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Equilibrium Models

2.1 Introduction

The purpose of this chapter is twofold. First, we will introduce the reader
to some popular dynamic equilibrium models used in the literature. The
second goal of this chapter is to improve the reader’s skill in working with
equilibrium models. In particular, we construct systems of n equations in
n unknowns to characterize the solution of the model, determine the set
of state variables, calculate steady states, analyze properties of the model
without explicitly solving it, and compare the behavior of economic vari-
ables in the competitive equilibrium to the behavior of these variables if
they are chosen by a social planner. In Section 2.2, we consider an extension
of the model developed in Chapter 1 in which the government issues fiat
money and money, besides a source of wealth also fascilitates transactions.
In Section 2.3 we consider non-monetary and monetary overlapping gen-
erations models. In these models, agents only live for a finite time period
and at each point in time cohorts of different ages are alive.
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2.2 Monetary models with infinitely-lived agents

2.2.1 Specification of the model

Households in this economy solve the following optimization problem:

max⎧⎪⎪⎨⎪⎪⎩
ct+j , ht+j , kt+j+1,

vt+j ,Mt+j+1, Bt+j+1

⎫⎪⎪⎬⎪⎪⎭
∞

j=0

E

⎡⎣ ∞X
j=0

βju(ct+j , 1− ht+j − vt+j)| It

⎤⎦
s.t. ct+j + kt+1+j +

Mt+1+j

pt+j
+ qt+j

Bt+1+j
pt+j

+ τ t+j =

θt+jf(kt+j , ht+j) + (1− δ)kt+j +
Mt+j

pt+j
+

Bt+j
pt+j

vt+j = v
³
ct+j ,

Mt+j

pt+j

´
kt,Mt, and Bt predetermined

(2.1)

Here ct stands for consumption, ht for labor supply, vt for shopping time,
kt for beginning-of-period t capital, Mt for beginning-of-period t nominal
money balances, pt for the price level, τ t for lump-sum taxes, θt for the
productivity shock, and Bt for the number of bonds bought at period t−1.
Also qt−1 is the price of a bond bought in period t−1 that delivers one unit
of money in period t. Leisure in this economy is equal to 1− ht − vt. The
amount of time spent shopping is a function of ct and real money balances
mt =Mt/pt with

∂v(c,m)

∂c
> 0 and

∂v(c,m)

∂m
< 0. (2.2)

Thus, the higher the amount of consumption the higher the amount of
time spent shopping and the higher the amount of real money balances the
smaller the amount of time spent shopping. At the end of this section, we
will give a more detailed motivation for the shopping time function.
The budget constraint for the government is given by

Ms
t+1 −Ms

t

pt
+

qtB
s
t+1 −Bs

t

pt
+ τ t = gt, (2.3)

where gt is the per capita amount of government expenditures, Ms
t is the

(per capita) money supply, and Bs
t is the (per capita) bond supply. Ac-

cording to this budget constraint, the government can finance government
expenditures through seigniorage, by issuing bonds, and by levying taxes.
The constraint implies that if the government chooses three of their four
instruments, then the fourth one is pinned down. We will assume that gt,
Ms

t , and Bs
t are exogenous processes and that τ t is solved from 2.3. In
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particular, suppose that

ln(gt) = γ0 + γ1 ln(gt−1) + εgt , (2.4)

ln(Bs
t+1) = φ0 + φ1 ln(B

s
t ) + εBt , and (2.5)

ln(Ms
t+1/M

s
t ) = μ0 + u1 ln(M

s
t /M

s
t−1) + εMt , (2.6)

where εgt , ε
B
t , and εMt are independent white-noise error terms.

Deriving the shopping-time function

The idea is that to acquire a consumption level equal to ct requires produc-
ing acquisition services at ≥ ct. These acquisition services can be produced
using real money balances and shopping time as inputs, just as capital
and labor are used as inputs in the production function. Real money bal-
ances reduce the amount of resources needed to acquire a certain amount
of consumption, for example because a higher level of real money balances
means that less time has to be spent searching for commodities that can
be bought on credit and bargaining about the interest payments. The as-
sumption that one needs a costly resource like time to acquire consumption
seems like a weak assumption even though it implicitly argues that those in
this world who enjoy shopping are a minority. Don’t forget, however, that
this is supposed to be a macro model. So part of the costs of “shopping”
are the costs of the banking sector to check for credit ratings, etc..
Suppose that the function that specifies how the inputs money and shop-

ping time can be used to produce acquisition services is equal to

at = ξmκ
t v
1−κ
t . (2.7)

If κ is equal to one then shopping time is not productive and only real
money balances are needed to acquire consumption. Moreover if ξ is equal to
one as well, then we would have the standard cash-in-advance specification.
That is,

ct ≤ at = mt. (2.8)

For 0 < κ < 1 we have
ct = at = ξmκ

t v
1−κ
t . (2.9)

Note that we have imposed the equality that ct = at in 2.9 because for
regular utility functions agents would never use more shopping time than
is absolutely needed.1 Rewriting Equation 2.9 gives

vt = ξc
1/(1−κ)
t m

−κ/(1−κ)
t , (2.10)

1We did not impose this restriction in Equation 2.8 because money balances Mt

are chosen in period t − 1. The agent would not like to use any more money than is
needed since money doesn’t earn any interest and bonds do. However, he cannot predict
perfectly how much money is going to be needed. In particular, ct and pt are not known
in period t− 1 and it is, therefore, not necessarily true that 2.8 holds with equality.
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where ξ = (1/ξ)1/(1−κ). If we substitute the shopping-time function into the
current-period utility function then we get a utility function that depends
on consumption, labor supply, and real money balances. The shopping-time
model is, thus, a special case of money-in-the-utility (MIU) models in which
just owning real money balances provides utility.2

2.2.2 First-order conditions and definition of equilibrium

The first-order conditions for the agent’s problem are the following:

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.11a)

λt = βE
∙
λt+1

µ
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

¶
| It
¸
, (2.11b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
, (2.11c)

qtλt
pt

= βEt

∙
λt+1
pt+1

¸
, (2.11d)

λt
pt
= βE

⎡⎣λt+1 − ∂u(ct+1,lt+1)
∂lt+1

∂v(ct+1,mt+1)
∂mt+1

pt+1
| It

⎤⎦ , (2.11e)

ct + kt+1 +
Mt+1

pt
+ qt

Bt+1

pt
+ τ t = (2.11f)

θtf(kt, ht) + (1− δ)kt +
Mt

pt
+

Bt

pt
,

lim
J→∞

E
h
βJ−1λJkJ+1|It

i
= 0, (2.11g)

lim
J→∞

E
∙
βJ−1qJ

λJ
pJ

BJ+1|It
¸
, and (2.11h)

lim
J→∞

E
∙
βJ−1

λJ
pJ

MJ+1|It
¸
, (2.11i)

where lt = 1−ht− v(ct,mt). It would be a good exercise to derive these
first-order conditions using the Lagrangian for the sequence problem.
Suppose that each agent in the economy has the same starting values,

thus, Mt =Ms
t , Bt = Bs

t , and kt = Kt, where Kt is the per capita capital
stock. Since all agents are the same, the agents’ demand functions are the
same and the economy is in equilibrium when the quantities demanded by

2Make sure you don’t confuse this reason for why real money balances have util-
ity with the reason that (real) money balances provide utility indirectly because they
represent a source of wealth.
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our representative agent are equal to the per capita supplied quantities.
Thus,

Mt+1 = Ms
t+1 (2.12a)

Bt+1 = Bs
t+1 (2.12b)

A competitive equilibrium consist of solutions for ct, ht, kt+1, Mt+1,
Bt+1, λt, pt, and qt that satisfy the equations in 2.11 and 2.12. SinceMt+1 =
Ms

t+1 and Bt+1 = Bs
t+1 we can also define a competitive equilibrium as a

set of solutions for ct, ht, kt+1, λt, pt, and qt that satisfy the equations in
2.11. In that case Mt+1 and Bt+1 are exogenous variables. Working with
a smaller set of endogenous variables is often convenient, if you try to
numerically solve the model. But you have to realize that the individual
doesn’t act as if he has to set Mt+1 equal to Ms

t+1. He thinks he is free to
choose any Mt+1. At equilibrium prices, however, it is optimal to choose a
value for Mt+1 that is equal to Ms

t+1.

