

Accuracy tests

Wouter J. Den Haan

University of Amsterdam

July 27, 2010

How to check for accuracy

- ① Informal accuracy tests
- ② Formal accuracy tests

Informal accuracy tests

These are possibly more important than formal ones

- ① Play with your model/algorithm
 - ① Understand properties of the model
 - ② Change parameter values and understand how model properties change
 - ③ Open up the black box
- ② Solve your model in a different way
 - ① Linear instead of log-linear
 - ② Use model equations to substitute out variables

Formal accuracy tests

① Euler equation errors

- better than DHM (in my opinion)
- require numerical integration
but this is not that difficult and good to know anyway

② Dynamic Euler equation errors

③ Welfare measures (be careful)

④ DenHaan-Marcet (DHM) accuracy test

- simple, but hard to interpret

Framework for accuracy tests

$$E[f(x_{t-1}, x_t, y_t, y_{t+1})|I_t] = 0$$

where $E[f(\cdot)|I_t]$ is the Euler equation error

Idea behind accuracy tests:

- Euler equation error: $E[f(\cdot)|I_t]$ should be zero at *many* points in state space
- DHM: $f(x_{t-1}, x_t, y_t, y_{t+1})$ is a forecast error \implies should not be correlated with anything in the information set

Forecast error in standard growth model

$$f_t = c_t^{-\gamma} - \beta c_{t+1}^{-\gamma} (\alpha \exp(z_{t+1}) k_t^{\alpha-1} + 1 - \delta)$$

with

$$z_{t+1} = \rho z_t + \sigma e_{t+1}$$

Euler equation errors

- True solution satisfies

$$E[f(x_{t-1}, x_t, y_t, y_{t+1}) | I_t] = 0$$

for *all* points in the state space

- This can be checked for *any* numerical solution (including perturbation solutions) at *many* points in the state space

How to deal with integration?

- Easy if shocks have discrete support.
- Numerical integration (this must be done *very* accurately)

Growth model with discrete innovations

$$\max_{\{c_t, k_t\}_{t=1}^{\infty}} \mathbb{E}_1 \sum_{t=1}^{\infty} \beta^{t-1} \frac{c_t^{1-\gamma} - 1}{1 - \gamma}$$

$$\text{s.t. } c_t + k_t = \exp(z_t) k_{t-1}^{\alpha} + (1 - \delta) k_t \quad (1)$$

$$z_t = \rho z_{t-1} + \sigma e_t, \quad (2)$$

$$e_t = \begin{cases} +1 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/2 \end{cases}$$

Basic idea

- ➊ Construct fine grid with values for k_{-1} and z
- ➋ Euler equation error at (k_{-1}, z) equals

$$\begin{aligned} & -c(k_{-1}, z)^{-\gamma} \\ & + 0.5 * \beta c(k, \rho z + \sigma)^{-\gamma} (\alpha \exp(\rho z + \sigma) k^{\alpha-1} + 1 - \delta) \\ & + 0.5 * \beta c(k, \rho z - \sigma)^{-\gamma} (\alpha \exp(\rho z - \sigma) k^{\alpha-1} + 1 - \delta) \end{aligned}$$

with $k = k(k_{-1}, z)$

When is a solution accurate

- When error is small at many points
- Problem: magnitude of errors is hard to interpret

Interpretable Euler equation errors

- At each grid point calculate *two* consumption values
 - $c(k_{-1}, z)$ using the numerical approximation
 - implied value, $c_{imp}(k_{-1}, z)$, using

$$c_{imp}(k_{-1}, z) = g^{-1/\gamma}$$

with

$$g = \frac{+0.5 * \beta c(k, z, +\sigma)^{-\gamma} (\alpha \exp(\rho z + \sigma) k^{\alpha-1} + 1 - \delta)}{+0.5 * \beta c(k, z, -\sigma)^{-\gamma} (\alpha \exp(\rho z - \sigma) k^{\alpha-1} + 1 - \delta)}$$

that is, value implied by accurately calculated RHS of Euler equation

Interpretable Euler equation errors

- Euler equation error is equal to

$$\left| \frac{c(k_{-1}, z) - c_{imp}(k_{-1}, z)}{c_{imp}(k_{-1}, z)} \right|$$

What to do with the errors?

- Calculate maximum and average of the errors
- Investigate
 - Pattern (e.g., are errors always of the same sign)
 - How likely are the nodes where largest errors occur?
 - Are percentage errors reasonable at nodes where largest errors occur?

