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Abstract

Users of regular higher-order perturbation approximations can face two problems:

policy functions with odd undesirable shapes and simulated data that explode. Kim,

Kim, Schaumburg, and Sims (2008) propose an alternative, namely pruned perturba-

tion, which avoids the instability problem. In this paper, we document that pruned

perturbation approximations have some important drawbacks. We propose an alterna-

tive perturbation-based approximation that (i) does not have odd shapes, (ii) generates

stable time paths, and (iii) avoids the drawbacks that hamper pruning. We consider

models for which the highlighted problems of regular higher-order perturbation are

relevant. We �nd that our alternative and pruned perturbation approximations give

a good qualitative insight in the nonlinear aspects of the true solution, but� with a

few exceptions� di¤er from the true solution in some quantitative aspects, especially

during severe peaks and throughs.
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1 Introduction

Perturbation has become a popular choice to solve dynamic stochastic general equilibrium

(DSGE) models. Unfortunately, regular higher-order perturbation approximations are

not guaranteed to generate non-explosive time paths. Moreover, regular perturbation

approximations are polynomials and the unavoidable oscillations of polynomials imply that

higher-order approximations do not inherit properties such as monotonicity and convexity

from the true underlying policy functions. This is a problem facing all approximation

procedures that use polynomials as basis functions. The problem is especially severe for

perturbation approximations, because perturbation analysis does not give the user the

tools to relocate these problems to areas of the state space that are of no importance.1

Consequently, the undesirable oscillations could occur close to the steady state.

To understand the problem, consider the following policy function:

x = f(x�1) = �0 + x�1 + �1e
��2x�1 ; (1)

with �0 = 0:3311, a1 = 0:9, and a2 = 1. The true policy function has a unique �xed point

(at x = 1) and the dynamics are globally stable. Figure 1 plots this policy function and

the second-order perturbation approximation.2

At the �xed point, the second-order perturbation approximation inherits three key

properties of the true policy function: (i) increasing in x�1, (ii) strictly convex in x�1,

and (iii) the approximation is locally stable, that is, (@f(x�1)=@x�1)jx=1 < 1. For any

second-order polynomial with these properties, it must be true that the function value goes

to +1 as x�1 goes to +1. This means that the second-order perturbation approximation

must have a second intersection with the 45o line, which in turn implies that the dynamics

of the approximation are not globally stable.
1 In contrast, the user of projection methods does have this type of control by choosing the appropriate

grid. Typically, undesirable oscialliations occur outside the grid, which means that one can push these

osciallations out of the relevant area by widening the grid. Moreover, when using Chebyshev nodes one

even obtains uniform convergence within the grid. See Chapter 6.5 in Judd (1998) for a discussion.
2When perturbation analysis is applied to DSGE models, then the derivatives of the unknown policy

function are only implicitly de�ned. In this example, we know the (derivatives of the) policy function and

the perturbation approximation is simply the Taylor-series expansion of f(x�1).
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For the policy function de�ned in Equation 1, the location of the second intersection

of the perturbation approximation with the 45o line moves towards the steady state as

�2 increases. If the second intersection is su¢ ciently far away from the steady state,

then the instability will have no practical consequences. In a non-stochastic environment,

instability would then only occur when the initial values for x�1 is far away from the

steady state. In a stochastic environment, the problematic part of the state space would

only be reached in the case of extremely unlikely events. In this paper, we will document,

however, that these types of problems cannot be ignored in practice.

Kim, Kim, Schaumburg, and Sims (2008) and Lombardo (2010) propose to use pruned

perturbation to deal with the problem of exploding simulated data. Pruning is already

used in several academic papers.3 The standard nth-order perturbation approximation

uses one nth-order policy function to generate one time path. In contrast, the pruning

procedure generates multiple time paths using the time paths generated by lower-order

approximations as the input for the higher-order terms in higher-order approximations.

This modi�cation does not alleviate the problem that higher-order perturbation approx-

imations can have undesirable odd shapes. In fact, pruned perturbation approximations

have several additional unattractive features. In particular, the pruned perturbation ap-

proximation is not a function of the original set of state variables. The pruning procedure

introduces additional state variables and is thus a function of a larger set of variables. We

argue that this makes several standard exercises at least a lot more cumbersome. Another

striking feature of the pruned perturbation procedure is that the nth-order perturbation

approximation does not deliver an exact �t if the truth is an nth-order polynomial even

though pruned perturbation approximations are polynomials. This questions the suit-

ability of pruned perturbation approximations when the underlying function is close to a

low-order polynomial.

We propose an alternative procedure, perturbation-plus, that generates stable time

paths, does not generate policy functions with odd shapes, and avoids the problems of

3See, e.g., Andreasen (2008), Fahr and Smets (2008), Doh (2009), and Fernández-Villaverde, Guerrón-

Quintana, Rubio-Ramírez, and Uribe (2009).
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pruning. It starts out with a �rst-order perturbation approximation. To solve for the

period-t model outcomes, we use the exact equations of the model for period t and for the

J � 1 subsequent periods. The system is closed by the assumption that the behavior in

period t + J is determined by the �rst-order perturbation approximation. Although the

procedure is easy to program, it is computing intensive unless the chosen value for J is

low.

To evaluate whether the pruning and the perturbation-plus approximations are accu-

rate, we consider (i) models where the parameter values are just below or just above the

critical levels for which regular second-order perturbation approximations generate stable

time paths and (ii) models for which regular second-order perturbation generates time

paths that reach that part of the state space where the second-order approximation (of

a monotone increasing function) has reached its problematic decreasing part. These are

non-trivial numerical problems, which is not surprising given that regular second-order

perturbation approximations face di¢ culties.4 Neither the pruning nor the perturbation-

plus approximations are in general very accurate, although we found some cases where

the perturbation-plus approximation is accurate. Although the two modi�cations to the

standard perturbation procedure do not always pass the accuracy tests with �ying colors,

the news is not all bad. Both procedures provide a good qualitative insight in how the

true time paths di¤er from the path generated by �rst-order perturbation. That is, the

methods provide a reasonable idea about the nonlinear e¤ects, which are substantial in

the models considered. Of course, there is no guarantee that these results carry over to

other models and the user should be careful in using these procedures, especially when

the nonlinearities are so important that regular higher-order perturbation approximations

generate exploding series.

The organization of this paper is as follows. In Section 2, we describe the models

we use to highlight the problems of higher-order perturbation and the drawbacks of the

pruning procedure. In Section 3, we explain the problems of higher-order perturbation.

4Although these are non-trivial models, it is straightforward to obtain accurate approximations using

projection methods since the number of state variables are small.
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In Section 4, we discuss the pruning procedure and its drawbacks as well as our alterna-

tive, the perturbation-plus approximation. In Section 5, we evaluate the accuracy of the

two perturbation-based approximations that always generate stable time paths. The last

section concludes.

2 Models

In this section, we describe the models used to illustrate the problems of higher-order

perturbations and the properties of the proposed approximations. The �rst model is the

neo-classical growth model. The second model is also a very simple model, namely a

representative-agent business cycle model in which the labor market is modelled using

the Pissarides matching framework. We consider parameterizations of the model such

that the volatility of aggregate employment relative to the volatility of aggregate labor

productivity takes on plausible values. It is well known that this requires the match surplus

to be su¢ ciently volatile.5 The higher volatility of the surplus makes it more likely that

the nonlinear features of the model matter. We use the matching model to illustrate that

higher-order perturbation approximations are hampered with undesirable features even if

the underlying model is a very simple representative-agent model in which the standard

deviations of key aggregates like employment and output take on plausible, i.e. low, values.

The third model we consider is a (simple) model with heterogeneous agents. Agents

face idiosyncratic income shocks and are constrained in their ability to insure themselves

against these shocks, because they have no access to �nancial assets with payo¤s contingent

on the realization of the idiosyncratic shock and because they face transaction costs when

trading the existing �nancial asset.

5See Hagedorn and Manovskii (2008).
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2.1 Neo-classical growth model

The representative agent maximizes

max
fct;ktg1t=1

E1
1X
t=1

�t�1
c1�
t � 1
1� 


s.t.

ct + kt = eztk�t�1 + (1� �)kt�1; (2)

zt = �zzt�1 + "t; "t � N(0; �2z); (3)

k0; z1 given:

The Euler equation is given by

1 = Et

"�
ct+1
ct

��
 �
�ezt+1k��1t + (1� �)kt

�#
: (4)

If 
 = � = 1, then the model reduces to the Brock-Mirman model. This model is unusual

in the sense that there are analytical solutions for the two policy functions. They are given

by

kt = ��eztk�t�1 and (5)

ct = (1� ��)eztk�t�1: (6)

2.2 Matching model

There are two types of agents in the model, workers and entrepreneurs. Both types of

agents are members of a representative household. At the end of the period, the household

receives wages and �rm pro�ts from its members. These are distributed equally among

the household�s members for consumption.

5



Firms. In this model, the key decision is made by a representative entrepreneur. The

entrepreneur maximizes the discounted value of future �rm pro�ts. That is,

max
fvt;ntg1t=1

E1
1X
t=1

�t�1
�
ct
c1

��

((ezt � w)nt�1 �  vt)

s.t.

nt = (1� �n)nt�1 + pf;tvt; (7)

zt+1 =

8<: zt

�zt

with probability ~�z

with probability (1� ~�z)
(8)

n0; z1 given. (9)

Here, vt is the amount of vacancies posted by the �rm,  the cost of posting a vacancy,

pf;t is the number of matches per vacancy, pf;tvt is the total number of new hires, and ct

is the consumption level of the representative household. The wage rate, w, is assumed

to be �xed.6 The �rm takes the value of pf;t as given. The value of zt can take on two

values, namely �� and +�.

The �rst-order conditions are given by

 = pf;t �t and (10)

�t = �Et

"�
ct+1
ct

��

(ezt+1 � w + (1� �n)�t+1)

#
; (11)

where �t is the Lagrange multiplier of the constraint that describes the law of motion of nt.

It represents the value generated when adding one extra worker to the �rm�s workforce.

Consumers. The representative household simply consumes the income earned by its

members. Thus,

ct = wnt�1 + (e
ztnt�1 � wnt�1 �  vt) = eztnt�1 �  vt: (12)

Matching market. The number of new hires is determined on a matching market at

which the 1�nt�1 workers that are not employed and �rms search for a match. The total
6The assumption of sticky wages is helpful in generating su¢ ciently volatile employment.
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number of matches, mt, is given by

mt = �0(1� nt�1)�v
1��
t ; (13)

which means that the number of matches per vacancy are given by

pf;t = �0

�
1� nt�1

vt

��
: (14)

Equilibrium. Equations (7), (10), (11), (12), and (14) form a system of �ve equations

per period that determine nt, vt, �t, ct, and pf;t as a function of nt�1 and zt:

E¤ect of a shock. An increase in the expected values of future productivity levels leads

to an increase in �t and raises the expected bene�t of posting a vacancy, pf;t �t, above

its cost,  . This leads to an increase in vacancies and employment until  and pf;t �t are

equal again.

Keeping the problem smooth. The variable pf;t is typically interpreted as a matching

probability and is restricted to be less than or equal to 1. This implies that the policy

function is no longer smooth. The reason is the following. When zt takes on very low

values, then �t <  . If �t <  , then the value of an extra employee is less than the posting

cost. If pf;t is restricted to be less than 1, then it is impossible to satisfy Equation (10).

In itself this is not a problem. It simply means that �rms post no vacancies, that is, the

�rm is at a corner solution. Perturbation analysis can no longer be used, however, if �rms

occasionally hit corners.