State variables

A solution to this model would consist of a consumption function c(st),
a capital function k(st), a labor supply function h(st), a money demand
function M (st), a bond demand function B (st), a price function p (sat ), a
bond price function q (sat ), and a tax function τ (sat ), where st is a vector
of state variables relevant for the individual and sat is a vector of aggregate
state variables. Let’s think about what the state variables in this problem
are. Clearly relevant for the agent’s choices are the capital stock, kt, his
money holdings, Mt, his bond holdings, Bt, and the productivity shock.
In addition, he cares about current and future values of the tax level, the
bond price, and the price level. Current values of these three variables
are known but are bad candidates to serve as state variables since they
are not predetermined. Moreover, since we typically don’t know whether
these variables are Markov processes or if we do know of what order, we
wouldn’t know how many lags to include. But we can come up with a list of
variables that will determine current and future values of the tax level, the
bond price, and the price level. Those are Ms

t+1/M
s
t , M

s
t , B

s
t+1, B

s
t ,Kt,

and gt. Note that Ms
t , B

s
t , and Kt are included because they represent

wealth components of the average agent in this economy. The growth rate of
money, Ms

t+1/M
s
t , is included because it determines together with Ms

t the
money supply in period t and because it is a sufficient predictor for future
money growth rates. For similar reasons Bs

t+1 and gt are included because
they, among other things, affect tax rates. This gives st = [Mt, Bt, kt,
Ms

t+1/M
s
t , M

s
t , B

s
t+1, B

s
t , Kt, gt] and sat = [M

s
t+1/M

s
t , M

s
t , B

s
t+1, B

s
t , Kt,

gt]. Since all agents are identical and have been identical in the past, it will
always be the case that kt = Kt, Mt = Ms

t , and Bt = Bs
t . When you use

this condition then st would be equal to [Mt, Bt, kt, Mt+1/Mt, Bt+1, gt]
and sat would be equal to [Mt+1/Mt, Mt, Bt+1, Bt, Kt, gt]. But in principle,
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our models allows us to ask and answer the question how our agent (who
is only a really small part of this economy) would behave if his own capital
stock is say 5% higher than the average capital stock. When we reduce the
set of state variables we cannot do this anymore 3

2.2.3 Analyzing the competitive equilibrium without explicitly
solving it

Even without explicitly solving for policy functions and equilibrium prices
one can sometimes determine important properties of the equilibrium so-
lutions. In this section we discuss two such properties. The first one is
Ricardian equivalence and the second is money neutrality. Later in this
chapter we will provide two more examples. In Section 2.2.5 we will an-
alyze optimality properties of the competitive equilibrium and in Section
2.2.6 we will determine whether a cash-in-advance constraint is binding.

Ricardian Equivalence

Amodel is said to satisfy Ricardian Equivalence if a change in the time-path
of government debt, keeping government spending fixed, does not affect
equilibrium prices or the individual’s choices for consumption, capital, labor
supply, and real money balances. The amount of taxes is of course affected
by a change in Bt+1 and an increase in Bt+1 would decrease government
savings. Under Richardian Equivalence, however, this decrease is exactly
offset by an increase in private savings and aggregate savings remains the
same. If a model satisfies Ricardian Equivalence, then it, thus, doesn’t
matter whether the government finances government expenditures with
taxes or with government debt.
It is easy to see why the model developed in this section satisfies Ri-

cardian Equivalence. Note that if the laws of motion for money supply,
Ms

t+1(=Mt+1), and government expenditures, gt, are taken as given, then
the following system can be used to solve for c(st), k(st), h(st), q (sat ),
p (sat ), and λt.

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.13a)

λt = βE
∙
λt+1

µ
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

¶
|It
¸
, (2.13b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
(2.13c)

3Now that we have defined the state variables it would be a good exercise to derive
the first-order conditions in 2.11 again using the Bellman equation.
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qtλt
pt

= βEt

∙
λt+1
pt+1

¸
, (2.13d)

λt
pt
= βE

∙µ
λt+1 −

∂u(ct+1, lt+1)

∂lt+1

∂v(ct+1,mt+1)

∂mt+1

¶
1

pt+1
|It
¸
, and (2.13e)

ct + kt+1 + gt = θtf(kt, ht) + (1− δ)kt (2.13f)

Neither government debt not taxes appear in this system of equations, so
the solution is not affected by a change in these variables. The reason for
this result is that economic agents realize that a reduction in current taxes
caused by an increase in debt financing leads to an increase in future taxes
since at some point the debt has to be repaid. The intertemporal budget
set for the agent is, thus, not affected by a reduction in current taxes -
as long as government expenditures remain the same. Consequently, the
optimal choice is not affected either.
Ricardian equivalence implies that the time path of Bs

t+1 does not affect
the agents choices. You might be tempted to say that the supply of gov-
ernment debt is, thus, not a state variable. It is typically better, however,
not to think too much about these kind of properties in constructing the
set of state variables. Note that the supply of government debt still affect
taxes. More importantly, it is worse to miss a state variable then to have
a state variable in your model that in your particular model doesn’t have
an effect.

Neutrality

Again consider the solutions for c(st), k(st), h(st), λ(st), p (sat ), and q (sat )
that solve the system of equations 2.13 at the exogenously specified values
of the money supply. Now take as given the state variables in period τ and
suppose that you multiply the money supply in each period by a factor
φ > 0 beginning with the beginning-of-period money supply in period τ .
Thus the new money supply fMτ+j = φMτ+j ∀j ≥ 0.4 Then even without
knowing what the particular solutions for this economy look like you can
figure out how this change in the money supply will affect the variables in
this economy. In fact, after the change in money supply the price level will
be equal to the old price level multiplied with a factor φ and other variables
remain the same. That is, ep (esat ) = φp(sat ), ec(st) = c(st), ek(st) = k(st),eh(st) = h(st), and eq (esat ) = q(sat ). It is not hard to see why this is the case.

4Note that we use the equilibrium condition that money demand equals money supply.
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The new solution has to satisfy

eλt = ∂u(ect,elt)
∂ect − ∂u(ect,elt)

∂elt ∂v(ect, emt)

∂ect , (2.14a)

eλt = βE

"eλt+1Ãeθt+1 ∂f(ekt+1,eht+1)
∂ekt+1 + 1− δ

!
|It

#
, (2.14b)

∂u(ect,elt)
∂elt = eλtθt ∂f(ekt,eht)

∂eht (2.14c)

eqteλt
φpt

= βE

" eλt+1
φpt+1

|It

#
, (2.14d)

eλt
φpt

= βE

"Ãeλt+1 − ∂u(ect+1,elt+1)
∂elt+1 ∂v(ect+1, emt+1)

∂ emt+1

!
1

φpt+1
|It

#
, and

(2.14e)ect + ekt+1 + gt = eθtf(ekt,eht) + (1− δ)ekt (2.14f)

where we have already substituted in our guess for ept. It is easy to see that
the factor φ cancels out in each equation and you end up with the same
set of equations as in 2.14 and, thus, with the same solutions.

2.2.4 Steady-State Solution and Superneutrality

In this section we will make use of the following assumption and lemma.

