Introduction to Bayesian Estimation

Wouter J. Den Haan London School of Economics

© 2011 by Wouter J. Den Haan

June 20, 2011

Overview

- A very useful tool: Kalman filter
- Maximum Likelihood
 - Singularity when #shocks \leq number of observables
- Bayesian estimation
- Tools:
 - Metropolis Hastings
- Remaining issues

Rudolph E. Kalman

born in Budapest, Hungary, on May 19, 1930

Kalman filter

- Linear projection
- Linear projection with orthogonal regressors
- Kalman filter

The slides for the Kalman filter is based on Ljungqvist and Sargent's textbook

Linear projection

- $y: n_y \times 1$ vector of random variables
- $x: n_x \times 1$ vector of random variables
- First and second moments exist

$$\begin{split} & \mathsf{E} y = \mu_y \quad \tilde{y} = y - \mu_y \quad \mathsf{E} \tilde{x} \tilde{x}' = \Sigma_{xx} \\ & \mathsf{E} x = \mu_x \quad \tilde{x} = x - \mu_x \quad \mathsf{E} \tilde{y} \tilde{y}' = \Sigma_{yy} \\ & \mathsf{E} \tilde{y} \tilde{x}' = \Sigma_{yx} \end{split}$$

Definition of linear projection

The *linear projection* of y on x is the function

$$\widehat{\mathsf{E}}\left[y|x\right] = a + Bx,$$

a and B are chosen to minimize

E trace
$$\{(y-a+Bx)(y-a+Bx)'\}$$

Formula for linear projection

The *linear projection* of y on x is given by

$$\widehat{\mathsf{E}}\left[y|x\right] = \mu_y + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_x)$$

Difference with linear regression problem

• True model:

$$y = \overline{B}x + \overline{D}z + \varepsilon,$$

Ex = Ez = E ε = 0, E [ε |x, z] = 0, E [z |x] \neq 0

- \overline{B} : measures the effect of x on y keeping all else—also z and ε —constant.
- Particular regression model:

$$y = \bar{B}x + u$$

Difference with linear regression problem

Comments:

- Least-squares estimate $\neq \bar{B}$
- Projection:

$$\widehat{\mathsf{E}}\left[y|x\right] = Bx = \bar{B}x + \bar{D}\widehat{\mathsf{E}}\left[y|x\right]$$

• Projection well defined linear projection can include more than the direct effect:

Message:

- You can always define the linear projection
- you don't have to worry about the properties of the error term.

Linear Projection with orthogonal regressors

- $x = [x_1, x_2]$ and suppose that $\Sigma_{x_1x_2} = 0$
- x_1 and x_2 could be vectors

$$\begin{aligned} \widehat{\mathsf{E}} \left[y | x \right] &= \mu_y + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_x) \\ &= \mu_y + \left[\Sigma_{yx_1} \Sigma_{yx_2} \right] \left[\begin{array}{c} \Sigma_{x_1 x_1}^{-1} & 0 \\ 0 & \Sigma_{x_2 x_2}^{-1} \end{array} \right] (x - \mu_x) \\ &= \mu_y + \Sigma_{yx_1} \Sigma_{x_1 x_1}^{-1} (x_1 - \mu_{x_1}) + \Sigma_{yx_2} \Sigma_{x_2 x_2}^{-1} (x_2 - \mu_{x_2}) \end{aligned}$$

Thus

$$\widehat{\mathsf{E}}[y|x] = \widehat{\mathsf{E}}[y|x_1] + \widehat{\mathsf{E}}[y|x_2] - \mu_y$$
(1)

Time Series Model

$$\begin{aligned} x_{t+1} &= Ax_t + Gw_{1,t+1} \\ y_t &= Cx_t + w_{2,t} \\ Ew_{1,t} &= Ew_{2,t} = 0 \\ \mathsf{E} \begin{bmatrix} w_{1,t+1} \\ w_{2,t} \end{bmatrix} \begin{bmatrix} w_{1,t+1} \\ w_{2,t} \end{bmatrix}' = \begin{bmatrix} V_1 & V_3 \\ V_3 & V_2 \end{bmatrix} \end{aligned}$$