To avoid this dilemma, we do not interpret pf;t as a probability and we allow pf;t to

exceed 1. If pf;t exceeds 1, then mt > vt and �rms simply hire more than one worker on

each posted vacancy. Equations (10) and (14) make clear that there always is an internal

solution for vt as long as

�t > 0; (15)

a condition that is satis�ed in our calibrated model.

Nondi¤erentiabilities also occur ifmt > ut, but this possibility turns out to be irrelevant

in our numerical analysis.
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2.3 Modi�ed Deaton model

The last model considered is a simple partial equilibrium model in which agents face

idiosyncratic income risk. The agent solves the following optimization problem:

max
fct;atg1t=1

E1
1X
t=1

�t�1

 
c1�
t � 1
1� 
 � P (at)

!

s.t.

ct +
at
1 + r

= at�1 + e
zt ; (16)

zt = �z + "t and "t � N(0; �2z); (17)

a0 given: (18)

Here, ct stands for the agent�s consumption level, at stands for the amount of assets chosen

in period t, zt is an exogenous random income component, and r is the exogenous interest

rate. There are two reasons why markets are not complete. First, there is only one

�nancial asset, namely a risk-free bond. Second, there are transactions costs associated

with trading in the �nancial asset, which we model as utility costs.

The model is very similar to the model in Deaton (1991), except that Deaton (1991)

does not have transactions costs, but a non-negativity constraint on at. That is, Deaton

(1991) assumes that

at � 0: (19)

We specify our transactions cost or penalty function such that this inequality constraint

is a special case of the model. In particular, the penalty function, P (at) is given by

P (at) =
�1
�0
exp(��0at) + �2at: (20)

The value of �0 controls the curvature of the penalty function and the nonlinearity of the

problem. Suppose that �2 = 0.
7 Then

lim
�0�!1

p(at) =

8<: 1 for at < 0

0 for at � 0
: (21)

7The term �2at gives additional �exibility, which we exploit in the calibration. The additional term

also makes it possible to ensure that the penalty term is equal to zero in the steady state, which may be

convenient in some applications.
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That is, as �0 �! 1 our penalty function implements the standard non-negativity con-

straint on at.

Perturbation techniques cannot deal with inequality constraints. The penalty func-

tion, thus, does not only make the model more general, it also makes it possible to use

perturbation techniques.8

The Euler equation is given by

c�
t
1 + r

+
@P (at)

@at
= �Et

h
c�
t+1

i
: (22)

3 Higher-order perturbation in practice

In the introduction, we mentioned two potential problems of higher-order perturbation,

namely undesirable shapes and instability. The question arises whether these problems

matter, that is, whether they occur in the relevant part of the state space in practice. Of

course, the problems do not occur if the shocks hitting the system are su¢ ciently small.9

But in practice one solves models to shed light on real world problems, which means one

has to use a realistic amount of volatility.

In this section, we shed light on this question by analyzing the perturbation approx-

imations of the solutions to the models of Section 2. Before discussing the results, we

describe the characteristics of a perturbation approximation.

8De Wind (2008) compares the properties of the model with the inequality constraint given in Equa-

tion (19) with the corresponding properties of the model with the penalty function for di¤erent values of

�0. Not surprisingly, the value of �0 matters a lot for the tails of the generated distribution of at. In

particular, the tail of the distribution generated with the model with a penalty function only matches the

tail of the model with the non-negativity constraint for high values of �0. But model properties such as

the volatility of consumption depend a lot less on the value of �0.
9 In fact, one can use linear approximations if the shocks are su¢ ciently small.
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3.1 Characteristics of perturbation approximations

DSGE models can typically be written as follows:

0 = Et [H(xt; xt�1; yt+1; yt; zt+1; zt)] ; (23)

zt+1 = �zt + "t+1; (24)

"t+1 � N(0; �
): (25)

Here, xt�1 is an nx � 1 vector containing the state variables of the system, yt is an

ny � 1 vector containing other endogenous variables that are not state variables, zt is an

nz�1 vector with the exogenous random variables, "t is the vector with the corresponding

innovations, � is a scalar that controls the overall volatility of the model (� � 0), and

�
 is the nz � nz covariance matrix of the innovations. Finally, H(�) is a vector-valued

function with dimension nx + ny.

We denote the true rational expectations solution by24 xt

yt

35 =
24 f(xt�1; zt;�)

g(xt�1; zt;�)

35 (26)

and the nth-order perturbation approximation by24 xt

yt

35 =
24 efnth (xt�1; zt;�)egnth (xt�1; zt;�)

35 : (27)

Let st denote the arguments of the policy function, that is, st = [xt�1; zt;�] and let �s denote

the corresponding steady state values, that is, �s = [�x; 0; 0]. The numerical approximationef(�)nth is an nth-order perturbation approximation if the following conditions hold:
f(xt�1; zt;�)jst=�s = ~fnth (xt�1; zt;�)

���
st=�s

@if
nth (xt�1;zt;�)

@xjt�1@�
i�j

����
st=�s

=
@i ef

nth (xt�1;zt;�)

@xjt�1@�
i�j

����
st=�s

for
i = 1; � � � ; n

j = 0; � � � ; i

(28)

A similar set of conditions determines whether egnth (�) is an nth-order approximation.
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The true policy functions and the numerical approximations are functions of the en-

dogenous state variables, xt�1, and the exogenous state variables, zt. This property is

an important aspect of recursive models. Our formulations of both the true solution and

the regular perturbation approximation allow for the possibility that a particular state

variable has no e¤ect on a particular choice, but it does not allow for variables other than

the state variables to have an e¤ect. Although this is a standard property of rational

expectations solutions and numerical approximations, we highlight this property because,

as shown below, the pruning approximation does not satisfy this property.

3.2 Perturbation approximations and the neo-classical growth model

It is well known that both log-linear and linear approximations are accurate for the neo-

classical growth model as long as �z takes on plausible values or values that do not

exceed those plausible values by too much.10 In fact, the solution of the Brock-Mirman

model is a log-linear function of capital and productivity. Consequently, any perturbation

approximation will recover the true rational expectations solution if the model is written

in the logarithms of the variables. To ensure that the problem remains non-trivial, even

when we consider the Brock-Mirman version, we calculate approximations in the levels of

the state variables, not in the logarithms.

Consistent with the facts stated in the last paragraph, we �nd that the higher-order

terms of higher-order perturbation approximations are quantitatively small for parameter

values commonly used in the literature. The perturbation approximations are then not

a¤ected by the problems discussed in the introduction. Therefore, we also consider values

for �z and 
 that are higher than those normally used. Although the objective of this

section is to analyze the problems of higher-order perturbation approximations researchers

encounter in practice, it is still useful to consider these not so typical parameter values.

There are two reasons. First, the simplicity of the model makes it easy to understand why

higher-order perturbation approximations run into problems. A better understanding of

10 In terms of the other parameters, it is important that the coe¢ cient of relative risk aversion, 
, is not

too high.
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the problems in such a simple case is helpful in understanding the problems in more

complex cases. Second, the analysis points out that the highlighted problems eventually

show up for some parameter values, even in very simple and almost linear models.

Non-monotonicity of second-order perturbation approximations. Panel A of

Figure 2 plots the perturbation approximation of the capital policy function when �z is

equal to 0.007, a very standard value. The policy functions are plotted as a function of

kt�1 for three di¤erent values of zt.11 The results are shown for the Brock-Mirman model,

that is, 
 = � = 1. The other parameter values take on standard values.12

It is impossible for standard second-order perturbation approximations to be monoton-

ically increasing (or decreasing). As documented by the �gure, the problematic decreasing

part occurs, however, when the capital stock is very high, namely when it is more than

2.5 times its steady state value. Simulated values for the capital stock would not reach

such high values when �z = 0:007. Obviously, such high values could be reached when �z

takes on higher values. The policy functions will change, however, if �z changes. It could

be the case that the undesirable decreasing part of the policy functions is pushed to the

right as �z increases. This would make it more di¢ cult to reach the decreasing part. This

turns out not to be the case, as is documented in Panel B of Figure 2. This panel plots

the policy functions when �z is equal to 0:2. For the high value of z, the turning point

after which the function is decreasing in k�1 is indeed pushed to the right. For the low

value of z, however, the turning point is pushed to the left. In fact, the policy function at

the low productivity value is downward sloping for a large range of values of k�1.

Instability of second-order perturbation approximations. According to the second-

order perturbation approximation, the choice for capital and consumption are strictly pos-

itive at k�1 = 0 . In fact, the chosen levels are quite high. Of course, this is not accurate at

all.13 Although inaccurate, this property does make the perturbation approximation more

11The values are 0 and plus and minus two times the standard deviation of z.
12 In particular, � = 0:36, � = 0:99, and �z = 0:95.
13According to the true rational expectations solution, both capital and consumption should be set equal

to 0 when the beginning-of-period capital stock equals 0; this is the only feasible choice.
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stable than the true solution. When using the second-order perturbation approximation,

one could even start at somewhat negative capital levels and the economy will still revert

back to the area around the steady state.14 We �nd this to be true for a wide range of

parameter values, also when we move beyond the Brock-Mirman model and consider other

values for 
 and allow for partial depreciation.15 Nevertheless, the instability problem of

the second-order perturbation approach is just around the corner. This is discussed next.

The second-order perturbation approximation grossly violates the budget constraint for

low values of the beginning-of-period capital stock. But it is easy to obtain a second-order

perturbation approximation that exactly satis�es the budget constraint. In particular, one

could use the perturbation approximation for either capital or consumption and use the

budget constraint to solve for the other variable. The numerical approximation satis�es

the conditions in Equation (28) and is, thus, a perturbation approximation.

Figure 3 plots the perturbation approximation for capital, ef2nd (k�1; 0), when consump-
tion is determined by the standard second-order perturbation approximation and capital

is solved from the budget constraint. The value of z is set equal to 0. The policy function

then gives the dynamics of the system if there are no shocks.16 The solid line corresponds

to the case when the parameters are the same as those used to create Panel A of Figure 2.

Interestingly, the perturbation approximation is now monotonically increasing for all

positive values of k�1. Thus, in terms of avoiding odd shapes, this alternative is an

improvement. In terms of stability it is not. The �gure documents that the policy function

14The second-order perturbation solution for kt does have a second �xed point, but the value of k at

this second �xed point is negative. If the capital stock would ever get below this negative value, then the

second-order perturbation solution would be explosive. Note that limk�1�!1 ~f2nd(k�1; z) = �1. That

is, if the economy would start out at (or reach) a su¢ ciently high capital stock, then the capital choice

could be so negative that the solution gets into the unstable region. Given that the capital choice only

turns negative at very high values of the existing capital stock, this is not something one would have to

worry about.
15We could �nd a case with a second positive-valued �xed point, but we had to raise the value of 
 to

35 and the value of k at this second �xed point is very small. In this case the economy would diverge for

positive initial values when these initial values are below this second intersection.
16This policy function is also indicative of the expected dynamics if there are shocks.
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for capital has an additional positive-valued �xed point to the left of the steady state.17

The time paths that start out or reach such low capital levels are diverging.

If 
 is equal to 1, then this second �xed point of the perturbation approximation occurs

at a value of the capital stock that is only 10% of the steady state value. The �gure also

plots the second-order perturbation approximation for the case when 
 is equal to 10. In

this case, the value of capital at the second �xed point is substantially higher, namely

around 30% of the steady state.

Summary for the neo-classical growth model. In addition to the cases discussed

here, we have considered the properties of second-order perturbation approximations for

several parameter values including those that allow for partial depreciation. We found that

odd shapes and instability only happen in unlikely cases. That is, in practice second-order

perturbation approximations of the neo-classical growth model do not exhibit the problems

we highlighted in the introduction. Nevertheless, we do not consider the analysis here very

comforting. It is true that one has to go outside the usual range of parameter values to

encounter problems. But we have shown that higher-order perturbation approximations do

have undesirable shapes and instability problems, even though the model is very simple

and has a log-linear solution. This brings up the question whether the problems will

occur for more standard parameter values when more interesting models are considered.