Condition 1 (functional forms) U(ct, lt) = cνt l
1−ν
t , f(kt, ht) = kαt h

1−α
t ,

v(ct,mt) = ξ (ct)
1

1−κ (mt)
−κ
1−κ , 0 < ν < 1, 0 < κ < 1, α > 0,and ξ > 0.

Lemma 2 (equal growth rates) If x = y+z and the growth rates of all
three variables are constant, then the growth rates are equal.

Before analyzing the full stochastic version of a dynamic model it is often
useful to first learn about the properties of the non-stochastic version of
the model. The first step would be to replace the stochastic variables with
their unconditional means. Let the unconditional mean of Ms

t+1/M
s
t be

equal to μ and the unconditional mean of gt be equal to g. Moreover, we
assume without any loss of generality that the unconditional mean of θt is
equal to one and of the unconditional mean of Bt+1 is equal to zero. We
define a stationary state as a solution of the model in which all variables
are constant and a steady state as a solution in which all growth rates are
constant.
Suppose that μ 6= 0. The question arises whether real variables like con-

sumption could have non-zero growth rates in an economy in which the



2.2 Monetary models with infinitely-lived agents ix

growth rate of money is not equal to zero. If the conditions in assump-
tion 2.1 are satisfied, then it is easy to show that such a solution can not
be a steady-state solution. In particular, we continue by showing that in
a steady-state solution all variables except nominal money balances and
prices are constant. The equations for the steady-state version of the com-
petitive equilibrium in 2.13 are given by

λt = ν

µ
ct
lt

¶ν−1
+
1− ν

1− κ

µ
ct
lt

¶ν
ξ(ct/mt)

κ/(1−κ), (2.15a)

1 = β

"
λg

Ã
α

µ
kt
ht

¶α−1
+ 1− δ

!#
, (2.15b)

(1− ν)

µ
ct
lt

¶ν
= λt(1− α)

µ
kt
ht

¶α
, (2.15c)

qt = β

∙
λg
pg

¸
, (2.15d)

1 = β

"
λg
pg
+

1

λtpg

κ(1− ν)

1− κ

µ
ct
lt

¶1−ν
ξ(ct/mt)

1/(1−κ)

#
, and (2.15e)

ct + kt+1 + gt = kαt h
1−α
t + (1− δ)kt, (2.15f)

where xg is equal to xt+1/xt which by definition of a steady state is con-
stant. Since ht + lt + vt = 1 and the right-hand side doesn’t grow, lemma
2.2 implies that the variables on the left-hand side should be constant in a
steady state too. Then 2.15b immediately tells us that kt is constant in a
steady state as well. Furthermore, 2.15f implies that ct is constant which
in turn implies that mt is constant (since vt is constant). If mt is constant,
then the inflation rate has to equal the growth rate of the money supply.
Finally, if mt and ct are constant, then λt and qt are constant as well and
we can rewrite the system of equations in 2.15 as follows.

λ = ν
³c
l

´ν−1
+
1− ν

1− κ

³c
l

´ν
ξ(c/m)κ/(1−κ), (2.16a)

1 = β

"
α

µ
k

h

¶α−1
+ 1− δ

#
, (2.16b)

(1− ν)
³c
l

´ν
= λ(1− α)

µ
k

h

¶α
, (2.16c)

q = β

∙
1

pg

¸
, (2.16d)

1 = β

∙
1

pg
+

1

λpg

κ(1− ν)

1− κ

³c
l

´1−ν
ξ(c/m)1/(1−κ)

¸
, and (2.16e)

c+ g = kαh1−α − δk, (2.16f)
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We will use the system of equations in 2.16 to analyze how variables
change in response to a change in the growth rate of money supply. Recall
that if the amount of real money balances is constant in a steady state,
then the growth rate of money equals the inflation rate.
We say that a model is superneutral if in response to a change in the

steady-state growth rate of money supply (or inflation) real variables except
possibly real money balances and transfers do not change. We exclude
real money balances because in any sensible model, the demand for real
money balances depends negatively on the rate of return on money and is,
thus, inversely related to an increase in the growth rate of money supply.
Similarly a change in real money balances typically changes the level of
real taxes.
To show that this model is superneutral we have to find a subsystem

with which we can solve for c, k, h, and l that does not contain the money
growth rate. For this model this cannot be done, so this model is not
superneutral. To understand why suppose to the contrary that c, k, h, and
l are not affected by a change in μ. If real money balances change, then
equations 2.16a and 2.16c imply that either c, h, or l has to change as
well. If the level of real money balances would remain the same then 2.16e
implies that λ changes which according to 2.16a implies that either c or l
has to change.
The intuition for this lack of superneutrality is the following. Since real

money balances are constant in the steady state, we know that an increase
in the growth rate of money supply corresponds to an equal increase in the
inflation rate. This lowers the real return on holding real money balances
and makes it more expensive to hold money. This plays a role in two sub-
stitution processes. Note that the agent can use real money balances and
shopping time to produce acquisition services. Since real money balances
have become relatively more expensive, the economic agent will substitute
real money balances for shopping time. The increase in shopping time puts
downward pressure on leisure and hours worked. The second substitution
process deals with the two arguments in the agent’s utility function, con-
sumption and leisure. To acquire consumption the agent needs real money
balances but to acquire leisure he doesn’t. The increase in inflation, thus,
increases the price of consumption relative to the price of leisure. The agent
will respond by reducing consumption and increasing leisure. The latter ef-
fect puts downward pressure on labor supply. In this economy we can, thus,
expect an increase in the steady-state growth rate of money and inflation
to reduce economic activity.

2.2.5 Social planner’s problem

In the neoclassical growth model developed in Chapter 1, the allocation
of the competitive equilibrium coincides with the allocation in the so-
cial planner’s problem and the competitive equilibrium allocation is, thus,
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Pareto optimal. In contrast, monetary competitive equilibriums are often
not Pareto optimal. To analyze this issue we specify the first-order con-
ditions for the social planner’s problem and compare those with the ones
obtained above for the competitive equilibrium.5 It is important to distin-
guish between the social planner and the government. The social planner
is a fictitious agent, while the government is the body of institutions that
actually sets monetary and fiscal policy.
The social planner faces the same technology constraints as the agents

in the economy. In particular, the social planner also has to combine real
money balances and shopping time to acquire consumption services. If there
is only one representative agent in the economy then the objective function
of the social planner coincides with that of the representative agent. The
social planner differs from the actual agents in the model in that the social
planner’s budget constraint is the overall budget constraint. The social
planner’s optimization problem is, thus, given by

max⎧⎨⎩ ct+j , ht+j , kt+j+1,
vt+j ,mt+j

⎫⎬⎭
∞

j=0

E

⎡⎣ ∞X
j=0

βju(ct+j , 1− ht+j − vt+j)| It

⎤⎦
s.t. ct+j + kt+1+j + gt+j = θt+jf(kt+j , ht+j) + (1− δ)kt+j

vt+j = v
³
ct+j ,

Mt+j

pt+j

´
kt predetermined

(2.17)

Note that government debt is not included as a choice variable for the social
planner. The reason is that in a model that satisfies Ricardian Equivalence
the choice for government debt doesn’t affect the utility of the agent. Also,
since the pt is not yet determined in period t, period t real money balances
are included as a choice variable for the social planner. The first-order

5The model analyzed in this chapter does not have markets for capital and labor.
One can, however, easily decentralize the model without changing the central argument
of this section.
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conditions for the social planner’s problem are equal to

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.18a)

λt = βE
∙
λt+1

µ
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

¶
|It
¸
, (2.18b)

∂u(ct, lt)

∂lt
=

∂u(ct, lt)

∂ct
θt
∂f(kt, ht)

∂ht
, (2.18c)

∂u(ct, lt)

∂lt

∂v(ct,mt)

∂mt
= 0, (2.18d)

ct + kt+1 + gt = θtf(kt, ht) + (1− δ)kt, and (2.18e)

lim
J→∞

E
h
βJ−1λJkJ+1|It

i
= 0. (2.18f)

When we compare the equations in 2.18 with the equations in 2.13 then
we see that all equations are the same except the first-order condition for
money. The social planner’s first-order conditions indicate that the agent
should be completely satiated with real money balances at the optimum
since it doesn’t cost the social planner anything to increase the level of real
money balances.6 The individual typically would not pick such a large num-
ber of real money balances since for every unit of real money balances held
he has to pay the opportunity costs, that is, he foregoes interest payments
that he could have earned on bond purchases. There are circumstances
when the competitive equilibrium does coincide with the social planner’s
problem. A necessary condition would be that the interest rate is equal to
zero in each period (or qt is equal to one). In that case the opportunity
costs of holding money would be equal to zero for the individual agent as
well.