Time Series Model

- y_t is observed, but x_t is not
- the coefficients are known (could even be time-varying)
- Initial condition:
 - x_1 is a random variable (mean μ_{x_1} & covariance matrix Σ_1)
- $w_{1,t+1}$ and $w_{2,t}$ are serially uncorrelated and orthogonal to x_1

Objective

The objective is to calculate

$$\widehat{\mathsf{E}}_{t} x_{t+1} \equiv \widehat{\mathsf{E}} [x_{t+1} | y_{t}, y_{t-1}, \cdots, y_{1}, \widehat{x}_{1}]$$

= $\widehat{\mathsf{E}} [x_{t+1} | Y^{t}, \widehat{x}_{1}]$

where \hat{x}_1 is an initial estimate of x_1 (Typically μ_{x_1})

Trick: get a recursive formulation

Orthogonalization of the information set

- Let
 - $\hat{y}_t = y_t \widehat{\mathsf{E}} [y_t | \hat{y}_{t-1}, \hat{y}_{t-2}, \cdots, \hat{y}_1, \hat{x}_1]$ • $\hat{Y}^t = \{\hat{y}_t, \hat{y}_{t-1}, \cdots, \hat{y}_1\}$
- space spanned by $\{\hat{x}_1, \hat{Y}^t\}$ = space spanned by $\{\hat{x}_1, Y_t\}$
 - That is, anything that can be expressed as a linear combination with elements in {\$\hat{x}_1\$, \$\hat{Y}^t\$} can be expressed as a linear combination of elements in {\$\hat{x}_1\$, \$Y_t\$}.

Orthogonalization of the information set

• Then

$$\widehat{\mathsf{E}}\left[y_{t+1}|Y^{t}, \hat{x}_{1}\right] = \widehat{\mathsf{E}}\left[y_{t+1}|\hat{Y}^{t}, \hat{x}_{1}\right] = C\widehat{\mathsf{E}}\left[x_{t+1}|\hat{Y}^{t}, \hat{x}_{1}\right]$$
(2)

Derivation of the Kalman filter

From (1) we get

$$\widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^{t},\widehat{x}_{1}\right] = \widehat{\mathsf{E}}\left[x_{t+1}|\widehat{y}_{t}\right] + \widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^{t-1},\widehat{x}_{1}\right] - \mathsf{E}x_{t+1} \quad (3)$$

The first term in (3) is a standard linear projection:

$$\widehat{\mathsf{E}} \begin{bmatrix} x_{t+1} | \hat{y}_t \end{bmatrix} = \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) [\mathsf{cov}(\hat{y}_t, \hat{y}_t)]^{-1} (\hat{y}_t - \mathsf{E} \hat{y}_t) \\ = \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) [\mathsf{cov}(\hat{y}_t, \hat{y}_t)]^{-1} \hat{y}_t$$

Some algebra

• Similar to the definition of \hat{y}_t , let

$$\hat{x}_{t+1} = x_{t+1} - \widehat{\mathsf{E}} [x_{t+1} | \hat{y}_t, \hat{y}_{t-1}, \cdots, \hat{y}_1, \hat{x}_1] = x_{t+1} - \widehat{\mathsf{E}}_t x_{t+1}$$

• Let
$$\Sigma_{\hat{x}_t} = \mathsf{E} \hat{x}_t \hat{x}'_t$$

$$egin{aligned} \mathsf{cov}(x_{t+1}, \hat{y}_t) &= A \Sigma_{\hat{x}_t} C' + G V_3 \ \mathbf{cov}(\hat{y}_t, \hat{y}_t) &= C \Sigma_{\hat{x}_t} C' + V_2 \end{aligned}$$

Using the derived expressions

$$\widehat{\mathsf{E}}\left[x_{t+1}|\widehat{y}_{t}\right]$$

$$= \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) \left[\mathsf{cov}(\hat{y}_t, \hat{y}_t)\right]^{-1} \hat{y}_t$$

$$= \mathsf{E}x_{t+1} + \left(A\Sigma_{\hat{x}_t}C' + GV_3\right) \left(C\Sigma_{\hat{x}_t}C' + V_2\right)^{-1} \hat{y}_t \tag{4}$$

Derivation Kalman filter

• Now get an expression for the second term in (3).