We document in the next two subsections that we have to answer this question in the

a¢ rmative.

3.3 Perturbation approximations and the matching model

In this subsection, we consider the matching model. We will show that the standard

second-order perturbation approximation generates explosive time paths when the model

is calibrated to generate a realistic amount of volatility. As discussed in Section 2.2, the

productivity level is assumed to be a discrete-valued random variable that can take on

17 In fact, there is a third positive �xed point. But this �xed point is quite far away from the steady

state and is ignored in the text. But if the economy would start out at capital levels above this third �xed

point, then capital is expected to grow without bound.

14



only two values. The main advantage of this assumption is that it allows us to portray the

reasons behind the problems of higher-order perturbation approximations with a simple

graphical analysis. The other advantage of this assumption is that it is easy to ensure

that the true model solution is always well-de�ned. In particular, we assume that the low

value of zt is such that pro�ts are always positive.18

Parameter values for the matching model. We choose � and ~�z such that the

standard deviation and the autocorrelation of zt are equal to the corresponding numbers

for the data generating process for zt used to analyze the neo-classical growth model. This

means that � = 0:0224 and ~�z = 0:975. We set � = 0:99 and � = 0:5.19 The values of

 , �x, and �0 are chosen such that the steady state values of the unemployment rate, the

number of matches per unemployed worker, and the number of matches per vacancy, are

equal to 5%, 0:7, and 0:7, respectively.20 The value of 
 is set equal to 4.5. This value

for 
 is perhaps a bit higher than the most commonly used values, but still a plausible

value.21 We consider two values for the wage rate, namely w = 0:96 and w = 0:973.

When w is equal to 0.96, then the volatility of the employment relative to the volatility of

productivity is equal to 0:25, whereas the observed ratio in the data is equal to 0:437.22

Thus, to match the observed relative volatility, the value of w has to be increased. When

w = 0:973, then the volatility of employment relative to labor productivity (calculated

18This condition is su¢ cient to keep the problem well-de�ned, but it is not necessary. That is, we could

allow pro�ts to be somewhat negative. To keep the problem well-de�ned it is important that �t > 0. As

long as expected future pro�ts o¤set current losses, then �t would be positive.
19See Petrongolo and Pissarides (2001) for a motivation for the chosen value of �.
20This implies that  = 0:5965, �n = 0:368, and �0 = 0:7.
21For lower values of 
, the second-order perturbation solution is still well-behaved when the volatility of

employment relative to the volatility of productivity is equal 0:437, i.e., the observed value. For somewhat

higher values of the target, the second-order perturbation approximation runs into the same problems as

those discussed here. For example, when 
 = 3:5 and w = 0:976, then the relative volatility of employment

would be equal to 0:50 according to the accurate projection solution and the 2nd -order perturbation

approximation is no longer stable.
22The series are �ltered using the HP �lter. See Den Haan and Kaltenbrunner (2009) for further details

on the data used.
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using an accurate projection method) matches its observed counterpart.23

second-order perturbation when w = 0:96. Panel A of Figure 4 plots the second-

order perturbation approximation for employment, nt, when the wage rate is equal to

0:96. It also plots a very accurate solution obtained with an accurate projection method,

which we use as a stand-in for the truth. When z takes on its low value (��), then the

perturbation approximation has a second �xed point when n is (roughly) 0:83. With

discrete support this second �xed point is irrelevant in the sense that as long as the

economy starts in the ergodic region (also indicated in the �gure), then the generated

time path is always stable. In particular, even if the economy is extremely unlucky and

zt is always equal to ��, then the economy will still converge towards a positive value

for nt. Similarly, if zt is always equal to +�, then the generated time path will remain

well-behaved.

Moreover, the second-order perturbation approximation is a monotone increasing func-

tion in the ergodic set. In fact, the second-order perturbation approximation is very close

to the very accurate projection approximation in the ergodic set.

Even though the second-order perturbation approximation is doing very well, a small

change in the parameter values changes the picture completely. And the properties of the

model ask for such a change in the parameter values. As mentioned above, the standard

deviation of HP-�ltered employment relative to the standard deviation of HP-�ltered pro-

ductivity is still below its empirical counterpart. In Hagedorn and Manovskii (2008), it

is shown that this ratio increases when the average surplus decreases. Thus, to get the

model properties closer to the observed ones we increase the value of the wage rate, w,

from 0:96 to 0:973.

second-order perturbation when w = 0:973. Panel B of Figure 4 plots the policy

function when w = 0:973. The small increase in the wage rate leads to a minor shift

in the policy function. This is true for the "true" policy function and the second-order

perturbation approximation. Nevertheless this minor shift has enormous consequences for

23See Appendix D.1 for a description of the projection method used.
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time paths simulated with the second-order perturbation approximation because the time

path for employment, nt, now explodes.24 The reason is that the second-order perturbation

approximation is now always below the 45o line when z takes on its low value. That is,

according to the perturbation approximation there is no longer a bounded ergodic set.

3.4 Perturbation approximations and the modi�ed Deaton model

The modi�ed Deaton model resembles the �rst two models in two aspects. First, it is also

a relatively simple model. Second, the agent in the modi�ed Deaton model also faces a

trade-o¤between the return on savings (or cost of borrowing) and consumption smoothing.

The model also di¤ers in an important aspect from the �rst two models. The volatility is

much higher at standard parameter values, since this is a model that describes individual

behavior and incorporates idiosyncratic uncertainty.

Parameter values for the modi�ed Deaton model. We set r = 0:03, 
 = 3, �z =

0:4, �z = 0:1, and � = 0:9. We choose a low value for � to ensure that agents are

su¢ ciently impatient. If agents are not impatient, then penalty functions or borrowing

constraints would not matter. The standard deviation of idiosyncratic income, �z, is such

that a negative two-standard-deviations shock implies a level of income that is 20% below

its mean value. This is clearly not an excessively volatile process for idiosyncratic risk;

some papers in the literature even consider speci�cations for idiosyncratic risk that allow

individual income levels to be equal zero.25 Furthermore, we set �0 = 20, �1 = 0:04464,

and �2 = 0:00352. The values of �1 and �2 are such that the mean and standard deviation

of at are equal to the corresponding values in the model with the non-negativity constraint.

The value of �0 is modest in the sense that 19% of the times the agent chooses a negative

value for at, whereas this cannot happen in the original Deaton model.26 To get closer to

the Deaton model one would need a higher value for �0, that is, more curvature in the

24 Instability occurs already for lower values of the wage rate, namely when it is close to 0:935:
25See, for example Krusell and Smith (1998).
26See De Wind (2008) for a more detailed comparison of the model with the inequality constraint and

models with penalty functions.
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penalty function.

Instability of second-order perturbation approximation. Figure 5 plots the "true"

policy function and the second-order perturbation approximation.27 Instead of plotting

the savings choice, a, as a function of the state variable, cash on hand, x, we plot the

expected value of next-period�s cash on hand, E[x+1jx], which is equal to a+E[z+1]. The

reason is that the graph of the relationship between (the expected value of) x+1 as a

function of x directly reveals whether the dynamics are stable or not.

The true policy function is convex and monotonically increasing for the values of x

observed in the cross-section. Interestingly, the same is true for the second-order pertur-

bation approximation. That is, the second-order perturbation approximation does not

exhibit any undesirable shapes in the relevant part of the state space.

The second-order perturbation approximation is unstable, however, because there is a

second intersection with the 45o-line above the true steady state. If this intersection is too

close to the true steady state, then simulated time paths will eventually take on values to

the right of the second intersection at which point the economy is expected to diverge.28

This turns out to be the case for the parameter values used here.

Instability of higher-order perturbation approximations. In Appendix A, we doc-

ument that the instability problem only gets worse if third-order perturbation is used. The

generated time paths are stable for fourth and �fth-order perturbation approximations,

but these policy functions display some very large and odd oscillations.

27The "true" policy function is represented by a very accurate solution obtained with a projection

procedure. See Appendix D.2 for details.
28Being to the right of the intersection is not su¢ cient for the asset holdings of the agent to diverge. If

the agent receives su¢ ciently soon su¢ ciently low values for zt, then the asset holdings would drop back

into the stable region.
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4 Stable nonlinear perturbation-based approximations

In this section, we describe two procedures� both based on perturbation analysis� that

generate stable time paths. The �rst procedure solves for the period-t decisions using (i)

the exact nonlinear equations of the model for periods t through t+J and (ii) the �rst-order

perturbation approximation to describe the behavior in period t+J . The second procedure

is the pruning procedure. The pruning procedure resembles the standard perturbation

procedure in that it starts out with a �rst-order approximation and sequentially adds

higher-order monomial terms. In contrast to the standard perturbation approach, the

pruning procedure also adds state variables at each step.

4.1 Perturbation-plus procedure

To explain the procedure, it is more convenient to write the generic description of the

model using only the state variables. That is, we replace Equation (23) with

0 = E [H(x+1; x; x�1; z+1; z)] : (29)

The objective is to determine x given values for x�1 and z. There are two reasons why

Equation (29) is not a standard nonlinear equation in x. First, the equation contains an

integral. Second, x+1 is also unknown. The �rst issue can be dealt with using numerical

integration procedures. To deal with the second issue we replace x+1 by a function of

the state variables. If we use the one-step ahead "perturbation-plus" procedure, then x+1

is replaced by the �rst-order perturbation approximation, ef1st (x; z+1). Thus, we solve x
from

0 = eE hH( ef1st (x; z+1); x; x�1; z+1; zi ; (30)

where eE denotes that the integral is calculated using a numerical integration procedure.
We denote the value of x that solves Equation (30) by bf+1(x�1; z), where the subscript
indicates that x is solved using the true model equations for the current period and 1

additional future. There may be no analytical solution for bf+1(�) in which case bf+1(�) is
only implicitly de�ned by Equation (30). In this case, one has to use a nonlinear equation

solver to solve for the value of x = bf+1(x�1; z).
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To generate a time path for xt one would simply iterate on bf+1(xt�1; zt). Note thatbf+1(xt�1; zt) is constructed under the assumption that next period�s value for x is cal-
culated using ef1st (xt; zt+1). As next period comes along, however, xt+1 is not calculated
using the �rst-order perturbation approximation, ef1st (xt; zt+1), but is calculated usingbf+1(xt; zt+1).

The two-step ahead modi�cation, x = bf+2(x�1; z), is the value of x that is the solution
to

0 = eE hH( bf+1(x; z+1); x; x�1; z+1; zi : (31)

That is, the value of x is based on (i) the exact equations of the model for this period (ii)

the exact equations of the model for the next period, and (iii) the assumption that the

behavior in two periods is based on the �rst-order perturbation approximation.29

In theory, one could iterate on this process and construct the J-step ahead modi�cation,

x = bf+J . As J approaches in�nity, then x and x+1 are based on the same policy function,
that is, one has a rational expectations equilibrium.

