Introduction to Bayesian Estimation

Wouter J. Den Haan
London School of Economics

© 2011 by Wouter J. Den Haan

June 20, 2011



Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC Other

Overview

A very useful tool: Kalman filter

Maximum Likelihood

e Singularity when #shocks < number of observables

Bayesian estimation
Tools:

o Metropolis Hastings

Remaining issues
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Rudolph E. Kalman

born in Budapest, Hungary, on May 19, 1930
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Kalman filter

e Linear projection
e Linear projection with orthogonal regressors

e Kalman filter

The slides for the Kalman filter is based on Ljungqvist and Sargent'’s
textbook
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Linear projection

° y:ny X 1 vector of random variables

e x: 1, X 1 vector of random variables

e First and second moments exist

Ey=p, j=y—p, EX¥ =3y
E.X':}lx i:x_‘ux Eyy/:z*yy

MCMC

Other
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Definition of linear projection

The linear projection of i on x is the function
E[y|x] = a + Bx,

a and B are chosen to minimize

E trace {(y—a+Bx)(y —a+Bx)'}

MCMC

Other
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Formula for linear projection

The linear projection of i on x is given by

Elyla] = Hy+ Z'yxza?xl (x — )
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Difference with linear regression problem

e True model:

y = Bx+Dz+e,
Ex = Ez=Ee=0,E[e|x,z] =0, Ez]x] #0

B : measures the effect of x on y keeping all else—also z and
g—constant.

e Particular regression model:

y=Bx+u
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Difference with linear regression problem

Comments:

e Least-squares estimate # B

e Projection: R ) .
E [y|x] = Bx = Bx + DE [y|x]

e Projection well defined
linear projection can include more than the direct effect:
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Message:

e You can always define the linear projection

e you don’t have to worry about the properties of the error term.
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Linear Projection with orthogonal regressors

e x = [x1, 2| and suppose that Xy, =0
e x1 and x, could be vectors

Elylx] = Hy =+ Z'yxz‘;xl (x — 1)
L0
= Myt [Zyxl Z‘yxz} [ 98951 y—1 ] (x—py)

X2X2

=ty + Ty Ty (01 — ) + Ty Tl (X2 — 1)

Thus R R R
E [y[x] = E[y[x1] + E [y[xo] — 1, (1)
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Time Series Model

Xp1 = Axp + Gy 41
yr = Cxp +woy
E’(/ULt = EwZ,t =0

E { W1 441 } { wW1,t41 ]l { Vi V3 }
Wy ¢ [y Vs V»
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Time Series Model

e y; is observed, but x; is not
e the coefficients are known (could even be time-varying)
e Initial condition:
* x1 is a random variable (mean p, & covariance matrix %)
® w11 and wy are serially uncorrelated and orthogonal to x;
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Objective

The objective is to calculate

[xt+1|yt/yt—1/ ot /]/1/521]
[xXe41]Y, 3]

Etxt+1 = E
E

where X1 is an initial estimate of xq (Typically ]/txl)

Trick: get a recursive formulation
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Orthogonalization of the information set

o U=y —EWeldi1, 92, 910
hd Yt = {915/91‘—1/' t /91}

e space spanned by {1, Y} = space spanned by {%1, Y;}

e That is, anything that can be expressed as a linear
combination with elements in {%1, Y'} can be expressed as a
linear combination of elements in {%1, Y;}.
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Orthogonalization of the information set

e Then

E [yt+1|Yt, 5(1] = E [yt+1|Yt, 5(1] = CE [xt+1|l7t,5c1} (2)
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Derivation of the Kalman filter

From (1) we get

E [xi1 |V, %] =E[xa 9] +E [xt+1|Yt_1/521} —Exr1 (3)

The first term in (3) is a standard linear projection:

Exal9r] = Exppr + cov(xesn, 1) [cov(@e, 1)) (
= Exp1 + cov(xpn, 9i) [cov(ie, 1)) 9
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Some algebra

e Similar to the definition of ¢, let

X1 = X1 —Elalin i, 903

= X1 — Exe

o Let Xy, —ERs3]

COV(.Xt+1,9t) = AZQtCI + GV3
cov(it, ) = CZ;QC' + Vs

Other
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Using the derived expressions