Implications for steady-state inflation

If the interest rate is equal to zero then the steady-state inflation rate π =
pt+1/pt− 1 is equal to β− 1, which equals (approximately) the negative of
the discount rate. This is the famous “Chicago Rule”.7 To understand this
optimality result a little bit better recall that the agent uses real money
balances and shopping time to produce acquisition services. From the in-
dividual’s point of view both real money balances and shopping time are
costly inputs. From the social planner’s point of view, however, real money
balances are free and shopping time is costly. Only if the nominal inter-
est rate is equal to zero are the (opportunity) costs of holding real money
balances for the individual also equal to zero.

6Note that the level of real money balances that satisfies equation 2.18d is infinite.
7 See, for example, Friedman (1969).
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2.2.6 Cash-in-Advance Models

In this section we consider a special case of the shopping-time technology
described above. In particular, if we assume that ξ = 1 and κ = 1, then
shopping time is not productive in acquiring consumption and for every
additional dollar of consumption you have to hold one additional dollar of
your wealth in the form of money. In addition, we assume that any increase
in the money supply during period t can be used to acquire consumption
commodities. That is, we have the following constraint.

ct ≤
Mt + (M

s
t+1 −Ms

t )

pt

Before we write down the optimization problem of the agent, it might
be useful to give an intuitive description of the sequence of events in each
period. At the beginning of the period, the agents observe the realiza-
tions of θt and εMt . Using beginning-of-period nominal money holdings and
any possible money transfer received from the government the agent buys
consumption. After shopping the agent returns to the household with the
remainder of his money balances, Mt + (M

s
t+1 −Ms

t ) − ptct ≥ 0. At this
point the agent decides how much labor to supply and how much to invest
in capital, one-period bonds, and money holdings.
The agent’s optimization problem in the cash-in-advance economy is

given by

max
{Ct+j ,ht+j ,kt+j+1,Mt+j+1,Bt+j+1}∞j=0

E

⎡⎣ ∞X
j=0

βju(ct+j , 1− ht)| It

⎤⎦

s.t. kt+1+j +
Mt+1+j

pt+j
+ qt+j

Bt+1+j
pt+j

+ τ t+j = θt+jf(kt+j , ht+j)

+(1− δ)kt+j +
³
Mt+j+(M

s
t+j+1−Ms

t+j)

pt+j
− ct+j

´
+

Bt+j
pt+j

ct+j ≤
Mt+j+(M

s
t+j+1−Ms

t+j)

pt+j

kt,Mt, and Bt predetermined

(2.19)

The first-order conditions for this problem are given by
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∂u(ct, lt)

∂ct
= λt + ηt, (2.20a)

λt = βE
∙
λt+1

µ
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

¶
|It
¸
, (2.20b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
(2.20c)

qtλt
pt

= βE
∙
λt+1
pt+1

|It
¸
, (2.20d)

λt
pt
= βE

∙
λt+1 + ηt+1

pt+1
|It
¸
, (2.20e)

kt+1 +
Mt+1

pt
+ qt

Bt+1

pt
+ τ t = θtf(kt, ht)+ (2.20f)

(1− δ)kt +

µ
Mt + (M

s
t+1 −Ms

t )

pt
− ct

¶
+

Bt

pt
,

ct ≤
Mt + (M

s
t+1 −Ms

t )

pt
, (2.20g)

ηt

µ
Mt − (Ms

t+1 −Ms
t )

pt
− ct

¶
= 0 (2.20h)

ηt ≥ 0 (2.20i)

lim
J→∞

βJ−1E [λJkJ+1|It] = 0, (2.20j)

lim
J→∞

βJ−1E
∙
qJ

λJ
pJ

BJ+1|It
¸
= 0 and (2.20k)

lim
J→∞

βJ−1E
∙
λJ
pJ

MJ+1|It
¸
= 0, (2.20l)

Note that the Lagrange multiplier corresponding to the cash-in-advance
constraint,ηt, is equal to zero if consumption is strictly less than the amount
of real money balances.8 As in the shopping-time model, the marginal util-
ity of consumption exceeds the marginal utility of wealth. Since the increase
of money is now given directly to the shopper, the amount of taxes is given
by

τ t = gt −
qtB

s
t+1 −Bs

t

pt
. (2.21)

8Strictly speaking we would have to also add the constraint that λt ≥ 0 but this
non-negativity constraint is never binding for regular functional form specifications.
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A competitive equilibrium consist of solutions for ct, ht, kt+1, Mt+1, Bt+1,
τ t, λt, ηt, pt, and qt that satisfy the equations in 2.20 and 2.21 and the
following two equilibrium conditions.

Mt+1 = Ms
t+1 and (2.22)

Bt+1 = Bs
t+1. (2.23)

If we combine equations 2.20a, 2.20d, and 2.20e then we get

qtEt
1

pt+1

∂u(ct+1, lt+1)

∂ct+1
= Et

∙
β

pt+2

∂u(ct+2, lt+2)

∂ct+2

¸
.

This first-order equation for bonds is very similar to the first-order equation
for bonds in a model without a cash-in-advance constraint. The difference
is that there is a shift in timing. The reason is that if there was no cash-
in-advance constraint buying a dollar worth of bonds means reducing con-
sumption with 1/pt units, the value of which is equal to (∂U(ct, lt)/∂ct)/pt.
In a cash-in-advance economy buying one dollar worth of bonds means giv-
ing up one dollar of money holdings in this period and this means giving
up consumption in the next period.
Note that in period t the agent chooses Mt+1, which he needs to buy

consumption in period t + 1. Ideally he wouldn’t want to hold anymore
money balances than is absolutely necessary since on money balances he
doesn’t earn any interest and on bonds he does. However, the economic
agent doesn’t know yet the value of pt+1 and the optimal choice for ct+1
when he has to choose Mt+1 So it seems logical that the cash-in-advance
constraint is not always binding. For example, if productivity is unexpect-
edly low in period t then you would expect that the agent would like to
consume less than originally planned and have less nominal money balances
than needed. Similarly, when the amount of money supply is exceptionally
high then you would expect the agent to have excess money balances. Al-
though this intuition would definitely be correct if prices are exogenous, it
turns out that this intuition ignores the endogenous response of equilibrium
price levels to these kind of shocks.
To understand the last statement better we will consider a version of the

cash-in-advance economy developed in this section in which the constraint
turns out to be always binding in equilibrium. In particular, suppose that
the following assumption holds.

• U (ct, lt) = ln (ct) + δ ln(lt),

• Ms
t /M

s
t+1 < 1/β ∀t, and

• S = supmt/ct <∞.

The condition that Ms
t /M

s
t+1 < 1/β is very weak and even allows for

a negative growth rate of money supply as long as it isn’t too negative.
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The condition that supmt/ct <∞ rules out irregular cases. The following
proposition shows that under this condition the cash-in-advance constraint
is binding in every period.