If there is no analytical expression for bf+J (�), then the procedure quickly becomes very
expensive as J increases. Even in a model as simple as the neo-classical growth model,

there is no analytical expression for the value of x that solves Equation (30). As discussed

in Appendix C.1, there is a slight modi�cation of the algorithm that is much faster and

we found the numerical results to be very similar.30

4.2 Discussion of the perturbation-plus procedure

The perturbation-plus procedure is quite easy to program. The most tricky part is to

implement a numerical integration procedure. The procedure is easier to implement than

29The perturbation-plus procedure is related to the extended-path method of Fair and Taylor (1983)

and Gagnon (1990). This procedure also solves for period-t variables by looking a number of periods

into the future. The di¤erence is that the perturbation-plus procedure calculates conditional expectations

explicitly, namely by using numerical integration procedures, and it closes the system by using the �rst-

order perturbation solution to describe the behavior in the last period, whereas the extended-path method

closes the system using terminal conditions for expectations or variables.
30This result could very well depend on the problem at hand and not carry over to other models.
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projection methods in that it does not require the user to construct a grid. The user also

does not have to worry about what class of approximating functions to use (Chebyshev

polynomials, splines, etc.). Nevertheless, the procedure has several of the bene�ts of a

projection procedure, at least for su¢ ciently high J , because it uses the exact equations

of the model and it explicitly approximates the conditional expectation with an accurate

numerical integration procedure.

The disadvantage of this procedure is that the problem quickly gets very expensive as J

increases. That is, in practice one can only use this procedure if the appropriate value for

J is low. Whether an accurate solution can be obtained with a low value for J depends on

the model at hand and in particular on the value of �. In Section 5, we discuss an example

in which the 1st as well as the second-order perturbation approximations are not accurate,

but the one-step ahead modi�cation of the �rst-order perturbation approximation is. But

we have also encountered cases where even the thirteen-step ahead modi�cation is not yet

accurate (although a lot more accurate then the �rst-order perturbation approximation

itself).

4.3 Pruning

In this section, we describe and discuss the procedure proposed in Kim, Kim, Schaumburg,

and Sims (2008) to deal with explosive second-order perturbation approximations. A more

formal motivation is given in Lombardo (2010) for second-order approximations and in

Appendix B for both second and higher-order pruning.

The second-order perturbation approximation can be written as

ef2nd (xt�1 � �x2nd ; zt � �z)
=ef (1)

2nd
(xt�1 � �x2nd ; zt � �z) + ef (2)

2nd
(xt�1 � �x2nd ; zt � �z)

(32)

where �x2nd is the stochastic steady state of the second-order perturbation approximation,ef (1)
2nd
(�) is the part of ef2nd (�) with the linear terms, and ef (2)2nd (�) is the part of ef2nd (�) with

the second-order terms. The pruning procedure consists of the following steps.
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1. Simulate x(1)t using

x
(1)
t � �x2nd = ef (1)

2nd
(x
(1)
t�1 � �x2nd ; zt � �z): (33)

2. Simulate xt = x
(2)
t using

x
(2)
t � �x2nd = (34)

ef (1)
2nd
(x
(2)
t�1 � �x2nd ; zt � �z) + ef (2)

2nd
(x
(1)
t�1 � �x2nd ; zt � �z);

where the values of zt used are identical to those used in step 1. The process

x
(1)
t = ef (1)

2nd
(xt�1 � �x2nd ; zt � �z) is stationary unless the Blanchard-Kahn conditions

are not satis�ed. The process ef (2)
2nd
(x
(1)
t�1 � �x2nd ; zt � �z) is stationary because both

x
(1)
t and zt are stationary. Consequently, the simulated values of xt are stationary

as well.

Give a nth-order regular perturbation approximation, the nth-order pruned perturba-

tion approximation, xt = x
(n)
t , is generated using the following iterative scheme:31,32

x
(j)
t � �xJ th =

jX
i=1

ef (i)
J th
(x
(j�i+1)
t�1 � �xJ th ; zt � �z;�) for j = 1; � � � ; n: (35)

For n � 2, there is an alternative. First calculate x(1)t and x(2)t using Equation (35). Next

calculate the nth-order approximation using

x
(j)
t � �xJ th =

ef (1)
J th
(x
(j)
t�1 � �xJ th ; zt � �z;�)Pj

i=2
ef (i)
J th
(x
(j�1)
t�1 � �xJ th ; zt � �z;�)

for j = 3; � � � ; n: (36)

The formulation in Equation (36) uses the highest available (stationary) variable. The

speci�cation in Equation (35) is also a nth-order approximation since x(j)t is used in

(n� j + 1)th-order monomials.
31For third and higher-order perturbation solutions it is in theory possible that the Blanchard-Kahn

conditions are (just) satis�ed and the �rst-order perturbation solution is stable, but that the correction

for � makes the linear part of the third and higher-order perturbation solutions unstable. We suspect that

such knife-edge cases are rare.
32For second-order perturbation, the value of � at most a¤ects the stochastic steady state, but for higher-

order perturbation the value of � could a¤ect other coe¢ cients. For this reason we introduce � again as

an argument of the perturbation approximation.
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There is a slight di¤erence between the procedure described here and the way pruning

is implemented in Kim, Kim, Schaumburg, and Sims (2008) and Lombardo (2010). In

each step of the nth-order pruned perturbation procedure, we use the coe¢ cients of the

nth-order perturbation approximation. For example, to generate x(1)t we use the linear

part of the nth-order perturbation approximation whereas Kim, Kim, Schaumburg, and

Sims (2008) and Lombardo (2010) use the �rst-order perturbation approximation. As is

documented in Appendix B, both approximations are nth-order approximations. But our

formulation has an important practical advantage.

The advantage of our approach is that the di¤erent measures of the state variable, i.e.,

x
(1)
t , x

(2)
t , etc., have the same steady state value, namely the stochastic steady state accord-

ing to the nth-order perturbation approximation. For example, suppose that the stochastic

steady state is substantially di¤erent from the non-stochastic steady state according to

the second-order perturbation approximation� a situation one can easily encounter when

volatility is so high that second-order perturbation approximations do not generate stable

time paths. If the procedure of Kim, Kim, Schaumburg, and Sims (2008) and Lombardo

(2010) is used to obtain higher-order pruned perturbation approximations, then the law

of motion for x(1)t would be the same independent of the order of the approximation con-

sidered. This means that any systematic bias would not disappear either. In contrast,

according to our pruning procedure the law of motion for x(1)t would change if higher-order

pruned perturbation approximations are considered.33

4.4 Discussion of pruning

Given the regular perturbation approximation, it is straightforward to obtain the pruned

modi�cation. Given that it always generates stable time paths, it is de�nitely an approach

that should be taken seriously. However, there are several undesirable features of the

pruning approximation. The user should at least be aware of these features and ask

him/herself whether these are important for the problem at hand.

33As discussed in Appendix B, both procedures generate valid nth -order perturbation approximations.

The reason is that the stochastic steady state and the non-stochastic steady state converge towards each

other as � �! 0.
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4.4.1 Inability of pruning to �t standard polynomials

Pruned perturbation approximations as well as regular perturbation approximations are

polynomials. If the truth is an nth-order polynomial, then the regular nth-order pertur-

bation approximation would give an exact �t. But the pruned nth-order perturbation

approximation is not able to accomplish this. We use the following example to explain the

reason.

Suppose that the truth is given by

xt = �1xt�1 + �2x
2
t�1 + �"t (37)

with

Et
�
"2t
�
= 1:

The second-order pruned perturbation approximation is generated by the following system:

x
(1)
t = �1x

(1)
t�1 + �"t; (38)

x
(2)
t = �1x

(2)
t�1 + �2

�
x
(1)
t�1

�2
+ �"t: (39)

Although the law of motion for xt, given in Equation (39), closely resembles the true law

of motion, given in Equation (37), there is one fundamental di¤erence. The di¤erence is

that the expression in Equation (39) contains x(1)t�1, which is generated by a di¤erent law

of motion than xt.

Now consider higher-order approximations. When the truth is given by Equation (37),

then the third-order regular perturbation approximation is, of course, equal to the second-

order regular perturbation approximation, which in turn is equal to the truth. But this is

not true for the pruned perturbation approximation. The third-order pruned perturbation

approximation is generated by the following set of equations:

x
(1)
t = �1x

(1)
t�1 + �"t; (40)

x
(2)
t = �1x

(2)
t�1 + �2

�
x
(1)
t�1

�2
+ �"t; (41)

x
(3)
t = �1x

(3)
t�1 + �2

�
x
(2)
t�1

�2
+ �"t: (42)
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The third-order pruned perturbation approximation still does not match the true second-

order polynomial, although the mistake has become smaller.34

There is a neat way to characterize the error made by the pruned perturbation ap-

proximation. Suppose one uses the pruned perturbation approximation to calculate the

impulse response function (IRF) of a unit-shock to "t starting at the steady state. If the

truth is a second-order polynomial, then the nth-order pruned perturbation approximation

will give the right values for the IRF for the �rst n periods. Thus, the second-order pruned

perturbation approximation will give the right answer only up to the �rst two periods.

The policy functions of many economic models can be approximated well with a low-

order polynomial. In those cases, regular perturbation would make more sense than pruned

perturbation. If the time paths generated with a regular perturbation approximation

explode, then such low-order perturbation approximations are apparently not accurate.

Whether pruned perturbation approximations are accurate in such cases remains an open

question on which we will shed some light in Section 5.

4.4.2 Pruning approximation is not a function of the original state variables

In the DSGE literature, it is common to focus on models of which the solutions are

recursive functions of a set of predetermined endogenous state variables and exogenous

state variables (here x�1 and z). For many models one can prove that such a recursive

equilibrium exists. Numerical approximations are almost always a function of the same

set of state variables, although the e¤ect of some state variables may be set to zero or turn

out to be approximately equal to zero in the approximation. The pruned perturbation

approximation is also a recursive function, but of a larger (and potentially much larger)

set of variables.35 It is a correspondence in the original state variables, x�1 and z.

To illustrate this aspect of the pruned perturbation approximation, we use the neo-

34The variable that is being squared is now being generated by a law of motion that is closer to the

truth.
35The pruned perturbation approximation, like the true solution, is also a function of the values of the

endogenous state variables in the �rst period and the complete history of the exogenous state variables.
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classical growth model.36 We assume that the law of motion for productivity, zt, is equal

to the �rst-order Markov process described in Section 2.2. The advantage of this process is

that zt takes on only two values, which makes it possible to graphically document whether

the policy function is close to a function of the original state variables or not.

To see whether the pruned perturbation approximation is close to a function of the

original state variables we do the following. Using the pruned second-order perturbation

approximation, we generate a long time series for capital, k(2)t .
37 Next, we plot the change

in capital, k(2)t � k
(2)
t�1, as a function of the state variable, k

(2)
t�1. One set of numbers will

be for the high value of zt and one set for the low value of zt. The results are reported in

Figure 6. The �gure clearly illustrates that the pruned perturbation approximation does

not come close to being a function of the original state variables. The value of � used to

generate the graph is equal to 0:6405, which means that the amount of uncertainty is high

for a macroeconomic model. But it does not make sense to analyze this issue for standard

parameter values, since the solutions to this very simple model are then approximated

well with �rst-order perturbation and there would be no reason to consider higher-order

pruned perturbation.

The cause of this problematic aspect of the pruned perturbation approximation is that

additional state variables are added as arguments of the approximation. If the behavior

of the additional state variable, k(1)t�1 is similar to the behavior of the actual state vari-

able, k(2)t�1, then the dimension of the state space only increases nominally, but is of little

importance. This way of characterizing the problem is useful for the discussion below. In

Figure 7, we present, therefore, a scatter plot of simulated values for the two measures for

capital generated by the pruned second-order perturbation approximation, k(2)t and k(1)t .

The values of k(2)t and k(1)t are equal to each other in the �rst observation, but the pair im-

mediately leaves the 45o line. The graph makes clear that these two state variables behave

very di¤erently. Not only do they have di¤erent means, the thickness of the scatter plot

36Den Haan and De Wind (2009) illustrate this property of pruned perturbation approximations using

the modi�ed Deaton model.
37The simulation is based on the following parameter values: � = 0:36, � = 0:99, 
 = 3, � = 0:025,

~�z = 0:975, and � = 0:6405.
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makes clear that the correlation is not that high. Moreover, k(1)t even takes on negative

values, whereas this is never the case for k(2)t .

