Filtering Data using Frequency Domain Filters

Wouter J. Den Haan

University of Amsterdam

November 17, 2009

Given a sequence $\{x_j\}_{-\infty}^{\infty}$ the Fourier transform is defined as

$$F(\omega) = \sum_{j=-\infty}^{\infty} x_j e^{-i\omega j}$$

If $x_j = x_{-j}$ then

$$F(\omega) = x_0 + \sum_{j=1}^{\infty} x_j \left(e^{-i\omega j} + e^{i\omega j} \right) = x_0 + \sum_{j=1}^{\infty} 2x_j \cos(\omega j)$$

and the Fourier transform is a real-valued symmetric function.

Given a Fourier Transform $F(\omega),$ one can back out the original sequence using

$$x_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega) e^{i\omega j} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega) \left(\cos \omega j + i \sin \omega j\right) d\omega$$

and if $F(\omega)$ is symmetric then

$$x_{j} = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega) \cos \omega j \, d\omega = \frac{1}{\pi} \int_{0}^{\pi} F(\omega) \cos \omega j \, d\omega$$

Thinking differently about a time series

Fourier transform of $\{x_t\}_{t=1}^T$, scaled by \sqrt{T}

$$\tilde{x}(\omega) = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} e^{-i\omega t} x_t.$$

Let

$$\omega_j = (j-1)2\pi/T$$
,

The finite inverse Fourier transform is given by

$$x_t = rac{1}{\sqrt{T}} \sum_{\omega_j} e^{i\omega_j t} ilde{x}(\omega_j).$$

Using

$$\tilde{\mathbf{x}}(\omega) = |\tilde{\mathbf{x}}(\omega)| \, \mathbf{e}^{i\phi(\omega)}.$$

$$x_t = rac{1}{\sqrt{T}}\left(ilde{x}(0) + 2\sum_{\omega_j < \pi} | ilde{x}(\omega_j)| \cos(\omega_j t + \phi(\omega_j))
ight)$$

- < A

Variance of x_t for different frequencies related to

$$\left(\left| ilde{x}(\omega) \right|
ight)^2$$
 or $ilde{x}^2(\omega)$

This is basically the spectrum

Given a sequence $\{\gamma_j\}_{-\infty}^\infty$ of autocovariances of a scalar process then the Spectrum is defined as

$$S(\omega) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \gamma_j e^{-i\omega j} = \frac{1}{2\pi} \left(\gamma_0 + \sum_{j=1}^{\infty} 2\gamma_j \cos(\omega j) \right)$$

And according to the inverse

$$\gamma_0 = \int_{-\pi}^{\pi} S(\omega) \; d\omega$$

Spectrum of filtered series

$$y_t = \sum_{j=-\infty}^{\infty} b_j x_{t-j} = b(L) x_t$$

Then

$$S_{y}(\omega) = b(e^{-i\omega})b(e^{i\omega})S_{x}(\omega) = |b(e^{-i\omega})|^{2}S_{x}(\omega)$$

- $|\cdot|$ is the modulus of the complex number
- Note that $b(e^{-i\omega})$ is the Fourier transform of the b_j sequence
- For symmetric filters we have $b(e^{-i\omega}) = b(e^{i\omega})$

$$y_t = b(L)x_t$$

Goal:

$$S_{y}(\omega) = \left\{ egin{array}{cc} S_{x}(\omega) & ext{if} \ \ \omega_{1} \leq \omega \leq \omega_{2} \\ 0 & ext{o.w.} \end{array}
ight.$$

Thus we need

$$b(e^{-i\omega}) = \begin{cases} 1 & \text{if } \omega_1 \leq \omega \leq \omega_2 \\ 0 & \text{o.w.} \end{cases}$$

- How to find the coefficients b_i that correspond with this?
- Since $b(e^{-i\omega})$ is a Fourier transform we can use the inverse of the Fourier transform

Coefficients of band-pass filters

Inverse of the Fourier transform:

$$b_{j} = \frac{1}{2\pi} \int_{-\pi}^{\pi} b(e^{-i\omega}) e^{i\omega j} d\omega$$

$$= \frac{1}{2\pi} \left(\int_{-\omega_{2}}^{-\omega_{1}} 1 \times e^{i\omega j} d\omega + \int_{\omega_{1}}^{\omega_{2}} 1 \times e^{i\omega j} d\omega \right)$$

$$= \frac{1}{2\pi} \left(\int_{\omega_{1}}^{\omega_{2}} \left(e^{i\omega j} + e^{-i\omega j} \right) d\omega \right)$$

$$= \frac{1}{2\pi} \int_{\omega_{1}}^{\omega_{2}} 2\cos(\omega j) d\omega$$

$$= \frac{1}{\pi} \frac{1}{j} \sin \omega j \Big|_{\omega_{1}}^{\omega_{2}} = \frac{\sin(\omega_{2}j) - \sin(\omega_{1}j)}{\pi j}$$

Using l'Hopital's rule for j = 0 we get

$$b_0 = \frac{\omega_2 - \omega_1}{\pi}$$

l

• If x_t is I(1) then

$$(1-L)x_t = z_t$$

with z_t an I(0) process.