For example, if consumption is very small than small basically irrelevant errors may show up as large percentage errors

Growth model with continuous support

$$\max_{\{c_t, k_t\}_{t=1}^{\infty}} \mathbb{E}_1 \sum_{t=1}^{\infty} \beta^{t-1} \frac{c_t^{1-\gamma} - 1}{1-\gamma}$$

$$\text{s.t. } c_t + k_t = \exp(z_t) k_{t-1}^{\alpha} + (1 - \delta) k_t$$

$$z_t = \rho z_{t-1} + \sigma e_t,$$

$$e_t \sim N(0, 1)$$

Conditional expectation

- Given are k_{-1} , z , and policy function $g(k_{-1}, z)$
- $\delta = 1$ to simplify notation

① $k = g(k_{-1}, z)$

②

$$\begin{aligned}
 & \mathbb{E} \left[\frac{\beta \exp(z_{+1}) \alpha k^{\alpha-1}}{c_{t+1}} \right] \\
 = & \mathbb{E} \left[\frac{\beta \exp(z_{+1}) \alpha k^{\alpha-1}}{\exp(z_{+1}) k^\alpha - k_{+1}} \right] \\
 = & \mathbb{E} \left[\frac{\beta \exp(z_{+1}) \alpha k^{\alpha-1}}{\exp(z_{+1}) k^\alpha - g(k, z_{+1})} \right] \\
 = & \mathbb{E} \left[\frac{\beta \exp(\rho z + \sigma \varepsilon_{+1}) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \varepsilon_{+1}) k^\alpha - g(k, \rho z + \sigma \varepsilon_{+1})} \right]
 \end{aligned}$$

Conditional expectation

$$\begin{aligned}
 & E \left[\frac{\beta \exp(\rho z + \sigma \varepsilon_{+1}) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \varepsilon_{+1}) k^\alpha - g(k, \rho z + \sigma \varepsilon_{+1})} \right] \\
 &= \int_{-\infty}^{\infty} \frac{\beta \exp(\rho z + \sigma \varepsilon_{+1}) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \varepsilon_{+1}) k^\alpha - g(k, \rho z + \sigma \varepsilon_{+1})} \frac{\exp(-0.5 \varepsilon_{+1}^2)}{\sqrt{2\pi}} d\varepsilon_{+1} \\
 &= \int_{-\infty}^{\infty} \frac{\beta \exp(\rho z + \sigma \tilde{\varepsilon}_{+1}) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \tilde{\varepsilon}_{+1}) k^\alpha - g(k, \rho z + \sigma \tilde{\varepsilon}_{+1})} \frac{\exp(-\tilde{\varepsilon}_{+1}^2)}{\sqrt{\pi}} d\tilde{\varepsilon}_{+1}
 \end{aligned}$$

where $\tilde{\varepsilon}_{+1} = \varepsilon_{+1} \sqrt{2}$ and the Jacobian, $\sqrt{2}$, is used when implementing the change in variables

Hermite Gaussian Quadrature

$$\int_{-\infty}^{\infty} \frac{\beta \exp(\rho z + \sigma \tilde{\varepsilon}_{+1}) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \tilde{\varepsilon}_{+1}) k^{\alpha} - g(k, \rho z + \sigma \tilde{\varepsilon}_{+1})} \frac{\exp(-\tilde{\varepsilon}_{+1}^2)}{\sqrt{\pi}} d\tilde{\varepsilon}_{+1}$$

≈

$$\sum_{j=1}^J \frac{\beta \exp(\rho z + \sigma \zeta_j) \alpha k^{\alpha-1}}{\exp(\rho z + \sigma \zeta_j) k^{\alpha} - g(k, \rho z + \sigma \zeta_j)} \frac{1}{\sqrt{\pi}} \omega_j$$

Euler equation errors - Pros & Cons

- ① This is probably best that is currently available
- ② However, it only tests for *one-period* ahead forecast errors; it ignores the possibility of accumulation of small errors
 - Dynamic Euler equation error could pick those up too
 - DHM statistic could pick those up