4.4.3 Why should approximations be functions of the original state variables?

In this subsection, we give reasons why it is problematic if a numerical approximation is not

a function of the original state variables. One could argue that a numerical approximation

always makes mistakes in some dimensions. In particular, if one is only interested in

generating time paths for the model variables, then the issues we raise here do not directly

show up. Indirectly, they could show up. If the numerical approximation is not close to

being a function of the original state variables, then the approximation is inaccurate in at

least some aspects and these inaccuracies are likely to show up in the simulated data as

well.38

Properties of the policy function. Two typical reasons for calculating a numeri-

cal solution are to study the properties of the policy function and to analyze how these

properties depend on the values of the structural parameters. For example, one may be

interested to know how the marginal propensity to consume depends on the wealth level

and how this dependence changes with key parameters like the coe¢ cient of relative risk

aversion or the amount of uncertainty the agent faces. When using a pruned perturbation

approximation, there are multiple measures for each state variable. And the higher the

order of the approximation, the more measures. Moreover, the results in Figure 7 make

clear that the di¤erent measures of the same state variables can behave quite di¤erently.

This means that it would be inconsistent with the proposed numerical approximation to

simply ignore the di¤erences between the various measures of the state variables.

Of course, one could limit oneself to study the function at the steady state� where the

alternative measures take on identical values� but this only provides very limited insights

into the properties of the policy function and would rule out analyzing the e¤ect of changes

in �.
38The accuracy of simulated time paths is discussed in Section 5.
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Properties of the impulse response functions. Properties of the model are often

characterized by the model�s IRFs. If the approximation is nonlinear, then the IRF de-

pends on the values the state variables take on when the shock occurs. Suppose one wants

to know how di¤erent the IRFs of the matching model are when the shock occurs in a tight

labor market (high value of nt�1) and in a slack labor market (low value of nt�1). If the

numerical solution is a function of nt�1, then one could simply choose two representative

values for nt�1. When using second-order pruned perturbation approximations one also

has to choose the corresponding representative values for n(1)t�1. For higher-order pruned

perturbation approximations, one has to �gure out the values of even more measures of

the state variables. The results in Figure 7 make clear that there is a systematic di¤erence

between the �rst-order measure of the state variable and the second-order measure of the

same state variable. This means that it would be misleading to simply set n(1)t�1 equal to

nt�1.

Forecasting. If one wants to use the model to forecast, then one has to know the values

of the state variables. For example, suppose one wants to forecast using the matching

model. If one sets n(1)t�1 equal to the observed employment rate, then one makes an as-

sumption that is inconsistent with the numerical approximation being used, namely one

assumes that nt�1 = n
(1)
t�1, whereas we have shown that this is not true.

Incorporating a numerical solution into a di¤erent numerical problem. Numer-

ical approximations are also used as inputs in other (numerical) problems. For example,

one may �rst solve for the numerical approximation of the private sector and then deter-

mine government behavior. The policy rule describing government behavior can then be

an input in the problem that determines the behavior of the private sector and one would

iterate until the problem has converged. Another example can be found in Den Haan

and Rendahl (2010) who use the numerical solution for individual behavior to derive the

behavior of the corresponding aggregates by explicitly aggregating.

It may not be impossible to do these types of exercises with pruned perturbation

approximations, but the additional state variables introduced by the pruning procedure
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would make these exercises more cumbersome.

5 Accuracy of the stable perturbation-based procedures

In this section, we evaluate the accuracy of the pruned perturbation approximations and

the perturbation-plus approximations for the three models of Section 2. For the Brock-

Mirman model, we compare a time path of the approximation with the corresponding time

path of the true solution. For the other models, we use a time path generated by a very

accurate projection method instead of the (unknown) true solution.39 The length of the

time path, T , is set equal to 10,000.

The distance between a period-t variable generated with an approximation and the

corresponding "true" value is typically measured as the absolute percentage error. This

will not make sense if� as is the case in several of our models� variables take on values

that are close to zero. An alternative would be to scale the (absolute) di¤erence between

the period-t value according to the approximation and the corresponding true value by the

time series average of the true series. But this measure would not make sense if variables

take on values that are bigger than multiple times this mean and we encounter observations

where the true value is more than 20 times the mean. For those type of observations, the

regular percentage error would be more appropriate.

Therefore, we de�ne the period-t error as

et = min

����� ~xt � xtxt

���� ; ���� ~xt � xt�xT

����� ; (43)

where ~xt is the realization according to the approximation, xt the realization according to

the true (or very accurate projection method) solution, and �xT is the mean value of xt.

We report both the maximum and the mean of et. For all three models, we report only

the results for the state variable. The errors for consumption are somewhat smaller, but

the conclusions drawn here do not depend on the variable considered.

39That the projection method generates very accurate solutions is established in Appendix D.
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5.1 Accuracy of approximations to the Brock-Mirman model

We consider two values for �z, namely �z = 0:1 and �z = 0:2. Table 1 reports information

about the approximation errors and Table 2 reports summary statistics for the behavior

of capital according to the di¤erent policy rules. The following observations can be made.

First, the �rst-order perturbation approximation performs very poorly. This approx-

imation generates large negative values for the capital stock. Moreover, the maximum

value generated by the �rst-order perturbation approximations is less than half of the true

maximum value when �z = 0:1 and less than 13% of the true maximum when �z = 0:2.

Not surprisingly, the accuracy measures are very poor.

Second, the pruned second-order approximation performs worse than the regular second-

order perturbation approximation. Although, the pruned second-order approximation typ-

ically does substantially better than �rst-order perturbation, its maximum error is higher

when �z = 0:20. Whereas the problem of �rst-order perturbation is that it generates

values for capital that are way too low, the problem for both types of second-order pertur-

bation approximations is that the lowest values are substantially above the true minimum

value. The gap is roughly equal to one quarter of the mean capital stock.

Third, our proposed alternative does substantially better than the second-order per-

turbation approximations, both in terms of having better accuracy measures and in terms

of generating summary statistics that are closer to the truth. Nevertheless, the maximum

errors are non-trivial. For the two-step ahead perturbation-plus approximation, the maxi-

mum errors are equal to 5:2% and 8:1% when �z is equal to 0:1 and 0:2, respectively. This

is not spectacular, but substantially better than the second-order pruned approximation

for which the corresponding numbers are 47:9% and 193:8%.

Figure 8 plots that part of the sample where the largest errors are obtained by the

perturbation-plus approximations when �z = 0:2. This truly is an usual period: the true

value of kt takes on a value that is more than twenty times the sample average. The two-

step ahead perturbation-plus approximation does a good job following the true time path,

but doesn�t reach the same peak. It reaches a maximum value of 6:3 whereas the true

maximum is equal to 6:9. The maximum reached by second-order pruned perturbation is
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only 2:2.

The three-step ahead perturbation-plus approximation does even better than the two-

step ahead approximation. For example, the maximum reached during this enormous

upswing is equal to 6:68, only 2.7% below the true maximum (which is 2000% above the

average value). The problem is that the three-step ahead perturbation-plus approximation

is quite expensive to run.

5.2 Accuracy of approximations to the matching model

As in Section 3.3, we consider two values for the wage rate, namely w = 0:96 and w = 0:973.

At the lower value of w the regular second-order perturbation approximation is stable

and at the higher value of w it is not. Accuracy measures and summary statistics for

the di¤erent numerical approximations are given in Tables 1 and 2, respectively.40 The

following observations can be made.

First, the error measures are much smaller than for the previous model. The reason

for this is the much smaller variability. By construction, the model generates plausible

employment volatility (relative to labor productivity) when w = 0:973. In particular, the

employment rate �uctuates between 89:8% and 96:4% according to the "true" solution.

The model generates too little volatility in the employment rate when w = 0:96.

Second, �rst-order perturbation again performs very poorly. When w = 0:973, the

�rst-order perturbation approximation predicts that the mean employment rate is equal

to 94:9% while in fact it should be 93:1%. Making a mistake of 1:8 percentage point when

the range of generated values is only 6:6 percentage point is very troubling.

Third, when w = 0:973 the regular second-order perturbation approximation explodes

and is obviously outperformed by pruned perturbation. When w = 0:96 and the regular

second-order just does not explode, it outperforms pruned perturbation by far. In fact, it

40The minimum values obtained by the second-order perturbation approximations are the same when

� = 0:1 and when � = 0:2. The reason is the following. First, the correction term for uncertainty is almost

zero. Second, when z is low then the (quadratic) policy function is (i) close to the minimum and (ii) quite

�at. This means that the chosen values of k hoover around the same value until a su¢ ciently high value

for z pushes the economy out of this area.
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performs very well.

Fourth, the results for second-order pruned perturbation are substantially better than

those for �rst-order perturbation. Nevertheless, the time paths generated by second-order

pruned perturbation are inaccurate in some important dimensions. In particular, it misses

the potential depth of recessions. Consider the case when w = 0:973. The worst that can

happen according to the second-order pruned perturbation approximation is a drop in the

employment rate to 91:4%, while the actual minimum is 89:8%. In contrast, second-order

pruned perturbation predicts the maximum value quite well. It predicts a peak of 96:35%

whereas our accurate projection method predicts a peak of 96:44%. Consistent with these

observations, second-order pruned perturbation underestimates the standard deviation of

employment with 35%.

Fifth, the perturbation-plus procedure does very poorly unless the number of forward

looking steps is very high. For the Brock-Mirman model, we found that even the one-

step ahead perturbation-plus procedure delivered a substantial improvement over �rst-

order perturbation. For this model, the one-step ahead perturbation-plus procedure leads

to only a small improvement. As documented in the Table, even the nine-step ahead

perturbation-plus procedure performs worse than the second-order pruned perturbation

approximations. To get performance that is comparable to that of the second-order pruned

perturbation approximation, the number of forward looking steps has to be at least 15

steps.41

If we replace the �rst-order perturbation approximation by two linear functions of n�1,

namely one for each of the two values of z, then the perturbation-plus procedure does

much better. In fact, even the one-step ahead perturbation-plus procedure outperforms

41We also considered some cases when z had continuous support. Interestingly, one-step ahead pertur-

bation plus then did substantially improve upon �rst-order perturbation and also did much better than

the two second-order perturbation approximations. The advantage of discrete support for second-order

perturbation approximations is that it limits the maximum deviations from the steady state, which is

useful given the nonlinear dependence of n on z is not captured well with a second-order perturbation

approximation.
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the second-order pruned perturbation by far. The two linear functions were obtained with

a projection method. It is not di¢ cult to obtain these two linear functions and one always

achieves a stunning improvement as long as one conditions on the value of z. But we

do not want to pursue this modi�cation, since the whole idea of the perturbation-plus

procedure is that one does not to have to worry about setting up a grid.

5.3 Accuracy of approximations to the modi�ed Deaton model

As documented in Table 1, there are substantial di¤erences between the time paths gen-

erated by the approximations and the time path generated by the accurate projection

method. For example, the maximum error for the �rst-order perturbation approximation

is 137% and the average error is equal to 44%. This is not a trivial model to solve, given

that the amount of idiosyncratic risk is substantial. For example, according to the accu-

rate projection approximation, asset holdings range between �0:094 and 0:848, compared

with a mean of 0:085.

Substantial improvements are obtained by the nonlinear approximations, except by the

regular second-order perturbation approximation, because it generates a time path that is

not stable. The maximum error of the second-order pruned perturbation approximation

is equal to 127%, only a slight improvement over the one obtained by the �rst-order

perturbation approximation. But the average error is substantially less, namely 12:2%.

