The Optimal Timing of Unemployment Benefits: Theory and Evidence from Sweden

J Kolsrud (Uppsala), C Landais (LSE), P Nilsson (IIES) and J Spinnewijn (LSE)

UCLA

February 23, 2016

KLNS (LSE)

Optimal Timing of UI

Motivation

- Social insurance programs are inherently dynamic
 - specify a full time profile of benefits
 - 2 affect dynamics of household behavior
- How should we design optimal time profile of benefits?
 - UI policy debate: pressure for steeper benefit profiles
 - SS policy debate: pressure for increase in full retirement age
 - debate lacks evidence-based welfare framework
- Sufficient statistics literature on "average" generosity of SI
 - \Rightarrow empirical implementation, but silent about optimal timing
- Theoretical literature on optimal timing of UI in particular
 - \Rightarrow insights are model-dependent and hard to connect to data

We revisit the optimal timing of UI and provide:

- (1) a **simple** characterization
- (2) in a **general** framework
- (3) that connects to data.

We then implement this characterization:

- use Swedish data from **UI registers** linked to **admin data on income and wealth** and **consumption surveys**
- estimate all relevant statistics to provide an evidence-based evaluation of the benefit profile.

Theory: Robust Characterization, Simple Implementation

- Consider dynamic model of unemployment (with search, heterogeneity, duration dependence, assets, ...)
- **Key Result**: Baily ['78] intuition generalizes for UI benefit *b_t* paid at *any* unemployment duration *t*:
 - insurance gain depends on drop in consumption at t
 - 2 incentive cost depends on response of (full) survival function to b_t
- Implication: Simple to evaluate welfare of a benefit profile. Identifying model's primitives is not necessary (Chetty '06, '09)

Empirics Preview I: Unemployment Responses

- Extensive literature on unemployment responses to UI
 - limited attention for timing of benefits
- We implement a Regression Kink design using Swedish UI registers
 - exploit variation in the time profile of benefits
 - consider the impact on the relevant moments of the survival function
- Incentive cost of UI decreases over the spell
 - estimated cost of increasing benefits is high overall ($\varepsilon\approx 1.5)$
 - \bullet incentive cost for ST benefits \geq LT benefits

Empirics Preview II: Consumption Profile

- Limited evidence on impact of labor shocks on consumption
 - Gruber ('97) studies consumption drop when unemployed
 - survey data on consumption: limited ability to observe unemployment status and duration
- We obtain residual measure of yearly expenditures using unique admin data on income and wealth in Sweden
- Insurance gain of UI increases over the spell
 - \bullet household consumption drops: 6% for ST and 13% for LT unemployed
 - limited ability to smooth consumption, but generous LT benefits

Empirics Preview II: Consumption Profile

- Limited evidence on impact of labor shocks on consumption
 - Gruber ('97) studies consumption drop when unemployed
 - survey data on consumption: limited ability to observe unemployment status and duration
- We obtain residual measure of yearly expenditures using unique admin data on income and wealth in Sweden
- Insurance gain of UI increases over the spell
 - \bullet household consumption drops: 6% for ST and 13% for LT unemployed
 - limited ability to smooth consumption, but generous LT benefits

 \Rightarrow Evaluated at a flat profile in Sweden, our evidence indicates that slightly increasing profile increases welfare!

Introduction

- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- 3 Context & Data
- 4 Empirics I: Duration Responses
- 5 Empirics II: Consumption Profiles
- 6 Welfare Calibrations

 $\exists \rightarrow$

- Dynamic model of unemployment: focus on worker's behavior
- Each individual *i* optimizes her job search strategy
 - results in an exit rate out of unemployment $h_{i,t}$ at each duration t
 - observed survival function equals

$$S(t) = \sum_{i=1}^{N} \left[\prod_{s=0}^{t} (1 - h_{i,s}) \right] / N$$

- Each individual *i* optimizes intertemporal consumption
 - results in contingent consumption plan c_{i}^{e} and $c_{i,t}^{u}$
 - observed unemployment consumption at duration t

$$C^{u}(t) = \sum_{i=1}^{N} \left[\frac{S_{i}(t)}{S(t)} \times c_{i,t}^{u}\right] / N$$