• From
$$x_{t+1} = Ax_t + Gw_{1,t+1}$$
, we get

$$\widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^{t-1}, \widehat{x}_1\right] = A\widehat{\mathsf{E}}\left[x_t|\widehat{Y}^{t-1}, \widehat{x}_1\right] = A\widehat{\mathsf{E}}_{t-1}x_t \quad (5)$$

Using (4) and (5) in (3) gives the *recursive* expression $\widehat{\mathsf{E}}_t x_{t+1} = A \widehat{\mathsf{E}}_{t-1} x_t + K_t \hat{y}_t$

where

$$K_t = \left(A\Sigma_{\hat{x}_t}C' + GV_3\right)\left(C\Sigma_{\hat{x}_t}C' + V_2\right)^{-1}$$

Other

Prediction for observable

From
$$y_{t+1}=Cx_{t+1}+w_{2,t+1}$$
 we get $\widehat{\mathsf{E}}\left[y_{t+1}|Y_t, \hat{x}_1
ight]=C\widehat{\mathsf{E}}_t x_{t+1}$ Thus $\hat{y}_{t+1}=y_{t+1}-C\widehat{\mathsf{E}}_t x_{t+1}$

Updating the covariance matrix

• We still need an equation to update $\Sigma_{\hat{x}_t}.$ This is actually not that hard. The result is

$$\Sigma_{\hat{x}_{t+1}} = A \Sigma_{\hat{x}_t} A' + G V_1 G' - K_t (A \Sigma_{\hat{x}_t} C' + G V_3)'$$

• Expression is deterministic and does not depend particular realizations. That is, precision only depends on the coefficients of the time series model

Applications Kalman filter

- signal extraction problems
 - GPS, computer vision applications, missiles
- prediction
- simple alternative to calculating inverse policy functions
 - (see below)

Estimating DSGE models

- Forget the Kalman filter for now, we will not use it for a while
- What is next?
 - Specify the neoclassical model that will be used as an example
 - Specify the linearized version
 - Specify the estimation problem
 - Maximum Likelihood estimation
 - Explain why Kalman filter is useful
 - Bayesian estimation
 - MCMC, a necessary tool to do Bayesian estimation

Neoclassical growth model

First-order conditions

$$c_t^{-\nu} = \mathsf{E}_t \left[\beta c_{t+1}^{-\nu} (\alpha z_{t+1} k_t^{\alpha - 1} + 1 - \delta) \right]$$
$$c_t + k_t = z_t k_{t-1}^{\alpha} + (1 - \delta) k_{t-1}$$
$$z_t = (1 - \rho) + \rho z_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim N(0, \sigma^2)$$

Linearized solution

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

$$z_t = (1 - \rho) + \rho z_{t-1} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, \sigma^2)$$

$$z_0 \sim N(1, \sigma^2 / (1 - \rho^2))$$

$$k_0 \text{ is given}$$

- $a_{k,k}$, $a_{k,z}$, and \bar{k} are *known* functions of the structural parameters \implies better notation would be $a_{k,k}(\Psi)$, $a_{k,z}(\Psi)$, and $\bar{k}(\Psi)$
- Consumption has been substituted out
- Approximation error is ignored. Linearized model is treated as the true model with Ψ as the parameters

Estimation problem

Given data for capital, $\{k_t\}_0^T$, estimate the set of coefficients, Ψ

$$\Psi = [\alpha, \beta, \nu, \delta, \rho, \sigma, z_0]$$

- No data on productivity, z_t .
 - If you had data on $z_t \Longrightarrow$ Likelihood = 0 for sure
 - More on this below.