The average error of the two-step ahead perturbation-plus procedure is slightly smaller

than the one for second-order pruning, but the maximum error is substantially smaller,

namely 64:6%:

Table 2 documents that there are also substantial di¤erences in the properties of the

generated time paths. The two-step ahead perturbation-plus procedure predicts a standard

deviation that is 10% below the true value and second-order pruning underpredicts this

standard deviation with 16%. The approximations have most di¢ culty in following the

true time path in extreme situations. Interestingly, the perturbation-plus procedure has

problems with the peaks and pruning has problems with the troughs.

Panel A of Figure 9 plots that part of the generated time path where the perturbation-
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plus procedure makes the biggest error and Panel B plots that part where pruning makes

the biggest error. First consider Panel A. The �gure makes clear that the perturbation-

plus procedure is not as bad as the results reported above indicate. At the peak, the

two-step ahead perturbation-plus approximation underestimates the maximum achieved

level of asset holdings with 16%. Given that the true maximum is ten times as big as

the mean asset holdings, this error is not that worrisome. In particular, the perturbation-

plus approximation also predicts an enormous increase and some time before and some

time after this unusual situation the perturbation-plus procedure does track the accurate

time path reasonably well. The maximum error for the two-step ahead perturbation-plus

approximation is equal to 64%. Interestingly, the maximum error is not obtained at the

peak but after the fall back towards normal levels.42

Now turn to Panel B of Figure 9 that plots that part of the time path during which

the second-order pruning procedure makes the biggest error. Interestingly, this occurs

during a serious downturn. Again, the problem is concentrated in the trough; before and

after the trough the pruned perturbation approximation follows the accurate time path

quite closely. The error made by second-order pruning highlighted in Panel B may be a

bit more severe than the error made by the perturbation-plus approximation in the top

panel. First, the trough highlighted in Panel B is much closer to the mean than the peak

in Panel A. Moreover, the generated patterns is actually a bit di¤erent as well. After the

time path generated with pruned perturbation has reached its minimum value, it starts a

strong upward movement, whereas the accurate time path continues to drop.

6 Concluding comments

In this paper, we have focused on non-trivial numerical problems. In particular, we have

looked at models for which regular second-order perturbation generates time paths that

reach that part of the state space where the derivative of the second-order approximation

has the wrong sign and we have looked at models where the parameter values are just

below the critical levels that ensure stability or are just above these critical values.

42The error made by second-order pruned perturbation is actually bigger at this point.
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These are models for which linear approximations do not su¢ ce. The two perturbation-

based alternatives to regular perturbation approximations generate stable time paths and

incorporate nonlinearities. These methods can deliver substantial improvements over lin-

ear approximations. In the examples considered in this paper, the proposed alternatives

provide a good qualitative insight in how the true time path di¤ers from the path gener-

ated by �rst-order perturbation. In most cases, however, there are important quantitative

di¤erences between the time paths generated by the approximations and the accurate so-

lution method. The two exceptions are the three-step ahead perturbation-plus procedure

when applied to the Brock-Mirman and the modi�ed Deaton model. But this procedure

is expensive to run when three steps of forward looking behavior are used.

Thus, if the user is interested in precise quantitative properties of the model, then it is

important to evaluate the quality of the approximation with an accuracy test. It is always

a good idea to do this, but this is especially the case when solving models that are such

that regular low-order perturbation approximations generate unstable time paths.
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A Higher-order perturbation

The question arises whether one can avoid or at least reduce the severity of the instability

of the second-order perturbation approximation by going to higher-order approximations.

To shed light on this question we plot the third, fourth, and �fth-order perturbation

approximations for the modi�ed Deaton model in Figure 10.

The �gure documents that the third-order perturbation approximation also has a sec-

ond intersection with the 45o-line and that this undesirable intersection is closer to the

steady state than the undesirable additional intersection for the second-order perturba-

tion approximation. Consistent with this fact, we �nd that series generated with the

third-order perturbation approximation start an explosive trajectory faster than the series

generated with the second-order perturbation approximation.

The fourth and �fth-order perturbation approximation are stable, but the stability

comes at the cost of having a sharply decreasing policy function in some part of the

state space. The histogram below the graph displays the observed distribution of the

state variable (according to the accurate projection approximation). It documents that

the decreasing part occurs in a very relevant part of the state space for the �fth-order

approximation.

B More on pruning

Kim, Kim, Schaumburg, and Sims (2008) and Lombardo (2010) describe how to construct

a second-order pruned perturbation approximation. Lombardo (2010) also explains why

his formulation of the second-order pruned perturbation approximation is a second-order

local approximation. The formulation in Lombardo (2010) is somewhat di¤erent than the

one used in Kim, Kim, Schaumburg, and Sims (2008) and is somewhat di¤erent than the

one used in this paper.

This appendix has three objectives. First, we want to discuss the similarities and

di¤erences between the formulation used in Lombardo (2010) and the one used in this

paper. Second, we want to explain why a second-order pruned perturbation approxima-
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tion is a second-order approximation even though the second-order pruned perturbation

approximation of a second-order polynomial is not simply that second-order polynomial.

The third purpose of this appendix is to explain how to and how not to do higher-order

pruning.

B.1 Di¤erent formulations for pruning

The di¤erences are explained using a simple example. Throughout this subsection, we

assume that the true law of motion is given by

xt = �1xt�1 + �2x
2
t�1 + �"t; (44)

E
�
"2t
�
= 1: (45)

We assume that j�1j < 1, which implies that the process is locally stable. The regular

second-order perturbation approximation is simply equal to the function itself, that is,

xt = ~f2nd (x�1;�) = �1xt�1 + �2x
2
t�1 + �"t: (46)

Lombardo (2010) generates the second-order pruned perturbation approximation using

the following system of equations:

~x
(2)
t = �~x

[1]
t + �2~x

[2]
t ; (47a)

~x
[1]
t = �1~x

[1]
t�1 + "t; (47b)

~x
[2]
t = �1~x

[2]
t�1 + �2

�
~x
[1]
t�1

�2
: (47c)

We generate the second-order pruned perturbation approximation using

x̂
(2)
t = �1x̂

(2)
t�1 + �2

�
x̂
(1)
t�1

�2
+ �"t; (48a)

x̂
(1)
t = �1x̂

(1)
t�1 + �"t: (48b)

Suppose that

~x
(1)
0 = ~x

(2)
0 = x̂

(1)
0 = x̂0 = x0 = 0 (49)

and

"t = 1 if t = 1; (50)

"t = 0 if t > 1: (51)
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For this set of values for "t,43

~x
(2)
t = x̂

(2)
t 6= xt and (52)

~x
(2)
t � xt = x̂

(2)
t � xt = O(�3): (53)

Nevertheless, there is a di¤erence between the two formulations. This is easy to see

when � = 0. The formulation according to Equation (47) implies that

~x
(2)
t = 0 8t; (54)

whereas the formulation according to Equation (48) implies that

x̂
(2)
t = �1x̂

(2)
t�1 + �2

�
x̂
(1)
t�1

�2
; (55a)

x̂
(1)
t = �1x̂

(1)
t�1: (55b)

That is, the formulation of Lombardo (2010) does not describe any transition dynamics,

whereas our formulation does. Nevertheless, it is easy to show that both formulations are

proper second-order approximations if an additional condition is satis�ed. Suppose that

xt is generated by Equation (44), ~x
(2)
t is generated by Equation (47), and x̂(2)t is generated

by Equation (48). Then it is easy to show that

~x
(2)
t = xt +O(�

3) and (56)

x̂
(2)
t = xt +O(�

3) (57)

if

x0 = �2�x0 with �x0 <1: (58)

That is, our pruned perturbation formulation does allow transition dynamics, but the

initial value chosen cannot be too far away from the steady state. Similarly, it is acceptable

to ignore transition dynamics, but only if the initial value is close enough to the steady

43A function f(�) = O (�m) if there exist an M such that

lim
�!0

f(�)

�m
< M <1:
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state. It is obvious that a condition like this is needed. There are values for x0 such

that the time path generated by the true law of motion given in Equation (44) explodes,

whereas the time paths generated by Equations (47) and (48) never explode.

B.2 Pruned perturbation and inability to �t polynomials exactly

Suppose that xt is generated by Equation (44) with � = 0. Thus

xt = �1xt�1 + �2x
2
t�1: (59)

The idea behind perturbation is that the approximation becomes arbitrarily close to the

truth if the volatility goes to zero. If xt is generated by the law of motion given in Equation

(59), then the value of � has already approached zero. In addition, the truth is a simple

second-order polynomial. Nevertheless, neither the pruning approximation according to

Equation (47), ~x(2)t , nor the pruning approximation according to Equation (48), x̂
(2)
t ,

provides an exact �t. These pruned perturbation approximations are still proper second-

order approximations, but one does need to assume that the initial condition is su¢ ciently

close to the steady state. More formally, even though the true value of xt is a standard

second-order polynomial of only xt�1 and does not depend on a shock, the second-order

pruned perturbation approximations are only O(�3), where � now refers to the distance

of the initial condition to the steady state as in Equation (58). In contrast, the regular

second-order perturbation approximation is exact and is, thus, of order O(�m) for any m.

It is easy to construct examples in which the dynamics predicted by Equation (59) are

quite di¤erent from the dynamics predicted by the pruned perturbation approximations

even when the dynamics according to the true law of motion are stable.44 The ques-

tion then arises whether it is desirable that pruned perturbation approximations do not

(approximately) replicate a polynomial when the truth is (approximately) a polynomial.

Many functions in economic models can be approximated well with a low-order polynomial

44For example, suppose that x0 = 1, �1 = 0:01, and �2 = 0:98. The response according to the pruned

approximation is roughly zero after two periods. In contrast, according to the true law of motion the value

of xt declines gradually towards zero and gets close to zero only after nine periods.
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of the original state variables. The distortion that is introduced by the pruned perturba-

tion approximations is in those cases likely to deteriorate the approximation. But not all

functions are approximated well with a polynomial. That is likely to be the case when

regular perturbation approximations explode and the true model solution does not. But

the fact that regular polynomials provide a poor approximation does, of course, not imply

that pruned perturbation approximations do. There are many aspects to a function and

stability is only one of them.

B.3 Convergence of our pruning formulation

In this subsection, we discuss in more detail why our formulation of nth-order pruned

perturbation generates approximations that are of order O(�n+1):

B.3.1 Convergence of second-order pruning

To simplify the notation, we assume that the true law of motion is de�ned by

0 = Et [H(xt+1; xt; xt�1; zt;�)] ; (60)

zt = �"t; (61)

where xt and "t are scalars. The regular second-order perturbation approximation can be

written as

X
(2)
t;� =

f
0
xX

(2)
t�1;� + f

0
z�"t

+0:5f
00
x2

�
X
(2)
t�1;�

�2
+ f

00
xzX

(2)
t�1;��"t + 0:5f

00
z2 (�"t)

2
; (62a)

x
(2)
t;� = X

(2)
t;� + �x2nd ;�: (62b)

Note that X(2)
t;� is de�ned as the value xt relative to the stochastic steady state of the

second-order approximation, not relative to the non-stochastic steady state. This means

that its value depends on �. Our formulation of the pruned second-order perturbation
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approximation, bX(2)
t;� is given by

bX(1)
t;� = f

0
x
bX(1)
t�1;� + f

0
z�"t; (63a)

bX(2)
t;� =

f
0
x
bX(2)
t�1;� + f

0
z�"t

+0:5f
00
x2

� bX(1)
t�1;�

�2
+ f

00
xz
bX(1)
t�1;��"t + 0:5f

00
z2 (�"t)

2
; (63b)

bx(2)t;� = bX(2)
t;� + �x2nd ;�: (63c)

The formulation for the pruned perturbation approximation used in the literature is given

by

eX(1)
t = f

0
x
eX(1)
t�1 + f

0
z�"t; (64a)

eX(2)
t;� = �c2nd ;� +

f
0
x
eX(2)
t�1 + f

0
z�"t

+0:5f
00
x2

� eX(1)
t�1

�2
+ f

00
xz
eX(1)
t�1�"t + 0:5f

00
z2 (�"t)

2
; (64b)

~x
(2)
t;� = eX(2)

t;� + �x; (64c)

where �x is the non-stochastic steady state.