Proposition 3 If Condition 4 holds then ηt > 0 ∀t.
Proof. Define St as mt/ct. Suppose to the contrary that there are states

of nature such that the constraint is not binding. Consider a state of nature
such that Sτ = S−ετ , with ετ ≥ 0 and ητ = 0. Since S equals supSt we can
choose ετ to be arbitrarily small. Intuitively, we focus on the state where
the constraint is least binding, i.e. mt/ct is the highest. The sup is used
since the max may not exist. Note, it may be possible that Sτ = 1. Since
ητ = 0 we have

λτ
pτ
=

1

pτcτ
.

Combining this equation with 2.20a and 2.20e gives

λτ
pτ
= βE

∙
λτ+1 + ητ+1

pτ+1
|Iτ
¸
= βE

∙
1

pτ+1cτ+1
|Iτ
¸

(2.24)

or

1 = βE
∙

pτcτ
pτ+1cτ+1

|Iτ
¸
. (2.25)

Thus

1 = βE

∙
Mτ/Sτ

Mτ+1/Sτ+1
|Iτ
¸
= βE

∙
Mτ

Mτ+1

Sτ+1
S − ετ

|Iτ
¸
≤ βE

∙
Mτ

Mτ+1
|Iτ
¸
,

where the inequality follows from the definition of S. But the assump-
tion made about money growth contradicts that 1 ≤ βE [Mt/Mt+1|It] =
βMt/Mt+1.

2.3 Overlapping-Generations Models

In the type of models developed in the last section, agents hold money
because it is either assumed that real money balances are an essential
input to obtain consumption or it is assumed that holding wealth in the
form of money gives utility that other forms of wealth do not provide. In
such models money always has value. In the modern age we use paper
money, which except for those that use cocaine, has no intrinsic value;
Money only has value because other agents are willing to accept money
in exchange for commodities that do have intrinsic value. If you do not
expect other agents to accept money, the rational thing for you to do is not
to accept money either. Such an equilibrium does not exist in MIU models
and this is a drawback of these type of models. In this section, we consider
overlapping-generations or OLG models in which equilibria where money
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has positive value may occur but the case where money is not valued is
always an equilibrium too.
An important concept in studying overlapping-generations model is the

idea of overaccumulation of capital. In Section 2.3.1, we will show this can
never happen in the model of Chapter 1 with infinitely-lived agents. In
Section 2.3.2, we lay out the basic overlapping-generations model, and in
the last section we consider monetary equilibria in overlapping-generations
models.

2.3.1 Overaccumulation of Capital in Infinite-Horizon Models

Consider again the non-stochastic version of the model developed in Chap-
ter 1.

max{ct,kt+1}∞t=1
P∞

t=1 β
t−1 ln(ct)

s.t. ct + kt+1 ≤ kαt + (1− δ)kt
kt+1 ≥ 0
k1 = k

(2.26)

We have adopted a logarithmic current-period utility function but the re-
sults in this section are true for more general utility functions as well. The
first-order condition for this problem is given by

(kαt + (1− δ)kt − kt+1)
−1 =

= β
h¡
kαt+1 + (1− δ)kt+1 − kt+2

¢−1 ©
αkα−1t+1 + 1− δ

ªi (2.27)

and the expression for the steady-state value for capital, kss, is the follow-
ing:

kss =

µ
1− β(1− δ)

αβ

¶ 1
α−1

(2.28)

It can be shown that the time path of capital that is the solution to 2.26
converges to kss. Now consider the following static maximization problem:

max{c,k} ln(c)
s.t. c+ k ≤ kα + (1− δ)k

(2.29)

Note that this problem chooses the constant or steady-state values of capital
and consumption with which the agent would obtain the highest possible
current-period utility level, which of course correspond to choosing the
highest possible (constant) consumption value. The first-order condition
for this problem is

αkα−1 − δ = 0

and the capital stock that solves this problem is called the golden-rule
capital stock and is equal to

kgr =

µ
δ

α

¶ 1
α−1

. (2.30)
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Whenever the capital stock is bigger than the golden-rule capital stock
then the marginal productivity of capital is less than the depreciation rate,
that is, the net return on capital is negative. It is important to understand
that the maximization problem in 2.29 is only introduced to introduce
the concept of overaccumulation of capital and to understand the actual
optimization problem in 2.26 better. We are not saying that 2.29 actually
is relevant for any agent’s behavior.
For any positive initial capital stock, capital will converge monotonically

towards kss. Thus, if k1 > kss then k1 > k2 > k3 > · · · > kss and if
k1 < kss then k1 < k2 < k3 < · · · < kss. Now suppose that k1 6= kss

and consider the time path for capital such that kt = k1 for t = 2, 3, · · · .9
One way to prove that this investment plan is not optimal is to show that
it doesn’t satisfy 2.27. But when k1 > kgr there is also a very intuitive
reason why you would never want to keep capital constant at the initial
level. The reason is that by setting kt = kgr < k1 for k = 2, 3, · · · the
agent would have both a higher consumption level in period 1, since his
investment level is smaller, and a higher consumption level thereafter since
the highest possible steady-state consumption level is associated with kgr.
It is probably worthwhile to think through why setting kt = k1 for

t = 2, 3, · · · is also not optimal when k1 = kgr. You might think that this
capital path is optimal since it has the highest possible level of steady-state
consumption and you don’t have to make any additional net investment to
get to this high level of capital. If the agent chooses a capital path that con-
verges towards kss then his consumption level will converge towards a level
that is lower than the consumption level associated with the golden-state
capital stock. By lowering the capital stock below kss, however, the agent
can at least initially enjoy a consumption level that exceeds the golden-rule
consumption level which is more important than a lower consumption level
in the limit because of discounting.10

2.3.2 Non-Monetary Overlapping-Generations Models

In this section, we will develop a very simple overlapping-generations model
in which each agent lives for exactly two periods. That is, in every period t
a generation of “young” agents is born. In period t+1 the generation born
in period t becomes “old” and a new generation of young agents is born.
We will start by formulating the basic model and discuss Pareto optimality
and overaccumulation of capital in non-monetary overlapping-generations
models. This discussion will be useful in the next section where we discuss
monetary overlapping-generations models.

9This will be feasible as long as k1 < δ1/(α−1), which exceeds kgr as long as α < 1.
10Note that if β = 1 the golden-rule capital stock coincides with the steady-state

capital stock of the infinite-horizon optimization problem.
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The basic OLG model

We will start with an OLG model without population growth11 in which
each young agent is endowed with one unit of the consumption commodity.
The optimization problem of a young agent would then be the following:

max
cyt ,c

o
t+1,st+1

U(cyt , c
o
t+1)

s.t. cyt + st+1 = 1,
cot+1 = (1 + rt+1)st+1,

(2.31)

where cyt is the consumption of the young in period t, c
o
t+1 is the consump-

tion of the old in period t + 1, st+1. The amount saved by the young in
period t, and rt+1 is the rate of return on savings made in period t. Let
v(cyt , c

o
t+1) denote the marginal rate of substitution. That is

v(cyt , c
o
t+1) =

∂U(cyt , c
o
t+1)/∂c

y
t

∂U(cyt , c
o
t+1)/∂c

o
t+1

.

As stated in the following assumption, we assume that the utility function
has standard properties.

• ∂U(cyt , c
o
t+1)/∂c

y
t ) > 0, ∂U(c

y
t , c

o
t+1)/∂c

o
t+1 > 0,

• Both consumption commodities are normal goods,

• v(cyt , c
o
t+1) is continuous,

• lim
cyt→0

v(cyt , c
o
t+1) =∞, and

• lim
cot+1→0

v(cyt , c
o
t+1) = 0.