Dynamic Euler equation errors

- Generate time series for z_t and choose k_0
- Generate two time paths for endogenous variables c_t and k_t
 - ❶ Use your numerical approximation to generate time series for c_t and k_t
 - ❷ Generate alternative series doing the following in each period
 - use your numerical solution to calculate conditional expectation accurately
 - use this conditional expectation to calculate implied consumption value
 - get capital value from this implied consumption value and budget constraint
 - (numerical approximation only used to calculate conditional expectation)

step 2

Details of

- ① Generate time series for z_t and set $k_{imp,0} = k_0$
- ② Calculate g_t (conditional expectation) as explained above.
Use your numerical solution to evaluate choices inside the integral
- ③ Calculate $c_{imp,t} = g^{-1/\gamma}$
- ④ Calculate $k_{imp,t} = z_t k_{imp,t-1}^\alpha + (1 - \delta)k_{imp,t-1} - c_{imp,t}$

Welfare-based accuracy tests

- Be careful
- Welfare loss of using $k_t = k_{ss}$ instead of the optimal policy function is relatively small

DHM Accuracy test

$$\mathbb{E} [f(x_{t-1}, x_t, y_t, y_{t+1}) | I_t] = 0$$

$$\implies$$

$$\mathbb{E} [f(x_{t-1}, x_t, y_t, y_{t+1}) h(s_t) | I_t] = 0$$

$$\implies$$

$$\mathbb{E} [f(x_{t-1}, x_t, y_t, y_{t+1}) h(s_t)'] = 0$$

for any $s_t \in I_t$ and any measurable function I_t

Using simulated data to test

$$\frac{\sum_{t=1}^T f(x_{t-1}, x_t, y_t, y_{t+1}) h(s_t)'}{T} \approx 0$$

Simple DHM Accuracy test

① Calculate \bar{u} , the average of

$$u_t = c_t^{-\gamma} - \beta c_{t+1}^{-\gamma} (\alpha \exp(z_{t+1}) k_t^{\alpha-1} + 1 - \delta)$$

② Calculate how much this error would change steady state consumption

$$\begin{aligned} c^{-\gamma} &= \bar{u} + c_{ss}^{-\gamma} \\ c &= \left(\bar{u} + c_{ss}^{-\gamma} \right)^{-1/\gamma} \end{aligned}$$

③ Express error as fraction of steady state value

$$\frac{c - c_{ss}}{c_{ss}}$$

Formal DHM Accuracy test

1. Simulate data of length T . Reasonable: $T = 3,500$ and discard 500.
2. Calculate

$$J_T = TM'_T W_T^{-1} M_T$$

$$M_T = \frac{\sum_{t=1}^T h(s_t)f(x_{t-1}, x_t, y_t, y_{t+1})}{T}$$

$$W_T = \frac{\sum_{t=1}^T f(x_{t-1}, x_t, y_t, y_{t+1})h(s_t)'h(s_t)f(x_{t-1}, x_t, y_t, y_{t+1})}{T}$$

Formal DHM Accuracy test

- J_T has a χ^2 distribution with n_h degrees of freedom
- If $h(s_t)$ is a scalar, then

$$J_T = \left(\frac{M_T}{\sqrt{W_T/T}} \right)^2$$

Implementation of DHM statistic

- ➊ Do the DHM statistic N times
- ➋ Check the fraction of times the statistic is in the lower and upper 5% range; inaccurate solutions are typically blown away (because of having too many realizations in the upper critical region)
- ➌ Personally, I prefer to do the test multiple times for scalar $h(s_t)$ because this provides more information. In fact, using $h(s_t) = 1$ can already be quite informative

Limits of DHM statistic

- ① Even accurate solutions are rejected more often than 5% for high enough T ; thus the higher the value of T for which you get good results the better
- ② Results are random so inaccurate solutions could get through by sheer chance
- ③ The opposite of #2 turns out to be a bigger problem in practice: DHM is difficult to pass in the sense that solutions that in many aspects are close to the true or an extremely accurate solution can fail the DHM statistic miserably

Matching model example

Household side

$$\max_{\{C_t, K_t\}_{t=1}^{\infty}} E_1 \sum_{t=1}^{\infty} \beta^{t-1} \frac{C_t^{1-\gamma} - 1}{1-\gamma}$$

$$\text{s.t. } C_t + K_t = W_t N_{t-1} + R_t K_{t-1} + (1 - \delta) K_t + P_t \quad (3)$$

$$N_t = (1 - \rho^x) N_{t-1} + M_t \quad (4)$$

Household takes the number of "matches", M_t , the wage rate, W_t , the rental rate R_t , and profits, P_t , as given.