• Let Y^T be the complete sample

$$L(Y^T|\Psi) = p(z_0) \prod_{t=1}^T p(z_t|z_{t-1})$$

 $p(z_t|z_{t-1})$ corresponds with probability of a particular value for ε_t

Basic idea:

- Given a value for Ψ and give the data set, Y^T , you can calculate the implied values for ε_t
- We know the distribution of $\varepsilon_t \Longrightarrow$
- We can calculate the probability (likelihood) of $\{\varepsilon_1, \cdots, \varepsilon_T\}$

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$
$$\implies$$

$$z_t = \frac{a_{k,z}\bar{z} - \bar{k} + a_{k,k}\bar{k}}{a_{k,z}} - \frac{a_{k,k}}{a_{k,z}}k_{t-1} + \frac{1}{a_{k,z}}k_t$$

 $z_t = b_0 + b_1 k_{t-1} + b_2 k_t$

$$\varepsilon_t = z_t - (1 - \rho) - \rho z_{t-1}$$

- ε_t is obtained by **inverting** the policy function
- For larger systems, this inversion is not as easy to implement.
 - Below, we show an alternative

A bit more explicit

- Take a value for Ψ
- Given k_0 and k_1 you can calculate z_1
- Given z_0 you can calculate ε_1
- Continuing, you can calculate $\varepsilon_t \; orall t$
- To make explicit the dependence of ε_t on Ψ , write $\varepsilon_t(\Psi)$
- The Likelihood can thus be written as

$$\prod_{t=1}^{T} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-\left(\varepsilon_t(\Psi)\right)^2}{2\sigma^2}\right\}$$

Too few unobservables & singularities

- Above we assumed that there was no data on z_t
- Suppose you had data on z_t
- There are two cases to consider
 - Data not exactly generated by this model (most likely case) \implies Likelihood = 0 for any value of Ψ

Other

- Data is exactly generated by this model
 - \Longrightarrow Likelihood = 1 for true value of Ψ and
 - \implies Likelihood = 0 for any other value for Ψ

Too few unobservables & singularities

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

Using the values for 4 periods, you can pin down \bar{k} , \bar{z} , $a_{k,k}$, and $a_{k,z}$.

- What about values for additional periods?
 - Data generated by model (unlikely of course)
 ⇒ additional observations will fit this equation too
 - Data not generated by model
 - \Longrightarrow additional observations will not fit this equation
 - \implies Likelihood = zero

Too few unobservables & singularities

• Can't I simply add an error term?

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z}) + u_t$$

- Answer: NO not in general
- Why not? It is ok in standard regression

Too few unobservables & singularities

Why is the answer NO in general?

- u_t represents other shocks such as preference shocks \implies it's presence is likely to affect \bar{k} , $a_{k,k}$, and $a_{k,z}$
- **2** u_t represents measurement error
 - \implies you are fine from an econometric stand point
 - \implies but is residual only measurement error?

What if you also observe consumption?

Suppose you observe k_t , c_t , but not z_t ?

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

$$c_t = \bar{c} + a_{c,k}(k_{t-1} - \bar{k}) + a_{c,z}(z_t - \bar{z})$$

- Recall that the coefficients are functions of Ψ
- Given value of Ψ you can solve for z_t from top equation
- Given value of Ψ you can solve for z_t from bottom equation
- With real world data you will get inconsistent answers.