The first-order condition for this problem is given by

∂U(cyt , c
o
t+1)

cyt
=

∂U(cyt , c
o
t+1)

cot+1
(1 + rt+1). (2.32)

First, consider the case where there is no storage technology. This implies
that there is no possibility for the young to save for old age at all. It is
important to understand that the presence of a bond market wouldn’t help.
All young agents want to buy bonds so the young cannot buy from other
young. For sure, some sneaky old guys would be willing to sell bonds to the
young, but the young wouldn’t be willing to buy from the old because the
old won’t be around to pay back when the bonds mature. In equilibrium
agents, thus, cannot save and the equilibrium allocation for consumption
is one unit when young and zero when old. Such a competitive equilibrium
in which no trade occurs is called autarky.

11Because there is no population growth, the number of young agents is equal to the
number of old agents.
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Optimality of the competitive equilibrium

The autarky equilibrium is clearly not a Pareto optimum for regular utility
functions.12 To see why note that the young clearly would be willing to give
up ε units of consumption when young for ε units of consumption when old
when ε is small.13 It doesn’t happen in a competitive equilibrium, however,
because there is no storage and no bond market that can implement this
trade. But this transfer is feasible for this economy. In particular, it simply
requires taking ε units of the young each period and giving them to the
old. The current young then give up ε this period and will receive ε when
old from the next generation. Moreover, implementation of such a transfer
would generate an additional bonus for this economy since in the period of
the initial transfer there are an extra ε units available. They either could
be given to the old, who didn’t give up any commodities when young, or
to the young, who already receive ε units when old, or they could divide
the ε units.
A classic article on overlapping generations is Shell (1971). In this article

the author makes clear that the competitive equilibrium in this type of
overlapping-generations model is not Pareto optimal because of a double
infinity. That is, an infinite number of dated commodities and an infinite
number of (finite-lived) individuals. Note that if the economy would end
in period T then the transfer scheme would not be Pareto improving since
the young born in period T would be made worse off.
Now suppose that there is a storage technology available. In particular,

suppose that each unit stored when young in period t gives 1 + r units
of consumption when old with 1 + r > 0. There will still be no trade
between agents in the competitive equilibrium. But by putting commodities
in storage when young, the consumption when old will be positive. Note
that agents in this economy would want to save even when r < 0. Whenever
r < 0, however, the competitive equilibrium is not Pareto optimal. Suppose
that the young save ξ units when young when the rate of return on savings
is negative. Clearly everybody would be better off if a transfer scheme
would be implemented where the young give ξ units to the old each period.
Under this transfer scheme the young will receive ξ units when old, which
is larger than (1 + r)ξ units, the amount they earn by using the private
storage technology.

Overaccumulation of capital

The competitive equilibrium described above with r < 0 is similar to the
overaccumulation of capital case describe in Section 2.3.1. In both cases

12Note that the marginal utility of consumption when old would be infinite in autarky
for regular utility functions.
13For regular utility functions the argument would go through as long as ε isn’t too

large. The value of ε clearly doesn’t have to be close to zero.
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the net return on capital is less than zero. The big difference, however,
is that in an overlapping-generations model overaccumulation of capital
might actually occur in equilibrium, while in the model of Chapter 1 with
infinitely-lived agents it never does. The possibility of overaccumulation of
capital in the OLG model described above is not due to the fact that the
rate of return is fixed. You might think that in a model with a variable
marginal product of capital, agents that are faced with a negative rate of
return on capital would lower the capital stock and increase the marginal
rate of return on savings until it becomes positive. We will now show that
this is not necessarily the case. Suppose the optimization of the young is
given by

max
cyt ,c

o
t+1,kt+1

U(cyt , c
o
t+1)

s.t. cyt + kt+1 = 1
cot+1 = kαt+1 + (1− δ)kt+1

(2.33)

where kt+1 is the capital investment of the young in period t. The first-order
condition for this problem is given by

∂U(cyt , c
o
t+1)

∂cyt
=

∂U(cyt , c
o
t+1)

∂cot+1

¡
αkα−1t+1 + 1− δ

¢
. (2.34)

Now let’s compare the stationary-state version of this equation

∂U(cy, co)

∂cy
=

∂U(cy, co)

∂co
¡
αkα−1 + 1− δ

¢
(2.35)

with the stationary-state version of the first-order equation of the model in
Section 2.3.1

∂U(c)

∂c
=
¡
αkα−1 + 1− δ

¢
β
∂U(c)

∂c
or (2.36)

1 =
¡
αkα−1 + 1− δ

¢
β. (2.37)

In the model with infinitely-lived agents, the value of ∂U(ct)/∂ct is equal
to ∂U(ct+1)/∂ct+1 in a stationary state. This ensures that the stationary-
state capital stock is less than the golden-rule capital stock for any utility
function. In an overlapping-generations model it is not true in general that
∂U(cyt , c

o
t+1)/∂c

y
t equals ∂U(cyt , c

o
t+1)/∂c

o
t+1. This is even true when the

utility function would be additively separable, that is when U(cyt , c
o
t+1) =

u(cyt ) + βu(cot+1), since c
y
t does not have to be equal to c

o
t+1.

14

Population growth

Above, we mentioned that investing in the storage technology is like overac-
cumulation when the net return, r, is less than zero. If population growth,

14See exercise 2.2.
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n, is not equal to zero, then we have to tighten this statement. In the pres-
ence of population growth using the storage technology is a silly thing to
do whenever r < n and we say that an economy with positive investment
levels when r < n is characterized by overaccumulation of capital. More
formally, any competitive equilibrium in which agents save at a rate r < n
is not Pareto optimal. The reason is that by using transfers from the young
to the old instead of the young saving for their old age themselves, one can
make at least one generation better off while making no other generation
worse off. Note that the transfer scheme is more attractive when n > 0,
which means that overaccumulation of capital is more likely to happen with
positive population growth.

2.3.3 Monetary Overlapping-Generations Models15

In this section we will introduce fiat-money into the model. In contrast to
the money-in-the-utility and cash-in-advance models considered in Section
2.2, monetary OLG models do not rely on the assumption that money has
intrinsic value or is a necessary input to acquire consumption. Agents are
only willing to accept money for commodities, because they expect other
agents in turn to accept money for commodities. Unlike the models in 2.2,
therefore, overlapping-generations models with fiat money typically have an
equilibrium in which money has no value. That is, if agents expect other
agents not to accept money, they will not accept it either. This immediately
implies that if money is know not to have value at any future date T , it
will have no value at any date before T either. We will start considering
the economy without storage and then continue by analyzing the case with
storage.
Again, we will consider population growth. The population grows at rate

n and without loss of generality, we assume that N0 = 1. Thus,

Nt = (1 + n)t.

An OLG model with money and without storage

Let Md
t be the demand for end-of-period nominal units of money. As in

2.31 we assume that the young obtain an endowment of one unit. The
fraction of the unit that the young don’t consume, 1− cyt , they can sell at
a price pt in exchange for money. End-of-period t nominal money balances,
therefore, are equal to pt(1−cyt ). In the next period, t+1, the young will be
the old and they can use these money balances together with a monetary
lump-sum transfer from the government, Tt+1, to buy consumption cot+1.

15 Several of the results in this section are from Wallis (1980).
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The optimization problem of the young born in period t is thus given by

max
cyt ,c

o
t+1,M

d
t

u(cyt , c
o
t+1)

s.t. Md
t = pt(1− cyt )

pt+1c
o
t+1 =Md

t + Tt+1

(2.38)

The first-order conditions for this problem consist of the two budget con-
straints and the following Euler equation:

∂u(cyt , c
o
t+1)

∂cyt
=

∂u(cyt , c
o
t+1)

∂cot+1

pt
pt+1

(2.39)

In period t there are Nt−1 old agents and the transfer they get is equal
to Tt. This is financed out of the increase in the aggregate money supply,
Ms

t −Ms
t−1.