FOC

$$C_t^{-\gamma} = E_t \left[\beta C_{t+1}^{-\gamma} (R_{t+1} + 1 - \delta) \right]$$

Matching model example

Problem for firm matched with worker

$$\max_{k_t} z_t k_t^\alpha - W_t - R_t k_t^\alpha$$

FOC:

$$R_t = \alpha z_t k_t^{\alpha-1}$$

Firm-level profits are (at optimal k) equal to

$$p_t = (1 - \alpha) z_t k_t^\alpha - W_t$$

Wages are given by the following rule

$$W_t = (1 - \omega_0) \times [\omega_1 * p_t + (1 - \omega_1) \bar{p}]$$

where \bar{p} are steady state level profits. Wages are completely sticky if ω_1 is equal to 0.

Matching model example

Free entry

posting cost = prob of success \times value if success

$$\psi = \frac{M_t}{V_t} g_t$$

$$g_t = E_t \left[\beta \frac{C_{t+1}^{-\gamma}}{C_t^{-\gamma}} p_{t+1} + (1 - \rho^x) g_{t+1} \right]$$

Matching model example

Matching technology

$$M_t = \frac{U_t V_t}{(U_t^\xi + V_t^\xi)^{1/\xi}}$$

with

$$U_t = 1 - N_{t-1}$$

Matching model example

Equilibrium

Equilibrium in the rental market

$$K_{t-1} = N_{t-1} k_t$$

profits transferred to households

$$P_t = N_{t-1} p_t - \psi V_t$$

Collecting equations: Household

$$C_t^{-\gamma} = E_t \left[\beta C_{t+1}^{-\gamma} (R_{t+1} + 1 - \delta) \right]$$

`exp(-nu*c)=dfactor*exp(-nu*c(+1))*(exp(r(+1))+1-delta)`

$$C_t + K_t + \psi V_t = z_t K_{t-1}^\alpha N_{t-1}^{1-\alpha} + (1 - \delta) K_t \text{ or}$$

$$C_t + I_t + \psi V_t = Y_t, \quad Y_t = z_t K_{t-1}^\alpha N_{t-1}^{1-\alpha}, \quad I_t = K_t + (1 - \delta) K_{t-1}$$

$$\exp(c) + \exp(i) + pcost * \exp(v) = \exp(y)$$

$$\exp(k) = (1 - \delta) * \exp(k(-1)) + \exp(i)$$

$$y = varz + alpha * k(-1) + (1 - alpha) * n(-1)$$

Collecting equations: Matching

$$N_t = (1 - \rho^x)N_{t-1} + \frac{U_t V_t}{(U_t^\xi + V_t^\xi)^{1/\xi}}$$

$$\begin{aligned} & \exp(n) \\ & = (1 - \rho x) * \exp(n(-1)) + \exp(u + v) \\ & / ((\exp(u * \eta) + \exp(v * \eta))^{(1 / \eta)}) \end{aligned}$$

Collecting equations: rental rate & productivity

$$R_t = \alpha z_t k_t^{\alpha-1}$$

$$r = \log(\alpha) + \text{varz} + (\alpha - 1) * (k(-1) - n(-1))$$

$$\ln(z_t) = \rho \ln(z_{t-1}) + \varepsilon_t$$

$$\text{varz} = \text{rho} * \text{varz}(-1) + e$$

Collecting equations: free entry

$$\psi = \frac{M_t}{V_t} g_t$$

pcost=

`exp(eta)*exp(u)/((exp(u*etam)+exp(v*etam))^(1/etam))`

$$g_t = E_t \left[\beta \frac{C_{t+1}^{-\gamma}}{C_t^{-\gamma}} p_{t+1} + (1 - \rho^x) g_{t+1} \right]$$

`exp(eta)=`

`dfactor*(exp(c(+1))/exp(c))^(−nu)`

`*(exp(prof(+1))+(1-rox)*exp(eta(+1)))`

$$p_t = (1 - \alpha)z_t k_t^\alpha - W_t$$

prof

=

log(

(1-omega1*omega0)*(1-alpha)*exp(varz+alpha*(k(-1)-n(-1))
-(1-omega1)*omega0*profitss
)

System

10 equations in 10 unknowns:

- $N_t, g_t, V_t, C_t, K_t, R_t, U_t, p_t, \ln(z_t), Y_t, I_t$
- n, eta, v, c, k, r, u, prof, y, varz, i

Accuracy errors

2-nd order
perturbation 5-th order
projections

Capital Euler equation

average	0.034%	0.026%
max	0.34%	0.33%

Employment Euler equation

average	0.89%	0.004%
max	2.31%	0.086%

Log capital stock

Log employment level

