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Fourier Transform

Given a sequence {x;}%,, the Fourier transform is defined as

Flw)= ), xe'
jzfoo
If x; = x_; then
Flw) =xo+ Y x (e7 + &) = xp+ ) _ 2x; cos(wj)
j=1 j=1

and the Fourier transform is a real-valued symmetric function.
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Inverse Fourier Transform

Glven a Fourier Transform F(w), one can back out the original sequence
using

1 U L 1 U
xj = —/ Flw)e'“"dw = —/ F(w) (coswj + isinwj) dw
27T —7T T J—m

and if F(w) is symmetric then

1 (7 1 /=
ijﬂ/_nF(w)coswj dw:;/o F(w) coswj dw
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Thinking differently about a time series

Fourier transform of {x;}/_;, scaled by v/ T

1 L
f(w) = —= Y e Wix,
Ve

Let
wj=(—-1)2n/T,

The finite inverse Fourier transform is given by

1 iwjtg
X¢ = e itk (wyj).
VTS
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Thinking differently about a time series

Using

gives

(;(0)+2 ) |>”<(wj)\cos(wjt+4>(wj))

w; <7
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Thinking differently about a time series

Variance of x; for different frequencies related to

(I%(w@)])* or 3*(w)

This is basically the spectrum
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Glven a sequence {'yj}"foo of autocovariances of a scalar process then the
Spectrum is defined as

o (’Yo + Z 27; cos w;))

And according to the inverse

70:/71 S(w) dw
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Spectrum of filtered series

Yr = Z ijtfj = b(L)Xt

Jj=—0o
Then . . o
Sy(w) = b(e™"“)b(e") S (w) = [b(e™)|" Sx(w)
@ |-| is the modulus of the complex number

o Note that b(e™) is the Fourier transform of the b; sequence

e For symmetric filters we have b(e™'?) = b(e/?)
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Band-pass filters

Yt = b(L)Xt
Goal:

Slw)={ gl Tasose

0 o.W.

Thus we need
i 1 if wi <w<ws
1wy __
b(e™) = { 0 o.w.

@ How to find the coefficients b; that correspond with this?

@ Since b(e™'“) is a Fourier transform we can use the inverse of the
Fourier transform
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Coefficients of band-pass filters

Inverse of the Fourier transform:

b o= /7r b(e™ ) e dew
J 27T J_n
1 —w1 .o w2 Lo
= (/ 1xe“dw+ 1><e""fdw>
271 —w» w1
1 w2 iwj —iwj
= — / (e +e7') dw
27w \Jw,
1 w2
= o ), 2 cos(wj)dw
_ ll sinwj]? — sin(w2j) —'sin(wlj)
Ty 1 7Ty
Using I'Hopital’s rule for j = 0 we get
. Wy — W1

by =
7T
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An aside on filters that induce stationarity

o If x; is I(1) then

with z; an 1(0) process.

o Filtering gives

@ Question: When is x{ 1(0)?
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An aside on filters that induce stationarity

Suppose that
b(L) = (1—L)b(L)

and
b(1) < o0

Then x{ = b(L)x, is stationary even if x; is 1(1)

£ = b(L)x
= (1-Db(L)x
= (1= DB
= b(L)z
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Properties of the band-pass filter

b(L) = i bl

j=—0o0
@ b(L) is a polynomial of L. Consider the roots to the problem:
b(L) =0
If L =1 is a root of the problem, then we have

b(L) = (1— L)b(L) with b(1) < oo
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Properties of the band-pass filter

e But L =1 is a root of our filter as long as w; > 0, because then we

have by construction )
b(1) = b(e ) =0

Clearly, if you do not filter out the zero frequency then you do not
induce stationarity
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More on I(1) processes

@ Discussion above showed
xf = b(L)x; is stationary even if x; is I(1)

@ This is not enough to show that the filter does what it is supposed to
do, which is

e ensure the spectrum of the filtered series is zero for the excluded

frequencies
e ensure the spectrum of the filtered series equals the spectrum of the
original series for the included frequencies

@ The second condition requires a definition of the spectrum for I(1)
processes
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Spectrum for I(1) processes

Consider an arbitrary I(1) process

Zt
1—-L

Xy =

Let
Zt

S ]
For p < 1 the spectrum of x, ; is well defined
1

~ 1—2pcos(w) + p?

Sp,X(w> S, (w)

Define the spectrum of x; as

Se(w) = pi_m)1 Sox(w)

This is well defined for all w > 0, but not for w = 0.
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Filtered 1(1) process

xf = b(L)x;
Let b(L) be a band-pass filter, that is,

iy 1 if wi <w<wsy
1w _ — g
b(e™) = { 0 o.w.
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Filtered 1(1) process

@ if wy > 0, then it can be shown that

o x! is stationary (because as shown above we know that b(1) = 0) and

Se(w) if wi<w<w
OSXf(aJ):{ OX( ) o.W.l_ = W2

@ That is, using the definition of the Spectrum for I(1) processes the
filter does exactly what it is supposed to do

@ Proof is simple; The only tricky thing is to prove is that

b(e'9)S,(0) =0
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Practical Filter

@ The filter constructed so far is two-sided and infinite order
@ Implementable version would be to use

b(L) = iﬁ bl

j=1

But it is not necessarily the case that

So instead use

with
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Hodrick-Prescott Filter

e With A = 1,600 the HP filter is approximately equal to a band-pass
filter with wy; = /16 and wy = 7. That is, it keeps that part of the
series associated with cycles that have a period less than 32
(=27t/(7t/16)) periods (i.e. quarters).
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