16 The budget constraint of the government specifies that the
increase in nominal money balances is equal to the monetary transfer. That
is,

Ms
t −Ms

t−1 = (1 + n)t−1Tt. (2.40)

The equilibrium condition that aggregate money supply is equal to ag-
gregate money demand can then be written as

Ms
t = (1 + n)tMd

t . (2.41)

Note that this equilibrium on the money market implies equilibrium on the
commodities market. That is

(1 + n)tcyt + (1 + n)t−1cot = (1 + n)t × 1 or (2.42)

(1 + n)cyt + cot = (1 + n)× 1 (2.43)

This is, of course, a version of Walras Law. That is, if the young agents
demand all the units of nominal money in the possession of the old agents,
then the amount of commodities saved by the young got to be equal to the
consumption of the old.
If we assume that money supply grows at a constant rate μ and popula-

tion grows at rate n then the equilibrium condition can be written as

(1 + μ)tMs
0 = (1 + n)tMd

t . (2.44)

Before we analyze a monetary equilibrium, that is, an equilibrium in
which money has value we want to repeat the point made in the introduc-
tion that this model does have an equilibrium in which money has no value,

16Note thatMs
t is aggregate money supply and M

d
t is individual money demand. Both

are end-of-period t quantities.
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that is, an equilibrium in which the price level is infinite. In that case, the
young would consume their endowment and the old would consume noth-
ing.
Next we will analyze a steady-state solution of the model, that is, we

assume that pt/pt+1=pt+1/pt+2.17 From 2.38 and 2.40 it follows that real
money demand, Lt = Mt/pt, is a function of just the inflation rate. In a
steady state, this means that Lt=L(pt/pt+1)=L(pt+1/pt+2) = Lt+1. Com-
bining this with the equilibrium condition and the law of motion for money
supply gives

1 =
Lt
Lt+1

=
Md

t /pt
Md

t+1/pt+1
=

(1+μ)tMs
0

(1+n)t

(1+μ)t+1Ms
0

(1+n)t+1

pt+1
pt

=
(1 + n)

(1 + μ)

pt+1
pt

(2.45)

This implies that in a steady state

pt
pt+1

=
1 + n

1 + μ
. (2.46)

In Figure 2.1, we have graphically represented a steady-state monetary
equilibrium for the case when u > 0.18 The graph plots the agent’s budget
constraint that represents the possible choices of the consumption when
young, cyt , and the consumption when old of the same generation, c

o
t+1,

which has a slope of −pt/pt+1 and the societies budget constraint that
represents the possible choices of the consumption of the young, cyt , and the
consumption of the old in the same period, cot , which has a slope of −(1+n).
We can plot both in the same graph, since in the steady state consumption
levels are constant. Optimizing behavior implies that the agent chooses
an element on his intertemporal budget constraint that is tangent to an
indifference curve. At the equilibrium price level this point is feasible, that
is, is an element of society’s budget constraint. Note that a change in the
price level adjusts the real value of the transfer that the old receive. Suppose
that the agent’s optimal demand for consumption when young and when
old is above society’s budget constraint. In that case the price level is
too low. An increase in the price level will reduce the value of Tt+1/pt.
This will cause the budget constraint to shift downward and (for regular
preferences) decrease the demand for consumption. Figure 2.2 plots the
monetary equilibrium for the case when u < 0. Note that in this case the
old have to pay a monetary tax.

17Unlike the models discussed in Chapter 1 and 2.2, this model could reach the steady
state instantaneously.
18Without further restrictions it may very well be the case that other equilibria exist

as well even with the growth rate of money supply being constant.
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FIGURE 2.1. Monetary equilibrium with μ > 0
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FIGURE 2.2. Monetary equilibrium with μ < 0
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Social planner’s problem
Formulating the social planner’s problem is a little bit trickier in an

OLG model than in the model with an infinitely-lived representative agent,
since in an OLG model there are different types of agents and we have to
address the issue how to formulate the social planner’s objective function.
One natural choice would be to give each generation equal weight. In that
case the social planner’s problem can be written as follows:19

max
{cyt ,cot}∞t=1

u(cy0, c
o
1) +

P∞
t=1 u(c

y
t , c

o
t+1)

s.t. (1 + n)cyt + cot = 1 + n
(2.47)

The Euler equation for this problem is given by

(1 + n)
∂u(cyt−1, c

o
t )

∂cot
=

∂u(cyt , c
o
t+1)

∂cyt
. (2.48)

It is important to realize that besides this particular social planner’s so-
lution, there are many other Pareto optimal allocation. When we restrict
ourselves to allocations that are constant over time, we can be a little bit
more specific. Let bcy and bco be the steady-state values of consumption that
solve 2.48 and society’s budget constraint.. All feasible allocations with
co ≥ bco would be Parteto optimal allocations. Lowering co to bco would
make the current old strictly worse off. In contrast, any feasible allocation
with co ≤ bco and cy ≥ bcy would not be Pareto optimal, since one can
make the current young as well as future generations better of by reducing
the value of consumption when young to bcy and raising their consumption
when old to bco. In the first-period, the reduction of the consumption of the
young can be allocated to make, for example, also the current old better
off. We will use this property below.
Note that in the social planner’s problem the optimality condition equates

the marginal utility of cyt with the marginal utility of c
o
t (appropriately

weighted with the population growth rate), while the optimality condition
for the individual’s problem equates the marginal utility of cyt with the
marginal utility of cot+1 (appropriately weighted with the inflation rate).
When we focus on steady-state solutions, however, the timing difference
doesn’t matter and we can compare the social planner’s solution with the
solution of the competitive equilibrium. In particular, the allocation in the
monetary competitive equilibrium coincides with the social planner’s solu-
tion if the first-order condition and the budget constraint coincide, which
happens if

pt
pt+1

= (1 + n). (2.49)

19Note that cy0 is taken as given in the optimization problem.
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Since 1+μ = (1+n)pt+1/pt, the allocation of the competitive equilibrium
coincides with the social planner’s solution if μ = 0. The optimal (gross)
rate rate of inflation in this model is, thus, equal to 1/(1 + n). You might
think that this optimal rate of inflation differs in an important way from
the Chicago rule which stipulates a steady-state deflation rate equal to the
rate of time preference. This is not the case, however. The idea behind the
Chicago rule is that agents should not economize on holding real money
balances, which requires a rate of return on real money balances that is
equal to the rate of return on alternative assets, i.e., bonds. In the model
of Section 2.2 with infinitely-lived agents, the steady-state rate of return on
bonds is equal to the rate of time preference and optimality then requires a
deflation rate equal to the rate of time preference. Here a similar condition
holds. That is, the rate of return on money has to equal society’s rate of
return, which is equal to the population growth rate.
The allocation in the monetary equilibrium is Pareto optimal when μ =

0. The following proposition establishes the results for the case when μ 6= 0.

Proposition 4 If μ > 0 the steady-state monetary equilibrium is not Pareto
optimal and if μ ≤ 0 the steady-state monetary equilibrium is Pareto opti-
mal.