E [xe11[94]
= Exp 41+ cov(xei1, 1) [cov(Pe, 1)) 9

= Exp1 + (AX;,C' 4+ GV3) (CZ;,C' + Vz)*1 bt

Other
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Derivation Kalman filter

e Now get an expression for the second term in (3).
e From x;,1 = Axt + Gw1,f+1, we get

E [xt+1|l7t_1,5c1] = AE [xt|Yt_1,561] = AEt_lxt (5)
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Using (4) and (5) in (3) gives the recursive expression
Eexry1 = A 1x: + Ki

where
K; = (AZ;,C' + GV3) (CZ4,C' + V,)

Other
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Prediction for observable

From
Y1 = Cxpp1 + W41
we get R R
E [Yer1|Ye X1] = CExiq
Thus

Yir1 = Yep1 — CEx

MCMC

Other
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Updating the covariance matrix

e We still need an equation to update X3,. This is actually not
that hard. The result is

Ly = Az‘fftA/ +GV1G' — K (Az‘a?tc/ +GV3)'

e Expression is deterministic and does not depend particular
realizations. That is, precision only depends on the coefficients
of the time series model
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Applications Kalman filter

e signal extraction problems
o GPS, computer vision applications, missiles
e prediction
e simple alternative to calculating inverse policy functions

o (see below)
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Estimating DSGE models

o Forget the Kalman filter for now, we will not use it for a while
e What is next?

Specify the neoclassical model that will be used as an example
Specify the linearized version

Specify the estimation problem

Maximum Likelihood estimation

Explain why Kalman filter is useful

Bayesian estimation

MCMC, a necessary tool to do Bayesian estimation
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Neoclassical growth model

First-order conditions
¢’ = E [5C?f1(“2t+1k?71 +1- 5)}
Ct —+ kt = Ztk?_l + (1 — 5)kt_1
ze = (1—p)+pz—1 + &

g~ N(O,az)

MCMC

Other
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Linearized solution

ke = k+agp(ki—1 —k) +ar(z —z)
z = (1—p)+pza1+e

g ~ N(0,0%)

zo ~ N(1,0%/(1 - p?)

ko is given

® dj i, dk, and k are known functions of the structural parameters
= better notation would be a;x(¥), ar.(¥), and k(¥)

e Consumption has been substituted out

e Approximation error is ignored. Linearized model is treated as
the true model with ¥ as the parameters
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Estimation problem

Given data for capital, {kt}g, estimate the set of coefficients, ¥
Y = [«,B,v,9,0,0,20)

e No data on productivity, z;.

o If you had data on z; = Likelihood = 0 for sure
e More on this below.
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Formulation of the Likelihood

e Let YT be the complete sample

T

L(Y'IY) = p(z0) HP(ZdZt—l)

p(z¢|zt—1) corresponds with probability of a particular value for &
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Formulation of the Likelihood

Basic idea:

e Given a value for ¥ and give the data set, YT you can
calculate the implied values for &

e We know the distribution of ¢ —

e We can calculate the probability (likelihood) of {1, -- ,er}
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Formulation of the Likelihood

ki = k4 agp(ke—y — k) + ar - (2 — 2)
—
Ay ,Z — k+ ay kk

, , akk
zZy = —kt_1 + _kt
gz gz gz

zt = b+ biki_1 + bok;

g = zt—(1—p)—pz1

Other
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Formulation of the Likelihood

e & is obtained by inverting the policy function

e For larger systems, this inversion is not as easy to implement.

e Below, we show an alternative
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Formulation of the Likelihood

A bit more explicit

e Take a value for ¥

Given ky and ki you can calculate z;

Given zg you can calculate &1

Continuing, you can calculate g Vt

To make explicit the dependence of & on ¥, write &(¥)

The Likelihood can thus be written as

L1 — (e(¥))?
[{amexp{ 207 }
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Too few unobservables & singularities

e Above we assumed that there was no data on z;

e Suppose you had data on z;

e There are two cases to consider

e Data not exactly generated by this model (most likely case)
—> Likelihood = 0 for any value of ¥

e Data is exactly generated by this model
— Likelihood = 1 for true value of ¥ and
— Likelihood = 0 for any other value for ¥
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Too few unobservables & singularities

ki =k + ag(ki—1 — k) + ag o (z¢e — 2)