Our formulation ensures that the stochastic steady state of bX(1)
t;� and bX(2)

t;� are both

equal to zero, which ensures that the stochastic steady state of bx(2)t;� is equal to the sto-
chastic steady state of the original second-order perturbation approximation. In contrast,

according to the formulation used in the literature the three variables, X(2)
t;� , eX(1)

t;� , and eX(2)
t;�

have three di¤erent steady state values. For the discussion in this section, this di¤erence

does not matter, because here we consider the case that � �! 0 and the three stochastic

steady states would then converge to the non-stochastic steady state.45

The parameter � plays two roles in the approximation. First, it controls the volatility

of the driving process. Second, it a¤ects the coe¢ cients of the approximation. Here it

is convenient to separate these two roles. We let 
 indicate the value of volatility used

to determine the coe¢ cients of the perturbation approximation and we let � indicate the

value of the driving process. That is, we write the regular second-order perturbation

45As discussed in the main text, the motivation for our modi�cation is the following. If higher-order

perturbation introduces a correction for uncertainty, then it makes sense to apply this correction to all

measures of the state variables that are introduced by the pruning procedure.
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approximation as

X
(2)
t;
 =

f
0
x;
X

(2)
t�1;
 + f

0
z;
�"t

+0:5f
00
x2;


�
X
(2)
t�1;


�2
+ 0:5f

00
z2;
 (�"t)

2 + f
00
xz;
X

(2)
t�1;
�"t

(65)

and the corresponding pruned perturbation approximation as

bX(2)
t;
 =

f
0
x;

bX(2)
t�1;
 + f

0
z;
�"t

+0:5f
00
x2;


� bX(1)
t�1;


�2
+ 0:5f

00
z2;
 (�"t)

2 + f
00
xz;


bX(1)
t�1;
�"t

(66a)

bX(1)
t;
 = f

0
x;

bX(1)
t�1;
 + f

0
z;
�"t (66b)

We know that the regular perturbation approximation given in Equation (65) is a

second-order approximation if � and 
 approach zero.46 Consequently, if the perturbation

approximation given in Equation (66) approaches the perturbation approximation given

in Equation (65) as � �! 0, then it is a second-order approximation of the truth if � and


 approach zero.

We will show that our pruned perturbation approximation converges to the regular

perturbation approximation for �xed 
, which implies that our procedure correctly ap-

proximates the correction that higher-order perturbation introduces for uncertainty (indi-

cated by 
) at least as � �! 0. For the regular pruning formulation this is only true if

both 
 �! 0 and � �! 0.

The di¤erence between X(2)
t;
 and bX(2)

t;
 is equal to

X
(2)
t;
 � bX(2)

t;
 =

f
0
x;


�
X
(2)
t�1;
 � bX(2)

t�1;


�
+0:5f

00
x2;


��
X
(2)
t�1;


�2
�
� bX(1)

t�1;


�2�
+f

00
xz;
"t

�
�X

(2)
t�1;
 � � bX(1)

t�1;


� (67)

To see that X(2)
t;
 � bX(2)

t;
 = O(�3), �rst note that

X
(2)
t�1;
 � bX(1)

t�1;
 = O(�2); (68)

which means that

�X
(2)
t�1;
 � � bX(1)

t�1;
 = O(�3): (69)

46As in Appendix B.1, one needs to assume that the initial condition converges to the steady state at

the appropriate rate as � approaches zero.
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Moreover, since X(1)
t�1;
 is O(�

2) and X(2)
t�1;
 is O(�

3), it is also true that�
X
(2)
t�1;


�2
�
� bX(1)

t�1;


�2
= O(�3): (70)

Consequently, the only term remaining is X(2)
t�1;
 � bX(2)

t�1;
: But given the last two results

this will be O(�3) as long as the di¤erence in the initial conditions is O(�3) as in Equation

(58).

B.3.2 Convergence of higher-order pruning

The discussion above easily extends to the case for higher-order pruning. But one should

be careful in specifying the formulation for higher-order pruned perturbation. We make

this clear using a simple example.

Let the true law of motion be given by

xt = �1xt�1 + �2x
2
t�1 + �3x

3
t�1 + �"t; (71a)

E
�
"2t
�
= 1: (71b)

As discussed in Section 4.3, the third-order pruned perturbation solution is given by

x̂
(3)
t = �1x̂

(3)
t�1 + �2

�
x̂
(2)
t�1

�2
+ �3

�
x̂
(1)
t�1

�3
+ �"t (72)

x̂
(2)
t = �1x̂

(2)
t�1 + �2

�
x̂
(1)
t�1

�2
+ �"t (73)

x̂
(1)
t = �1x̂

(1)
t + �"t (74)

Using the same logic as used in Section B.3.1 for second-order pruning, it is easy to

show that

xt � x̂(3)t = O(�4): (75)

Now consider the following alternative formulation:

~x
(3)
t = �1~x

(3)
t�1 + �2

�
~x
(1)
t�1

�2
+ �3

�
~x
(1)
t�1

�3
+ �"t (76a)

~x
(1)
t = �1~x

(1)
t�1 + �"t (76b)

This formulation does not generate a proper third-order approximation. To see that

xt � ~x(3)t 6= O(�4) (77)
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consider the following example. Suppose that

x0 = 0; (78)

"t = 1 if t = 1; (79)

"t = 0 if t > 1: (80)

Table 3 reports the time paths for xt and ~x
(3)
t . The term in bold, 2�1�2�

3, in the third

period makes clear that the di¤erence between xt and ~x
(3)
t is not of order O(�4).

C Implementation of the perturbation-plus procedure

In this appendix, we describe a faster version of the perturbation-plus procedure and we

describe in detail how we implemented the perturbation-plus procedure.

C.1 Faster implementation

An important factor that slows down the perturbation procedure is that there is no ana-

lytical solution to Equation (30), which we repeat here for convenience.

0 = eE hH( ef1st (x; z+1); x; x�1; z+1; z)i : (81)

The objective of the alternative formulation is to avoid using a nonlinear equation solver.

Typically, x shows up more than once in H (�) and typically it is possible to �nd an

analytical expression for x in terms of the other variables and x itself. If that is the case,

then we can rewrite Equation (81) as47

x = eE hG( ef1st (x; z+1); x; x�1; z+1; zi : (82)

Since this is still an equation in x, we have not made any progress. The idea is to useef1st (�) not only for x+1 but also for the value of x inside G (�).48 The one-step ahead

47See Section C.3 for an example.
48The di¤erence between the original perturbation-plus procedure and its modi�cation is very similar

to the di¤erence between time iteration and �xed-point iteration. See Chapter 17 in Judd (1998) for a

discussion on these iteration schemes.
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modi�cation is then de�ned as

x = bf+1 (x�1; z) = eEt hG( ef1st ( ef1st (x�1; z); z+1); ef1st (x�1; z); x�1; z+1; zi : (83)

The two-step ahead modi�cation is de�ned as

x = bf+2 (x�1; z) = eEt hG( bf+1( bf+1(x�1; z); z+1); bf+1(x�1; z); x�1; z+1; zi : (84)

Iteration on this scheme leads to the J-step ahead modi�cation of the �rst-order pertur-

bation solution.

C.2 Perturbation-plus and the neo-classical growth model

The �rst-order conditions for the neo-classical growth model are given by

ct + kt = eztk�t�1 + (1� �)kt�1 (85)

and

1 = Et

"�
ct+1
ct

��
 �
�ezt+1k��1t + 1� �

�#
: (86)

The objective is to solve for kt given values of kt�1 and zt. We denote the solution

as kt = bf+1(kt�1; zt). The solution for kt and ct are obtained using the following two
equations

ct + kt = eztk�t�1 + (1� �)kt�1 (87a)

1 = eEt
264
0@ezt+1k�t +

�
1� �)kt � ~f1st (kt; zt+1)

�
ct

1A�
 ��ezt+1k��1t + 1� �
�375 : (87b)

where ~f1st (kt; zt+1) is the �rst-order perturbation solution for kt+1. The conditional expec-

tation eEt [�] is the numerical approximation to Et [�] using Gaussian-Hermite quadrature
with �ve quadrature nodes.

The procedure described in the last paragraph is the one-step ahead perturbation-plus

procedure, because the behavior of next period�s variables is described using the �rst-order

perturbation procedure. The two-step ahead perturbation-plus approximation, bf+2(�), is
the solution to Equation (87) with ~f1st (�) replaced by bf+1(�).
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C.3 Perturbation-plus and the matching model

The objective is to solve for �t given the values of the state variables, nt�1 and zt. We

denote this solution by

�t = bf+1(nt�1; zt): (88)

We solve for �t from a system of �ve equations in �ve unknowns. The endogenous variables

are �t, pf;t, vt, ct, and nt. The �ve equations are

�t = �E

"�ect+1(nt; zt+1)
ct

��
 �
�ezt+1n��1t � w + (1� �n) ef1st (nt; zt+1)�

#
; (89)

and Equations (7), (10), (12), and (14). For this to be a system in �ve unknowns, we have

to take a stand on how to determine ect+1(nt; zt+1). Since this is next period�s consumption,
we could use the �rst-order perturbation approximation. Instead we use for ect+1(nt; zt+1)
the value that is implicitly de�ned by Equations (7), (10), (12), and (14) for t+ 1 and

�t+1 = ef1st (nt; zt+1) : (90)

Thus, we only use the �rst-order perturbation solution for �t+1 and all the other variables

are obtained using the true model equations.

The two-step ahead perturbation-plus approximation is de�ned analogously with ~f1st (�)

replaced by bf+1(�).
Simpli�cation. The functions bf+J(�) are only implicitly de�ned and its values are calcu-
lated using a nonlinear equation solver. Consequently, the cost of the algorithm increases

sharply with J . In Appendix C.1, we discussed a simpli�cation that reduces the costs

substantially. Here we discuss how this is implemented.

Instead of solving for �t, nt and ct simultaneously, we use the following procedure.

First, calculate "temporary" values nt and ct using Equations (7), (10), (12), (14), and

�t = ef1st (nt�1; zt) : (91)

Denote the solutions for nt and ct as n
temp
t and ctempt . As above, the value for �t is
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calculated from

�t = �E

24 ect+1(ntempt ; zt+1)

ctempt

!�
0@ �ezt+1
�
ntempt

���1
� w

+(1� �n) ef1st �ntempt ; zt+1

�
1A35 : (92)

With ect+1(ntempt ; zt+1) de�ned as above, we have an analytical expression for �t. The

ntempt variable is only used to calculate �t. Given the solution for �t, the actual value

for nt is then obtained from the Equations (7), (10), (12), and (14), without making any

further approximation. To calculate bf+J(�) one would use bf+J�1(�) instead of ef1st (�) both
to calculate ntempt , ctempt , and to calculate �t+1 in the Euler equation.