The proof of this proposition is fairly intuitive. First consider the case
when μ > 0, which is graphically documented in Figure 2.1. Start with
the case in which μ = 0 and the budget constraint of the individual, thus,
coincides with the budget constraint of the population. Now move towards a
situation with μ > 0. Then two things happen with the budget constraint.
First, there is an upward shift in the budget constraint because of the
positive nominal transfer to the old. Second, the relative price of cy falls,
since at the higher inflation rate, the real rate of return is lower. Under the
assumptions made on preferences this means that the optimal demand for
consumption when young should increase. Consequently, when we compare
the situation at μ > 0 with how it was at u = 0, then the value of cy will be
higher than bcy and the value of co less than bco. From the discussion above
we know that this is not a Pareto optimal allocation. For the case where
μ < 0, the same reasoning can be used to show that the value of cy will be
less than bcy and the value of co more than bco. From the discussion above,
we know that these are Pareto efficient.
The ideas can be summarizes as follows. Figure 2.3 gives the graphical

representation of the social planner problem. The points with co < bco are
not optimal because you can move directly to the optimal combination ofbcy and bco and the current old would not mind since their consumption
increases. The points with co > bco, however, are Pareto optimal. Although
the young would like to move towards the optimal combination, it would
require lowering consumption of the current old. The discussion in the last
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FIGURE 2.3. Steady state of social planner problem

paragraph makes clear that co < bco, when μ > 0 and that co > bco when
μ < 0.

OLG model with money and storage

The following proposition from Wallace (1980) gives the necessary and
sufficient conditions for the existence of a monetary equilibrium.20

Proposition 5 (existence of monetary equilibrium) At least one mon-
etary equilibrium exist if and only if (1 + n)/(1 + μ) ≥ 1 + r.

20Note that the conditions are trivially satisfied if there is no storage technology, that
is, when r = −1.
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Proof. To proof the necessity part assume to the contrary that (1+r)(1+
μ) > (1 + n). Then

pt
pt+1

=
Ms
t+1

(1+μ)Ms
t

pt
pt+1

=
(1+n)Md

t+1

(1+μ)Md
t

pt
pt+1

=
(1+n)mt+1

(1+u)mt
≥ 1 + r

(2.50)

where the inequality follows from the fact that for agents to value money,
the return on holding money has to be at least as big as the return on the
alternative investment. Thus,

mt+1

mt
≥ (1 + r) (1 + μ)

(1 + n)

Combining this with the assumption that (1 + r)(1 + μ) > (1 + n) gives
that mt+1/mt > 1 or that real money balances are unbounded. This is
impossible, however, since from the budget constraint of the young we know
that real money balances are less than 1.
Proof. That the condition is sufficient can be shown by constructing a

steady-state monetary equilibrium. The agent’s first-order condition can be
written as

v(cyt , c
o
t+1) =

pt
pt+1

or (2.51)

v(1−mt,mt+1(1 + n)) =
mt+1

mt

1 + n

1 + μ
. (2.52)

It is enough to show that a constant value m = mt ∀t exists such that (i)
m ∈ (0, 1), (ii) m satisfies 2.52, and (iii) the return on money exceeds the
return on storage. That is,

mt+1

mt

1 + n

1 + υ
≥ 1 + r. (2.53)

This inequality follows directly from the assumption made. Moreover, from
the assumption made on the utility function it follows directly that v(1 −
m,m(1 + n)) is strictly increasing increasing in m, converges to zero as m
goes to zero and goes to infinity as m goes to one.

When we consider the expression for steady-state inflation in 2.46 then
the condition of the proposition is very intuitive, since it says that the
(steady state) rate of return of investing in money investment must be
at least as big as the return on the storage technology. The proposition
extends this intuition to the more general case.
We will now discuss the optimality of monetary and non-monetary equi-

libria in a little bit more detail and distinguish between the case where
n > r and the case where n < r.
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Monetary equilibria when n>r

In this case, a non-monetary equilibrium clearly is not Pareto optimal.
If the economy would start using money it can switch to a steady-state
allocation that is strictly preferred by at least one generation, since the
society’s budget set contains the budget set that is generated by the storage
technology. Suppose that n > r and that a monetary equilibrium exits. The
monetary equilibrium will be Pareto optimal when μ ≤ 0, and will not be
Pareto optimal when μ > 0. Since in this case the storage technology is
not used, it really is the same case as the one without storage, which is
covered in Proposition 4. When n > r monetary equilibria can, thus, be
both Pareto optimal and not Pareto optimal.

Monetary equilibria when n<r

In this case, a non-monetary equilibrium clearly is Pareto optimal. Inter-
estingly, a monetary equilibrium–if it exists–is also Pareto optimal.
When n < r, a monetary equilibrium cannot exist when u > 0. This

result is fairly intuitive. The steady-state gross rate of return on money
is equal to (1 + n)/(1 + u), which can never be bigger than the return on
storage when μ > 0 and r > n. But a monetary equilibrium can still exist
when μ ≤ 0. One such equilibrium is represented in Figure 2.4. Note that in
the monetary equilibrium the storage technology is not used. Even though
the allocation in the monetary equilibrium is on society’s budget constraint,
which is below the constraint when the economy would use storage, it can
be shown that the allocation in the monetary equilibrium is Pareto optimal.
The reason is that this economy cannot switch from an economy that uses
money to save for old age to an economy that uses storage to save without
hurting the generation of the current old, since they are relying on the
young to support them.21 It clearly would have been better if this economy
never would have ended up in a monetary equilibrium but given that it
did, it cannot start using the more favorable storage technology without
hurting some generation.
Note that there is no incentive for individuals to switch to storage either.

In this monetary equilibrium the old will be taxed Tt+1/pt+1 in period t+1
whether they use storage or not. Therefore, the consumption of the old
when money is used is higher than the consumption of the old when storage
is used, that is, (pt/pt+1)(1− cyt )+Tt+1/pt+1 > (1+ r)(1− cyt )+Tt+1/pt+1
for any level of cyt .

21The proof is in Wallace (1980). It is actually not trivial. For example, you might
think that if r is high enough, then the current young can give the current old co,t+1
and simply invest the remainder at r. If r is high enough then the young should still
be better off. The flaw in this reasoning is that for such a high r you are violating the
condition of the existence of a monetary equilibrium.
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FIGURE 2.4. Pareto Optimal Monetary Equilibrium with r > n.
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2.4 Exercises

Exercise 2.1: Consider the cash-in-advance economy characterized by the
following optimization problem

max⎧⎨⎩ ct+j , ht+j, kt+1+j,
Mt+1+j

⎫⎬⎭
∞

j=0

E

⎡⎣ ∞X
j=0

βju(ct+j , 1− ht)| It

⎤⎦
s.t. kt+1+j +

Mt+1+j

pt+j
+ τ t+j = θt+jf(kt+j , ht+j)

+(1− δ)kt+j +
³
Mt+j+(M

s
t+j+1−Ms

t+j)

pt+j
− ct+j

´
ct+j ≤

Mt+j+(M
s
t+j+1−Ms

t+j)

pt+j

kt and Mt predetermined

(2.54)

and the following equilibrium condition

Mt+1 =Ms
t+1. (2.55)

Let
μt =Ms

t /M
s
t+1. (2.56)

The purpose of this question is to show that if we add more noise to the
money supply, but keep expected money growth rates the same, only the
solution for prices changes. That is, in this cash-in-advance economy, money
only has real effects if it changes the expected growth rate of money. In
particular, suppose that we introduce a new process for the money growth
rate μt = μtεt, where εt is a random variables with mean equal to one and
independent of θt and μt. Thus, Eμt =Eμt. First, conjecture what prices
are under the new law of motion for the money growth rate relative to old
prices. Second, show that consumption, capital, and labor supply are not
affected.
Exercise 2.2: Consider the optimization problem in 2.26 and consider

the constant time path for capital kt = k where kss < k < kgr. Show that
this time path for capital is not optimal by showing that the agent can
increase his life-time utility by reducing his capital stock permanently with
ε units.

Exercise 2.3: Suppose that the optimization of the young is given by

max
cyt ,c

o
t+1,kt+1

u(cyt ) + βu(cot+1)

s.t. cyt + kt+1 = τ
cot+1 = kαt+1 + (1− δ)kt+1

(2.57)

The utility function u(·) is monotone and strictly concave and satisfies
the Inada conditions. Show that overaccumulation will occur if τ is large
enough.