Using the values for 4 periods, you can pin down k, Z, gk, and ay ;.

e What about values for additional periods?

e Data generated by model (unlikely of course)
—> additional observations will fit this equation too
e Data not generated by model
— additional observations will not fit this equation
—> Likelihood = zero
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Too few unobservables & singularities

e Can't | simply add an error term?

ki = k+ag(ke—1 — k) + ag o (ze — 2) +

e Answer: NO not in general

e Why not? It is ok in standard regression

Other



Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC

Too few unobservables & singularities

Why is the answer NO in general?

@ u; represents other shocks such as preference shocks
= it's presence is likely to affect k, ayx, and gy,

@® Uu; represents measurement error
— you are fine from an econometric stand point
—> but is residual only measurement error?

Other
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What if you also observe consumption?

Suppose you observe k¢, c;, but not z;7?

ki = k+agp(ke—r — k) +ag,(ze — 2)
¢t = ¢+ ﬂc,k(kt—1 - k) + ﬂc,z(Zt - Z)

Recall that the coefficients are functions of ¥

Given value of ¥ you can solve for z; from top equation

Given value of ¥ you can solve for z; from bottom equation

With real world data you will get inconsistent answers.
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Unobservables and avoiding singularities

General rule:

o For every observable you need at least one unobservable shock
e Letting them be measurement errors is hard to defend

e The last statement does not mean that you cannot also add
measurement errors
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Using the Kalman filter

Xpr1 = Axt + Gwy 411 (6)
yr = Cxp + wyy (7)

e (6) describes the equations of the model;

e x; consists of the "true" values of state variables like capital
and productivity.

e (7) relates the observables, v, to the "true" values
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Example

e consumption and capital are observed with error
o ¢ =cr+ Uy
L4 k;k =k + Ug t
e Z; is unobservable
/ 7 —_
o xj= k1 —k,ze_1 —Z]

® Wity1 = &
yi =k —kcf =
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Example

e (6) gives policy function for k; and law of motion for z;

ke —k Ak Ak k1 — K 0
Ct - E — aclk (ZC,Z [ Z_i. o Z :| + 0
Zt41 — Z 0 p €41

e Equation (7) is equal to

-k _[1 0 {h4—k}+[um}
c; —¢ Aej ez Zy —Z Uet
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Back to the Likelihood

e y; consists of k' and c; and the model is given by (6) and (7).

e From the Kalman filter we get §; and Xy,

E [xtwf*l,fcl}
E [yt|Yt_1,5cl}
Ut

2

X1

Xy,

— AE [xt_1|Yt72,5€1] + Ki—1¥1—1

= CE [xt|Yt_1,5€1}

= y—E [yt|Yt_1f5‘1]

= AZ;CtAl + GV]G/ - Kt (Azfctc + GV3)/
= %, C
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Back to the Likelihood

® ;41 is normally distributed because

e this is a linear model and underlying shocks are linear
e Kalman filter generates ;11 and ¥y,

e (given ¥ and observables, YT)

e Given normality calculate likelihood of {{;4+1}
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Kalman Filter versus inversion

with measurement error

e have to use Kalman filter

withour measurement error

e could back out shocks using inverse of policy function
e but could also use Kalman filter
e Dynare always uses the Kalman filter

e hardest part of the Kalman filter is calculating the inverse of
C%;,C' + V; and this is typically not a difficult inversion.
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Log-Likelihood

In(YT|¥) = — G) (nx In(27) + In(|Z5,|) +%z;01y0)
— (%) (Tny In(277) +§: [ln(]ZytD —i—?izytl?t])

1

1y : dimension of ;
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For the neo-classical growth model

e Start with x; = [ko,Zo], Y1 = kak, and 24

e Calculate

A

= y1-Enlx]
= yl — Cx1

e Calculate E [x;]y1, x1] using
Erxry1 = AEr1x: + Ki

where 1
K; = (AZ;CtC/ + GV3) (CZthl + Vz) a

Other
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For the neo-classical growth model

e Calculate

i = y2—Eyln,x]
= y2 — CE[x2|y1, x1]

e ctc.
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Bayesian Estimation

e Conceptually, things are not that different

e Bayesian econometrics combines

o the likelihood, i.e., the data, with
e the prior

e You can think of the prior as additional data
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Posterior