Filtering gives

$$x_t^f = b(L)x_t$$

• Question: When is $x_t^f I(0)$?

An aside on filters that induce stationarity

Suppose that

$$b(L) = (1-L)\bar{b}(L)$$

and

 $ar{b}(1) < \infty$

Then $x_t^f = b(L)x_t$ is stationary even if x_t is I(1)

$$\begin{aligned} x_t^f &= b(L)x_t \\ &= (1-L)\bar{b}(L)x_t \\ &= (1-L)\bar{b}(L)\frac{z_t}{(1-L)} \\ &= \bar{b}(L)z_t \end{aligned}$$

$$b(L) = \sum_{j=-\infty}^{\infty} b_j L^j$$

• b(L) is a polynomial of L. Consider the roots to the problem:

$$b(L)=0$$

If L = 1 is a root of the problem, then we have

$$b(L) = (1-L)ar{b}(L)$$
 with $ar{b}(1) < \infty$

۲

• But L = 1 is a root of our filter as long as $\omega_1 > 0$, because then we have by construction

$$b(1) = b(e^{-i0}) = 0$$

Clearly, if you do not filter out the zero frequency then you do not induce stationarity

• Discussion above showed

 $x_t^f = b(L)x_t$ is stationary even if x_t is l(1)

- This is not enough to show that the filter does what it is supposed to do, which is
 - ensure the spectrum of the filtered series is zero for the excluded frequencies
 - ensure the spectrum of the filtered series equals the spectrum of the original series for the included frequencies
- The second condition requires a definition of the spectrum for I(1) processes

Spectrum for I(1) processes

Consider an arbitrary I(1) process

$$x_t = \frac{z_t}{1-L}$$

Let

$$x_{\rho,t} = \frac{z_t}{1 - \rho L}$$

For ho < 1 the spectrum of $x_{
ho,t}$ is well defined

$$S_{
ho,x}(\omega) = rac{1}{1-2
ho\cos(\omega)+
ho^2}S_z(\omega)$$

Define the spectrum of x_t as

$$S_x(\omega) = \lim_{
ho \longrightarrow 1} S_{
ho,x}(\omega)$$

This is well defined for all $\omega > 0$, but not for $\omega = 0$.

$$x_t^f = b(L)x_t$$

Let b(L) be a band-pass filter, that is,

$$b(e^{-i\omega}) = \begin{cases} 1 & \text{if } \omega_1 \leq \omega \leq \omega_2 \\ 0 & \text{o.w.} \end{cases}$$

Wouter (University of Amsterdam)

- 一司

э

- if $\omega_1 > 0$, then it can be shown that
 - x_t^f is stationary (because as shown above we know that b(1) = 0) and • $S_{x^f}(\omega) = \begin{cases} S_x(\omega) & \text{if } \omega_1 \le \omega \le \omega_2 \\ 0 & \text{o.w.} \end{cases}$
- That is, using the definition of the Spectrum for I(1) processes the filter does exactly what it is supposed to do
- Proof is simple; The only tricky thing is to prove is that

$$b(e^{-i0})S_x(0)=0$$

Practical Filter

- The filter constructed so far is two-sided and infinite order
- Implementable version would be to use

$$\tilde{b}(L) = \sum_{j=-J}^{J} b_j L^j$$

But it is not necessarily the case that

 $\tilde{b}(1)=0$

So instead use

$$a(L) = \sum_{j=-J}^{J} a_j L^j$$

with

$$m{a}_j = m{b}_j + \mu \quad ext{and} \quad \mu = -rac{\sum_{j=-J}^J m{b}_j}{2J=1}$$

• With $\lambda = 1,600$ the HP filter is approximately equal to a band-pass filter with $\omega_1 = \pi/16$ and $\omega_2 = \pi$. That is, it keeps that part of the series associated with cycles that have a period less than 32 $(=2\pi/(\pi/16))$ periods (i.e. quarters).