; Y_{T}\right)
$$

where

$$
\begin{aligned}
g\left(\theta ; \Upsilon_{T}\right) & =\sum_{t=1}^{T} h\left(x_{t} ; \theta\right) / T \\
W_{T} & : p \times p \text { weighting matrix } \\
Y_{T} & : \text { data }
\end{aligned}
$$

No weighting matrix needed if $p=m$

Asymptotic standard errors

$$
\begin{aligned}
W & =\operatorname{plim}_{T \longrightarrow \infty} W_{T} \\
D & =\left.\operatorname{plim}_{T \longrightarrow \infty} \frac{\partial g\left(\theta ; \Upsilon_{T}\right)}{\partial \theta^{\prime}}\right|_{\theta=\theta_{0}} \\
\theta_{0} & : \quad \operatorname{true} \theta
\end{aligned}
$$

Asymptotic standard errors

$$
\begin{aligned}
T^{\frac{1}{2}}\left(\hat{\theta}_{T}-\theta_{0}\right) & \longrightarrow N(0, V) \\
V & =\left(D W D^{\prime}\right)^{-1} D W \Sigma_{0} W^{\prime} D^{\prime}\left(D W D^{\prime}\right)^{-1}
\end{aligned}
$$

Can be made easier

(1) $p=m$ (no overidentifying restrictions)

$$
\begin{aligned}
T^{\frac{1}{2}}\left(\hat{\theta}_{T}-\theta_{0}\right) & \longrightarrow N(0, V) \\
V & =\left(D \Sigma_{0}^{-1} D^{\prime}\right)^{-1}
\end{aligned}
$$

(2) using optimal weighting matrix $W=\Sigma_{0}$

$$
\begin{aligned}
T^{\frac{1}{2}}\left(\hat{\theta}_{T}-\theta_{0}\right) & \longrightarrow N(0, V) \\
V & =\left(D \Sigma_{0}^{-1} D^{\prime}\right)^{-1}
\end{aligned}
$$

What is left to figure out?

- "only" one thing left: estimate Σ_{0}
- Σ_{0} is the variance-covariance matrix of $g\left(\theta ; Y_{T}\right)=\sum_{t=1}^{T} h\left(x_{t} ; \theta\right) / T$

Estimate variance of a mean

- $g\left(\theta ; \Upsilon_{T}\right)$ is the mean of $h\left(x_{t} ; \theta\right)$
- variance of $g\left(\theta ; Y_{T}\right)$ is easy to calculate if $h\left(x_{t} ; \theta\right)$ is serially uncorrelated

Estimate variance of a mean

General formula

$$
\Sigma_{0}=\sum_{j=-\infty}^{\infty} \mathrm{E}\left[h\left(x_{t} ; \theta_{0}\right) h\left(x_{t-j} ; \theta_{0}\right)^{\prime}\right]
$$

How to estimate this?

$$
\widehat{\Sigma}_{0}=\sum_{j=-J}^{J} \kappa(j) \frac{\sum_{t=\max \{1, j+1\}}^{\min \{T, T+j\}}\left[h\left(x_{t} ; \theta_{0}\right) h\left(x_{t-j} ; \theta_{0}\right)^{\prime}\right]}{T}
$$

Choice of kernel

- Truncated

$$
\kappa(j)=\begin{gathered}
1 \text { if }|j| \leq J \\
0 \text { o.w. }
\end{gathered}
$$

- disadvantage: answer not necessarily psd
- Newey-West

$$
\kappa(j)=1-j / J+1
$$

- disadvantage: adds bias $(\kappa(j)$ should be $=1$ for all $j)$

What to do in practice

(1) Find $\hat{\theta}_{T}$ (analytically or with minimization routine)

- if $p>m$ first use non-optimal choice for W
(2) Calculate $h\left(x_{t} ; \widehat{\theta}_{T}\right)$ and estimate Σ_{0}

3 Estimate D (using $\widehat{\theta}_{T}$ for θ_{0})
(4) Calculate variance of $\widehat{\theta}_{T}$ using $\left(D \Sigma_{0}^{-1} D^{\prime}\right)^{-1}$

Business cycles statistics

1

$$
\psi=\frac{\text { standard deviation }\left(c_{t}\right)}{\text { standard deviation }\left(y_{t}\right)}
$$

(2)

$$
\rho=\text { correlation }\left(c_{t}, y_{t}\right)
$$

Statistics easy to estimate, but what is the standard error?

Business cycles statistics

GMM problem for ψ

$$
\begin{aligned}
& 0=\mathrm{E}\left[c_{t}-\mu_{c}\right] \\
& 0=\mathrm{E}\left[y_{t}-\mu_{y}\right] \\
& 0=\mathrm{E}\left[\left(y_{t}-\mu_{y}\right)^{2} \psi^{2}-\left(c_{t}-\mu_{c}\right)^{2}\right] \\
& D^{\prime}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
2 \mathrm{E}\left[\left(y_{t}-u_{y}\right)\right] & 2 \mathrm{E}\left[\left(y_{t}-u_{y}\right) \psi^{2}\right] & 2 \mathrm{E}\left[\left(y_{t}-u_{y}\right)^{2} \psi\right]
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \mathrm{E}\left[\left(y_{t}-u_{y}\right)^{2} \psi\right]
\end{array}\right]
\end{aligned}
$$

Business cycles statistics

GMM problem for ρ

$$
\begin{aligned}
& 0=\mathrm{E}\left[c_{t}-\mu_{c}\right] \\
& 0=\mathrm{E}\left[y_{t}-\mu_{y}\right] \\
& 0=\mathrm{E}\left[\left(y_{t}-\mu_{y}\right)^{2} \psi^{2}-\left(c_{t}-\mu_{c}\right)^{2}\right] \\
& 0=\mathrm{E}\left[\left(y_{t}-\mu_{y}\right)^{2} \psi \rho^{2}-\left(c_{t}-\mu_{c}\right)\left(y_{t}-\mu_{y}\right)\right] \\
& \left.D^{\prime}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 \\
0 & 0 & 2 \mathrm{E}\left[\left(y_{t}-u_{y}\right)^{2} \psi\right]
\end{array}\right] \begin{array}{c}
0 \\
0
\end{array} 00 \mathrm{E}\left[\left(y_{t}-u_{y}\right)^{2} \rho^{2}\right] \quad 2 \mathrm{E}\left[\left(y_{t}-u_{y}\right)^{2} \psi \rho\right]\right]
\end{aligned}
$$

References

- Den Haan, W.J., and A. Levin, 1997, A practioner's guide to robust covariance matrix estimation
- a detailed survey of all the ways to estimate Σ_{0}. There are a lot more ways than those discussed here