The joint density of parameters and data is equal to
P(YT,¥) = L(YT[¥)P(¥) or

P(YT,¥) = P(¥|YT)P(YT)
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Posterior

L(YT[¥)P(Y)

From this we can get Bayes rule: P(‘I’|YT) = T iy

Reverend Thomas Bayes (1702-1761)
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Posterior

e For the distribution of ¥, P(YT) is just a constant.

e Therefore we focus on

L(YT[¥)p(¥)

Pt = PCENT)

LOYT|¥)P(¥) o

e One can always make L(YT|¥)P(¥) a proper density by
scaling it so that it integrates to 1
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Evaluating the posterior

e Calculating posterior for given value of ¥ not problematic.

e But we are interested in objects of the following form

(Y|YT)d¥
Elg(¥)] = fgfp T|Y|T)d‘)1f

e Examples

e to calculate the mean of ¥, let g(¥) =1
e to calculate the probability that ¥ € Y*,

o letg(¥)=1if¥Y € ¥*and
o let g(¥) = 0 otherwise

e to calculate the posterior for jt" element of ¥
° 3(¥) =Y
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Evaluating the posterior

e Even Likelihood can typically only be evaluated numerically

e Numerical techniques also needed to evaluate the posterior
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Evaluating the posterior

e Standard Monte Carlo integration techniques cannot be used

e Reason: cannot draw random numbers directly from P(¥|YT)
e being able to calculate P(¥|YT) not enough to create a
random number generator with that distribution

e Standard tool: Markov Chain Monte Carlo (MCMC)
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Metropolis & Metropolis-Hasting

e Metropolis & Metropolis-Hasting are particular versions of the
MCMC algorithm

e |dea:

o travel through the state space of ¥
e weigh the outcomes appropriately
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Metropolis & Metropolis-Hasting

e Start with an initial value, ¥

o discard the beginning of the sample, the burn-in phase, to
ensure choice of ¥y does not matter
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Metropolis & Metropolis-Hasting

Subsequent values, ¥; 1, are obtained as follows

e Draw ¥* using the "stand in" density f('¥*[¥;, 6y)

e 05 contains the parameters of f(-)

e ¥* is a candidate for ¥;

o ¥, 1 =Y* with probability g(‘¥;+1|¥;)
o ¥\ 1 =Y; with probability 1 — q(Ti+1|Ti)

MCMC

Other
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Metropolis & Metropolis-Hasting

properties of f(-)

e f(-) should have fat tails relative to the posterior
e thatis, f(-) should "cover" P(¥|YT)
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Metropolis (used in Dynare)

q(¥iy1[¥;) = min {1 P(T*‘YT)]

" P(Yi[YT)
o P(Y*|YT) > P(¥;|YT) =

e always include candidate as new element
o P(Y*YT) < P(¥;YT) =

e ¥* not always included; the lower P(¥*|YT) the lower the
chance it is included
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Metropolis-Hasting

P(Y*[YT)/f(¥*[¥, 0f)
P(Yi|YT) /f(Yi[Ys, 0f)

q(¥Yiya|¥;) = min |1,

o P(YIYT)/f(Yil¥) 0f) low =

¢ you should move away from this ¥ value == g should be high
o P(Y*|YT)/f(¥*[¥; 6f) high:

o probability of ¥* high & should be included with high prob.



Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC Other

Choices for f(.)

e Random walk MH:
¥*=Y;+ewithEle] =0
e and, for example,

e ~ N(0,67)

¢ Independence sampler:

fOY Y5, 0f) = F(Y716)



Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC Other

Couple more points

e |s the singularity issue different with Bayesian statistics?
e Choosing prior

o Gibbs sampler
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The singularity problem again

What happens in practice?

e |ots of observations are available

e practioners don't want to exclude data —

e add "structural" shocks

Other
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The singularity problem again

Problem with adding additional shocks

e measurement error shocks
e not credible that this is reason for gap between model and data
e structural shocks

e good reason, but wrong structural shocks = misspecified
model
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Possible solution to singularity problem?