C.4 Perturbation-plus and the modi�ed Deaton model

In each period of the simulation, i.e., given the value for cash on hand, xt, we use an equa-

tion solver to calculate at from the Euler equation. We use Gaussian-Hermite quadrature

to calculate the conditional expectation on the right-hand side of the Euler equation.49

For the one-step ahead modi�cation, we use

ct+1 = at + e
zt+1 � at+1

1 + r
(93)

� at + e
zt+1 �

ef1st (at + ezt+1)
1 + r

(94)

to calculate the realizations for consumption. This procedure de�nes the function at =bf+1 (xt).
For the two-step ahead modi�cation, we use at+1 = bf+1 (xt+1) in the expression for

consumption above. For each Gaussian-Hermite node, i.e., for each potential value of

at+e
zt+1 , we use an equation solver to calculate at+1 from tomorrow�s Euler equation and

on the right-hand side we use at+2 = ef1st (xt+2). Since ef1st (�) is only implicitly de�ned,
we have to use an equation solver to solve for at+1 for each quadrature node for zt+1.

Although computational expensive, it is easy to iterate on this procedure to calculate

the J-step ahead modi�cation.

49For the number of quadrature nodes we considered values between �ve and thirty and found that the

results were robust to changing this number.
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D Accuracy of our projection solutions

In this appendix, we document that the projection solutions that serve as a stand-in for

the truth are very accurate.

D.1 Projection solution for matching model

We obtained a very accurate solution for the matching model using the following algorithm

based on projection methods. We parameterized the policy function for the Lagrange

multiplier � by a linear spline that satis�es the Euler equation on each grid point. We

have used 10; 000 equidistant grid points for n�1 ranging from 0:6 to 0:99. The other state

variable, z, can take on two values, namely �� and +�.

We used �xed-point iteration and the algorithm does the following at the ith iteration.

Starting point of the ith iteration is the policy function from the last iteration, namely

� = f (i�1) (n�1; z). Given this policy function it is straightforward to solve for the other

variables. At grid point j, i.e., for given values of n�1;(j) and z(j), the value for � is given

by

�(j) = �E

" 
c
�
n(j); z+1

�
c(j)

!�
 �
�ez+1n��1(j) � w + (1� �n)�

�
n(j); z+1

��#
: (95)

Integrating over the possible realizations for z+1 is trivial given that z has discrete support.

If �
�
n(j); z+1

�
and c

�
n(j); z+1

�
are determined using f (i�1)

�
n(j); z+1

�
, then one can solve

for �(j), n(j), v(j), pf;(j), and c(j) by combining Equation (95) with Equations (7), (10),

(12), and (14). This would be time iteration. To simplify the algorithm we use �xed-point

iteration. The bene�t of time iteration is that it has better convergence properties, but

with the appropriate choice of the dampening parameter, the algorithm also converged

with �xed-point iteration. We implemented �xed-point iteration as follows. First, cal-

culate �temp(j) = f (i�1)
�
n�1;(j); z(j)

�
. Use this value to calculate ntemp(j) . Next, solve for �

using

�(j) = �E

264
0@c
�
ntemp(j) ; z+1

�
c(j)

1A�
0@ �ez+1
�
ntemp(j)

���1
� w

+(1� �n)�
�
ntemp(j) ; z+1

�
1A
375 ; (96)

where the values for c+1 and �+1 are based on f (i�1) (�). In principle one could set
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f (i)(n�1;(j); z(j)) equal to �(j). But convergence may require a dampening factor, that is,

to take a weighted average between �(j) and f (i�1)(n�1;(j); z(j)). We iterate on this scheme

until the maximum absolute di¤erence is less than 1E�12.

As documented in Table 1, the errors made in the dynamic Euler equation accuracy

test are minuscule.

D.2 Projection solution for modi�ed Deaton model

We obtained an accurate solution for the modi�ed Deaton model using projection tech-

niques. The details are as follows. We parameterized the asset policy function by a linear

spline that satis�es the Euler equation on each grid point. We use time iteration and we

use the endogenous grid points algorithm of Carroll (2006). The advantage of time itera-

tion (compared to �xed-point iteration) is that it has better convergence properties. The

advantage of endogenous grid points is that there is an analytical solution for the variables

when using time iteration. The disadvantage of using time iteration and endogenous grid

points is that we have to specify a grid for both at and zt, while strictly speaking there is

only one state variable, namely cash on hand, at�1 + ezt .

We used 1001 equidistant grid points for at ranging from �0:2 to 2 and we used 1001

equidistant grid points for zt ranging from 0 to 3.

The projection algorithm is based on an iterative scheme that does the following at

the ith iteration. Starting point at the ith iteration is the policy function from the last

iteration, namely a = f (i�1) (a�1 + ez). At grid point j, i.e., for given values of a(j) and

z(j), the value for a�1 is solved from the Euler equation. The conditional expectation is

approximated using Gaussian-Hermite quadrature with 30 nodes. The possible realizations

for c+1 are given by

c+1 = a(j) + e
z+1 �

f (i�1)
�
a(j) + e

z+1
�

1 + r
: (97)

This leads to a set of combinations of a�1, a, and z which gives a = f(a�1 + ez). We

iterate on this scheme until the maximum absolute di¤erence between the values of f (i�1)

and f (i) is less than 1E-7.

As documented in Table 1, the errors made in the dynamic Euler equation accuracy

49



test are not quite as small as those for the matching model. This model is more di¢ cult

to solve, given that the variance is much higher. Nevertheless, the results are still good.

The maximum error is 0.1% and the average error is 0.008%. These errors are minuscule

relative to the errors of the perturbation based methods.
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Figure 1: Perturbation approximations and instability
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Notes: This �gure plots the function f(x�1) described in Section 1 and its second-order
Taylor-series approximation.



Figure 2: 2nd-order perturbation approximations for Brock-Mirman model

A: Approximation for k(k�1; z); �z = 0:007
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B: Approximation for k(k�1; z); �z = 0:2
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Notes: This �gure plots the 2nd-order perturbation approximations for the Brock-Mirman
model (in levels not in logarithms) for di¤erent values of z.



Figure 3: 2nd-order perturbation approximations for neo-classical growth model;
consumption perturbation solution and capital solved from true budget constraint

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

kt−1

k
t

 

 
γ = 1

γ = 10

45o line

Notes: When 
 = 1, then the model is the Brock-Mirman model.



Figure 4: "Truth" and 2nd-order perturbation approximation for matching model

A: w = 0:96.
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B: w = 0:973.
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Notes: The point of this �gure is to show that the second-order perturbation solution for
z = �� does not have a �xed point unless w is su¢ ciently low.



Figure 5: 2nd-order perturbation approximations for the Deaton model
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Notes: The point of this �gure is to show that the second-order perturbation approxima-
tion for the policy function of the Deaton model is not globally stable.



Figure 6: Data simulated with 2nd-order pruned perturbation approximation;
k
(2)
t � k(2)t�1 as a "function" of k

(2)
t�1

Notes: k(2)t is the capital stock generated by the pruning procedure. k(2)t is not a function

of k(2)t�1 and zt, since the pruning procedure introduces additional state variables.



Figure 7: Data simulated with 2nd-order pruned perturbation approximation;
k
(2)
t versus k(1)t

Notes: k(2)t is the capital stock generated by the pruning procedure and k(1)t is the value
of the auxiliary state variable also generated by the pruning procedure.



Figure 8: Time paths for the Brock-Mirman model
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Notes: This graphs plots the di¤erent approximations when the 2-step ahead perturbation-
plus approximation attains the largest error.



Figure 9: Time paths for the modi�ed Deaton model

A: Maximum error for two-step ahead perturbation plus
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Figure 10: Higher-order perturbation and the modi�ed Deaton model
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Notes: The top panel gives the perturbation approximations and the "truth" (in bold) for
the modi�ed Deaton model. The bottom panel gives the distribution for x according to
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Table 1: Di¤erences (in %) between approximations and "truth"

Brock-Mirman

� = 0:10 � = 0:20
max mean max mean

perturbation + 1 16.7 2.7 25.3 5.4
perturbation + 2 5.2 1.0 8.1 1.9
1st-order pert. 76.1 8.0 142.8 19.2
2nd-order pert. 31.0 1.9 76.4 7.9
2nd-order pruning 47.9 2.0 193.8 8.8

matching

w = 0:96 w = 0:97
max mean max mean

"truth" 0.00 0.00 0.00 0.00
perturbation + 1 0.97 0.67 3.09 1.82
perturbation + 1* 0.30 0.12 0.44 0.13
perturbation + 9** 0.66 0.45 2.38 1.38
1st-order pert. 1.02 0.69 3.20 1.87
2nd-order pert. 0.06 0.02 1 1
2nd-order pruning 0.36 0.22 1.79 0.94

modi�ed Deaton

max mean
"truth" 0.1 0.008
perturbation + 1 97.9 22.1
perturbation + 2 64.6 11.1
1st-order pert. 136.9 44.4
2nd-order pert. 1 1
2nd-order pruning 127.7 12.2

Notes: "truth" refers to the true policy rule for the Brock-Mirman model and to a very
accurate projection method for the other two models. The * indicates that two separate
linear rules are used for the two values of z and ** indicates that the approximation is
calculated as described in Appendix C.1. Results are based on a time path of 10,000
observations.



Table 2: Model properties accordng to approximations and "truth"

Brock-Mirman
�z = 0:10 �z = 0:20

E[k] �k min max E[k] �k min max
truth 0.227 0.123 0.037 1.170 0.334 0.444 0.007 6.868
perturbation + 1 0.218 0.114 0.010 0.983 0.296 0.360 0.000 5.158
perturbation + 2 0.224 0.120 0.029 1.110 0.322 0.417 0.004 6.312
1st-order pert. 0.200 0.099 -0.136 0.552 0.201 0.198 -0.471 0.905
2nd-order pert. 0.223 0.107 0.089 0.838 0.283 0.232 0.089 1.804
2nd-order pruning 0.225 0.108 0.010 0.865 0.299 0.253 0.100 2.155

matching
w = 0:96 w = 0:97

E[n] �n min max E[n] �n min max
"truth" 0.943 0.0175 0.925 0.961 0.931 0.0315 0.898 0.964
perturbation + 1 0.949 0.0151 0.934 0.965 0.948 0.0218 0.927 0.972
perturbation + 1* 0.941 0.0178 0.924 0.961 0.932 0.0318 0.899 0.966
perturbation + 9** 0.947 0.0157 0.931 0.964 0.944 0.0236 0.920 0.969
1st-order pert. 0.949 0.0151 0.934 0.966 0.949 0.0217 0.928 0.972
2nd-order pert. 0.942 0.0176 0.925 0.961 1 1 1 1
2nd-order pruning 0.944 0.0155 0.928 0.961 0.937 0.0228 0.915 0.964

modi�ed Deaton
E[a] �a min max

"truth" 0.085 0.098 -0.094 0.848
perturbation + 1 0.057 0.080 -0.101 0.583
perturbation + 2 0.071 0.088 -0.097 0.710
1st-order pert. 0.029 0.070 -0.184 0.344
2nd-order pert. 1 1 � 1
2nd-order pruning 0.079 0.082 -0.043 0.829

Notes: "truth" refers to the true policy rule for the Brock-Mirman model and to a very
accurate projection method for the other two models. The * indicates that two separate
linear rules are used for the two values of z and ** indicates that the approximation is
calculated as described in Appendix C.1. Results are based on a time path of 10,000
observations.



Table 3: Dynamics for true and incorrect 3rd-order pruned perturbation approximation

t xt ~x
(3)
t

1 � �

2 �1� + �2�
2 + �3�

3 �1� + �2�
2 + �3�

3

3

�21� + �1�2�
2 + �1�3�

3

+�2

�
(�1�)

2 + 2�1�2�
3
�

+�3 (�1�)
3

+O(�4)

�21� + �1�2�
2 + �1�3�

3

+�2 (�1�)
2

+�3 (�1�)
3

Notes: The values for xt correspond to the values according to the true law of motion,
which is given in Equation (71a). The values for ~xt correspond to the values according to
the incorrect formulation of the pruning procedure given in Equation (76).