Unobservables and avoiding singularities

General rule:

- For every observable you need at least one unobservable shock
- Letting them be measurement errors is hard to defend
- The last statement does not mean that you cannot *also* add measurement errors

Using the Kalman filter

$$x_{t+1} = Ax_t + Gw_{1,t+1}$$
 (6)
 $y_t = Cx_t + w_{2,t}$ (7)

- (6) describes the equations of the model;
 - *x_t* consists of the "true" values of state variables like capital and productivity.
- (7) relates the observables, y_t , to the "true" values

Example

- consumption and capital are observed with error
 - $c_t^* = c_t + u_{c,t}$
 - $k_t^* = k_t + u_{k,t}$
- z_t is unobservable
- $x'_t = [k_{t-1} \bar{k}, z_{t-1} \bar{z}]$
- $w_{1,t+1} = \varepsilon_t$
- $y'_t = [k^*_{t-1} \bar{k}, c^*_t \bar{c}]$

Example

• (6) gives policy function for k_t and law of motion for z_t

$$\begin{bmatrix} k_t - \bar{k} \\ c_t - \bar{c} \\ z_{t+1} - \bar{z} \end{bmatrix} = \begin{bmatrix} a_{k,k} & a_{k,z} \\ a_{c,k} & a_{c,z} \\ 0 & \rho \end{bmatrix} \begin{bmatrix} k_{t-1} - \bar{k} \\ z_t - \bar{z} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \varepsilon_{t+1} \end{bmatrix}$$

• Equation (7) is equal to

$$\begin{bmatrix} k_{t-1}^* - \bar{k} \\ c_t^* - \bar{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{c,k} & a_{c,z} \end{bmatrix} \begin{bmatrix} k_{t-1} - \bar{k} \\ z_t - \bar{z} \end{bmatrix} + \begin{bmatrix} u_{k,t} \\ u_{c,t} \end{bmatrix}$$

Back to the Likelihood

- y_t consists of k_t^* and c_t^* and the model is given by (6) and (7).
- From the Kalman filter we get \hat{y}_t and $\Sigma_{\hat{y}_t}$

$$\begin{aligned} \widehat{\mathsf{E}} \begin{bmatrix} x_t | Y^{t-1}, \widehat{x}_1 \end{bmatrix} &= A \widehat{\mathsf{E}} \begin{bmatrix} x_{t-1} | Y^{t-2}, \widehat{x}_1 \end{bmatrix} + K_{t-1} \widehat{y}_{t-1} \\ \widehat{\mathsf{E}} \begin{bmatrix} y_t | Y^{t-1}, \widehat{x}_1 \end{bmatrix} &= C \widehat{\mathsf{E}} \begin{bmatrix} x_t | Y^{t-1}, \widehat{x}_1 \end{bmatrix} \\ \widehat{y}_t &= y_t - \widehat{\mathsf{E}} \begin{bmatrix} y_t | Y^{t-1}, \widehat{x}_1 \end{bmatrix} \\ \Sigma_{\widehat{x}_{t+1}} &= A \Sigma_{\widehat{x}_t} A' + G V_1 G' - K_t (A \Sigma_{\widehat{x}_t} C + G V_3)' \\ \Sigma_{\widehat{y}_t} &= C \Sigma_{\widehat{x}_t} C' \end{aligned}$$

Back to the Likelihood

- \hat{y}_{t+1} is normally distributed because
 - this is a linear model and underlying shocks are linear
- Kalman filter generates \hat{y}_{t+1} and $\Sigma_{\hat{y}_t}$
 - (given Ψ and observables, Y^T)
- Given normality calculate likelihood of $\{\hat{y}_{t+1}\}$

Kalman Filter versus inversion

with measurement error

• have to use Kalman filter

withour measurement error

- could back out shocks using inverse of policy function
- but could also use Kalman filter
 - Dynare always uses the Kalman filter
 - hardest part of the Kalman filter is calculating the inverse of $C\Sigma_{\hat{x}_t}C' + V_2$ and this is typically not a difficult inversion.