Today's posterior is tomorrow'’s prior
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Possible solution to singularity problem?

Suppose you want the following:

e use 2 observables and

e only 1 structural shock
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Possible solution to singularity problem?

©® Start with first prior: P1('Y)
® Use first observable YlT to form first posterior

F1(¥) = L(Y{[¥)P1(¥)

© Let second prior be first posterior: P, (¥) = F1 (¢)

O Use second observable YZT to form second posterior

Fy(¥) = L(Y]|¥)P2(¥)
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Final answer:

Fp(¥) = L(Y7|¥)P2(¥)
L(Y;[¥)L(Y][¥)P1(¥)

Obviously:

Thus, it does not matter which variable you use first
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Properties of final posterior

e Final posterior could very well have multiple modes

e indicates where different variables prefer parameters to be

e This is only informative, not a disadvantage
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Have we solved the singularity problem?

Problems of approach:

e Procedure avoids singularity problem by not considering joint
implications of two observables

e Procdure misses some structural shock/misspecification

Key question:

e Is this worse than adding bogus shocks?
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Have we solved the singularity problem?

Problems of approach:

e Procedure avoids singularity problem by not considering joint
implications of two observables

e Procdure misses some structural shock/misspecification

Key question:

e Is this worse than adding bogus shocks?
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How to choose prior

©® Without analyzing data, sit down and think
problem in macro: we keep on using the same data
so is this science or data mining?

® Don't change prior depending on results

Other
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Uninformative prior

e P(¥) =1 V¥ € R = posterior = likelihood
e P(¥Y)=1/(b—a)if¥Y € [a,b] is not uninformative
e Which one is the least informative prior?

PY)=1/(b—a) if ¥ € [a,1]
P(InY) =1/ (Inb—1Ina) if ¥ € [Ina,Inb]

Other
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Uninformative prior

e P(¥) =1 V¥ € R = posterior = likelihood
e P(¥Y)=1/(b—a)if¥Y € [a,b] is not uninformative
e Which one is the least informative prior?

PY)=1/(b—a) if ¥ € [a,1]
P(InY) =1/ (Inb—1Ina) if ¥ € [Ina,Inb]

Other
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Uninformative prior

e P(¥) =1 V¥ € R = posterior = likelihood
e P(¥)=1/(b—a)if¥Y € [a,b] is not uninformative
e Which one is the least informative prior?

PY)=1/(b—a) if ¥ € [a,b]
P(InY)=1/(Inb—1Ina) if ¥ € [Ina,Inb]

Other

The objective of Jeffrey's prior is to ensure that the prior is

invariant to such reparameterizations
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How to choose (not so) informative priors

Let the prior inherit invariance structure of the problem:

©® location parameter: If X is distributed as f(x — i), then
Y = X + ¢ have the same distribution but a different location.
If the prior has to inherit this property, then it should be
uniform.

® scale parameter: If X is distributed as (1/0)f (x/0), then
Y = ¢X has the same distribution as X except for a different
scale parameter. If the prior has to inherit this property, then it
should be of the form

P(p)=1/y

Both are improper priors.
That is, they do not integrate to a finite number.
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Not so informative priors

Let the prior be consistent with "total confusion"

© probability parameter: If ¢ is a probability € [0, 1], then the
prior distribution

P(p) =1/ (9 (1-9))

represents total confusion. The idea is that the elements of the
prior correspond to different beliefs and everybody is given a
new piece of info that the cross-section of beliefs would not
change.

See notes by Smith
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Gibbs sampler

Objective: Obtain T observations from p(xy,- - -, x7).
Procedure:

@ Start with initial observation x(0),

® Draw period t observation, X(t), using the following iterative
scheme:
t)

from the conditional distribution:
(t) () (t=1) (t=1)
p(x]-|xl "”’x]'—l’x]'-ﬁ—l ,...,x] )

e draw x;
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Gibbs sampler versus MCMC

e Gibbs sampler does not require stand-in distribution

o Gibbs sampler still requires the ability to draw from conditional
= not useful for estimation DSGE models
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