Log-Likelihood

$$\begin{aligned} \ln(Y^T | \Psi) &= -\left(\frac{1}{2}\right) \left(n_x \ln(2\pi) + \ln(|\Sigma_{\widehat{x}_0}|) + \widehat{x}_0' \Sigma_{\widehat{x}_0}^{-1} \widehat{x}_0 \right) \\ &- \left(\frac{1}{2}\right) \left(T n_y \ln(2\pi) + \sum_{t=1}^T \left[\ln(|\Sigma_{\widehat{y}_t}|) + \widehat{y}_t' \Sigma_{\widehat{y}_t}^{-1} \widehat{y}_t \right] \right) \end{aligned}$$

 n_y : dimension of \hat{y}_t

For the neo-classical growth model

- Start with $x_1 = [k_0, z_0]$, $y_1 = k_0^*$, and Σ_1
- Calculate

$$\hat{y}_1 = y_1 - \widehat{\mathsf{E}} [y_1 | x_1] = y_1 - C x_1$$

• Calculate $\widehat{\mathsf{E}}[x_2|y_1, x_1]$ using

$$\widehat{\mathsf{E}}_t x_{t+1} = A\widehat{\mathsf{E}}_{t-1} x_t + K_t \hat{y}_t$$

where

$$K_t = \left(A\Sigma_{\hat{x}_t}C' + GV_3\right) \left(C\Sigma_{\hat{x}_t}C' + V_2\right)^{-1}$$

For the neo-classical growth model

• Calculate

$$\hat{y}_2 = y_2 - \widehat{\mathsf{E}} [y_2 | y_1, x_1]$$

= $y_2 - C \widehat{\mathsf{E}} [x_2 | y_1, x_1]$

Other

• etc.

Bayesian Estimation

- Conceptually, things are not that different
- Bayesian econometrics combines
 - the likelihood, i.e., the data, with
 - the prior
- You can think of the prior as additional data

Posterior

The joint density of parameters and data is equal to

$$P(Y^T, \Psi) = L(Y^T | \Psi) P(\Psi)$$
 or $P(Y^T, \Psi) = P(\Psi | Y^T) P(Y^T)$

Posterior

From this we can get Bayes rule: $P(\Psi|Y^T) = \frac{L(Y^T|\Psi)P(\Psi)}{P(Y^T)}$

Reverend Thomas Bayes (1702-1761)

Posterior

- For the distribution of Ψ , $P(Y^T)$ is just a constant.
- Therefore we focus on

$$L(Y^T|\Psi)P(\Psi) \propto \frac{L(Y^T|\Psi)p(\Psi)}{P(Y^T)} = P(\Psi|Y^T)$$

• One can always make $L(Y^T|\Psi)P(\Psi)$ a proper density by scaling it so that it integrates to 1

Evaluating the posterior

- Calculating posterior for given value of Ψ not problematic.
- But we are interested in objects of the following form

$$\mathsf{E}[g(\Psi)] = \frac{\int g(\Psi) P(\Psi|Y^T) d\Psi}{\int P(\Psi|Y^T) d\Psi}$$

- Examples
 - to calculate the mean of Ψ , let $g(\Psi) = 1$
 - to calculate the probability that $\Psi \in \Psi^*$,
 - let $g(\Psi) = 1$ if $\Psi \in \Psi^*$ and
 - let $g(\Psi) = 0$ otherwise
 - to calculate the posterior for j^{th} element of Ψ

•
$$g(\Psi) = \Psi_j$$

Evaluating the posterior

- Even Likelihood can typically only be evaluated numerically
- Numerical techniques also needed to evaluate the posterior

Evaluating the posterior

- Standard Monte Carlo integration techniques cannot be used
 - Reason: cannot *draw* random numbers directly from $P(\Psi|Y^T)$
 - being able to calculate $P(\Psi|Y^T)$ not enough to create a random number generator with that distribution
- Standard tool: Markov Chain Monte Carlo (MCMC)

Other

Metropolis & Metropolis-Hasting

- Metropolis & Metropolis-Hasting are particular versions of the MCMC algorithm
- Idea:
 - travel through the state space of $\boldsymbol{\Psi}$
 - weigh the outcomes appropriately

Metropolis & Metropolis-Hasting

- Start with an initial value, Ψ_0
 - discard the beginning of the sample, the burn-in phase, to ensure choice of Ψ_0 does not matter

Metropolis & Metropolis-Hasting

Subsequent values, Ψ_{i+1} , are obtained as follows

- Draw Ψ^* using the "stand in" density $f(\Psi^*|\Psi_i,\theta_f)$
 - θ_f contains the parameters of $f(\cdot)$
- Ψ^* is a *candidate* for Ψ_{i+1}
 - $\Psi_{i+1} = \Psi^*$ with probability $q(\Psi_{i+1}|\Psi_i)$
 - $\Psi_{i+1} = \Psi_i$ with probability $1 q(\Psi_{i+1} | \Psi_i)$

Metropolis & Metropolis-Hasting

properties of $f(\cdot)$

- $f(\cdot)$ should have fat tails relative to the posterior
 - that is, $f(\cdot)$ should "cover" $P(\Psi|Y^T)$

Metropolis (used in Dynare)

$$q(\Psi_{i+1}|\Psi_i) = \min\left[1, \frac{P(\Psi^*|Y^T)}{P(\Psi_i|Y^T)}\right]$$

•
$$P(\Psi^*|Y^T) \ge P(\Psi_i|Y^T) \Longrightarrow$$

• always include candidate as new element

•
$$P(\Psi^*|Y^T) < P(\Psi_i|Y^T) \Longrightarrow$$

- Ψ^* not always included; the lower $P(\Psi^*|Y^T)$ the lower the chance it is included

Metropolis-Hasting

$$q(\Psi_{i+1}|\Psi_i) = \min\left[1, \frac{P(\Psi^*|Y^T) / f(\Psi^*|\Psi_i, \theta_f)}{P(\Psi_i|Y^T) / f(\Psi_i|\Psi_i, \theta_f)}\right]$$

•
$$P(\Psi_i|\Upsilon^T)/f(\Psi_i|\Psi_i,\theta_f)$$
 low \Longrightarrow

- you should move away from this Ψ value $\Longrightarrow q$ should be high
- $P(\Psi^*|\Upsilon^T)/f(\Psi^*|\Psi_i, \theta_f)$ high:
 - probability of Ψ^* high & should be included with high prob.

Choices for f(.)

• Random walk MH:

$$\Psi^* = \Psi_i + \varepsilon$$
 with $\mathsf{E}\left[arepsilon
ight] = 0$

• and, for example,

$$\varepsilon \sim N(0, \theta_f^2)$$

Other

• Independence sampler:

$$f(\Psi^*|\Psi_i,\theta_f) = f(\Psi^*|\theta_f)$$

Couple more points

- Is the singularity issue different with Bayesian statistics?
- Choosing prior
- Gibbs sampler

The singularity problem again

What happens in practice?

- lots of observations are available
- practioners don't want to exclude data \Longrightarrow
- add "structural" shocks

Other

The singularity problem again

Problem with adding additional shocks

- measurement error shocks
 - not credible that this is reason for gap between model and data
- structural shocks
 - good reason, but wrong structural shocks \Longrightarrow misspecified model

Possible solution to singularity problem?

Today's posterior is tomorrow's prior

Possible solution to singularity problem?

Suppose you want the following:

- use 2 observables and
- only 1 structural shock

Possible solution to singularity problem?

- **()** Start with first prior: $P_1(\Psi)$
- **2** Use first observable Y_1^T to form first posterior

$$F_1(\Psi) = L(Y_1^T | \Psi) P_1(\Psi)$$

3 Let second prior be first posterior: $P_2(\Psi) = F_1(\psi)$ **4** Use second observable Y_2^T to form second posterior

$$F_2(\Psi) = L(Y_2^T | \Psi) P_2(\Psi)$$

Final answer:

$$F_2(\Psi) = L(Y_2^T | \Psi) P_2(\Psi)$$

= $L(Y_2^T | \Psi) L(Y_1^T | \Psi) P_1(\Psi)$

Obviously:

$$F_2(\Psi) = L(Y_2^T | \Psi) L(Y_1^T | \Psi) P_1(\Psi)$$

= $L(Y_1^T | \Psi) L(Y_2^T | \Psi) P_1(\Psi)$

Thus, it does not matter which variable you use first

Properties of final posterior

- Final posterior could very well have multiple modes
 - indicates where different variables prefer parameters to be
- This is only informative, not a disadvantage

Have we solved the singularity problem?

Problems of approach:

- Procedure avoids singularity problem by not considering *joint* implications of two observables
- Procdure misses some structural shock/misspecification

Key question:

• Is this worse than adding bogus shocks?

Have we solved the singularity problem?

Problems of approach:

- Procedure avoids singularity problem by not considering *joint* implications of two observables
- Procdure misses some structural shock/misspecification

Key question:

• Is this worse than adding bogus shocks?

Other

How to choose prior

- Without analyzing data, sit down and think problem in macro: we keep on using the same data so is this science or data mining?
- **2** Don't change prior depending on results

Uninformative prior

- $P(\Psi) = 1 \quad \forall \Psi \in \mathbb{R} \Longrightarrow \text{posterior} = \text{likelihood}$
- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln \Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

Uninformative prior

- $P(\Psi) = 1 \quad \forall \Psi \in \mathbb{R} \Longrightarrow \text{posterior} = \text{likelihood}$
- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln \Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

Uninformative prior

- $P(\Psi) = 1 \quad \forall \Psi \in \mathbb{R} \implies \text{posterior} = \text{likelihood}$
- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln\Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

The objective of Jeffrey's prior is to ensure that the prior is *invariant* to such reparameterizations

How to choose (not so) informative priors

Let the prior inherit invariance structure of the problem:

- location parameter: If X is distributed as f(x ψ), then
 Y = X + φ have the same distribution but a different location.
 If the prior has to inherit this property, then it should be uniform.
- **2** scale parameter: If X is distributed as $(1/\sigma)f(x/\sigma)$, then $Y = \phi X$ has the same distribution as X except for a different scale parameter. If the prior has to inherit this property, then it should be of the form

$$P\left(\psi\right)=1/\psi$$

Both are improper priors.

That is, they do not integrate to a finite number.

Not so informative priors

Let the prior be consistent with "total confusion"

③ probability parameter: If ψ is a probability $\in [0, 1]$, then the prior distribution

$$P(\psi) = 1/\left(\psi\left(1-\psi\right)\right)$$

represents total confusion. The idea is that the elements of the prior correspond to different beliefs and everybody is given a new piece of info that the cross-section of beliefs would not change.

See notes by Smith

Gibbs sampler

Objective: Obtain T observations from $p(x_1, \dots, x_J)$. Procedure:

- **1** Start with initial observation $X^{(0)}$.
- **2** Draw period t observation, $X^{(t)}$, using the following iterative scheme:

• draw $x_j^{(t)}$ from the conditional distribution: $p\left(x_j|x_1^{(t)}, \cdots, x_{j-1}^{(t)}, x_{j+1}^{(t-1)}, \cdots, x_J^{(t-1)}\right)$

Gibbs sampler versus MCMC

- Gibbs sampler does not require stand-in distribution
- Gibbs sampler still requires the ability to draw from conditional \implies not useful for estimation DSGE models

References

- Chib, S. and Greenberg, E., 1995, Understanding the Metropolis-Hastings Algorithm, The American Statistician.
 - describes the basics
- Ljungqvist, L. and T.J. Sargent, 2004, Recursive Macroeconomic Theory
 - source for the description of the Kalman filter
- Roberts, G.O., and J.S. Rosenthal, 2004, General state space Markov chains and MCMC algorithms, Probability Surveys.
 - more advanced articles describing formal properties

References

- Smith, G.P., Expressing Prior Ignorance of a Probability Parameter, notes, University of Missouri http://www.stats.org.uk/priors/noninformative/Smith.pdf on informative priors
- Syversveen, A.R, 1998, Noninformative Bayesian priors. Interpretation and problems with construction and applications http://www.stats.org.uk/priors/noninformative/Syversveen1998.pdf on informative priors