- We consider policies of the form $(b_1, b_2, ...)$ providing UI benefit b_1 for the first B_1 periods of unemployment, b_2 for the next $B_2 B_1$ periods etc.
- The benefits are funded by a uniform tax au on the employed.
- The average unemployment duration equals sum of survival rates at each duration:

$$D = \Sigma_{t} S(t) = \underbrace{\Sigma_{0}^{B_{1}} S(t)}_{=D_{1}} + \underbrace{\Sigma_{B_{1}}^{B_{2}} S(t)}_{=D_{2}} + ... + \underbrace{\Sigma_{B_{n-1}}^{T} S(t)}_{=D_{n}},$$

where D_i is the average duration spent receiving benefit b_i .

Illustration: Two-Part Policy

∃ ⊳

Illustration: Survival Rate Function S(t)

• Average unemployment duration equals $D = \Sigma_t S(t)$.

Illustration: ST Benefit Duration

• Average duration spent receiving benefit b_1 equals $D_1 = \Sigma_0^B S(t)$.

Illustration: LT Benefit Duration

• Average unemployment duration $D = \Sigma_t S(t) = D_1 + D_2$.

Illustration: LT Benefit Duration

• Gvt BC: $\tau \cdot (T - D) = b_1 \cdot D_1 + b_2 \cdot D_2.$

KLNS (LSE)

< ∃ >

Optimal Unemployment Policy: Welfare

• The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} U_i(\tilde{x}_i | \mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

3

15 / 56

< □ > < 同 >

Optimal Unemployment Policy: Welfare

• The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} U_i(\tilde{x}_i | \mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

• Baily-Chetty benchmark: the optimal flat profile b solves

$$\underbrace{\frac{E\left[u'\left(c^{u}\right)\right]-E\left[u'\left(c^{e}\right)\right]}{E\left[u'\left(c^{e}\right)\right]}}_{=\mathsf{CS}_{\mathsf{b}}} = \underbrace{\varepsilon_{D,b}}_{=\mathsf{MH}_{\mathsf{b}}}.$$
(1)

15 / 56

Optimal Unemployment Policy: Welfare

• The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} U_i(\tilde{x}_i | \mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

• Baily-Chetty benchmark: the optimal flat profile b solves

$$\underbrace{\frac{E\left[u'\left(c^{u}\right)\right]-E\left[u'\left(c^{e}\right)\right]}{E\left[u'\left(c^{e}\right)\right]}}_{=\mathsf{CS}_{\mathsf{b}}} = \underbrace{\varepsilon_{D,b}}_{=\mathsf{MH}_{\mathsf{b}}}.$$
(1)

 Key insight (~ Env. Thm): behavioral responses have first-order welfare effect through the fiscal externality only

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

for
$$b_1: \frac{E[u'(c^u)|t \le B] - E[u'(c^e)]}{E[u'(c^e)]} = \varepsilon_{D_1,b_1} + \frac{b_2 D_2}{b_1 D_1} \cdot \varepsilon_{D_2,b_1}$$

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

for
$$b_1: \frac{E[u'(c^u) | t \le B] - E[u'(c^e)]}{E[u'(c^e)]} = \varepsilon_{D_1,b_1} + \frac{b_2 D_2}{b_1 D_1} \cdot \varepsilon_{D_2,b_1}$$

for
$$b_2$$
: $\frac{E[u'(c^u)|t > B] - E[u'(c^e)]}{E[u'(c^e)]} = \frac{b_1D_1}{b_2D_2} \cdot \varepsilon_{D_1,b_2} + \varepsilon_{D_2,b_2}$

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

for
$$b_1: \frac{E[u'(c^u) | t \le B] - E[u'(c^e)]}{E[u'(c^e)]} = \varepsilon_{D_1,b_1} + \frac{b_2 D_2}{b_1 D_1} \cdot \varepsilon_{D_2,b_1}$$

for
$$b_2$$
: $\frac{E[u'(c^u)|t > B] - E[u'(c^e)]}{E[u'(c^e)]} = \frac{b_1D_1}{b_2D_2} \cdot \varepsilon_{D_1,b_2} + \varepsilon_{D_2,b_2}$

• Generality:

- Robust to variations in underlying primitives of the model
- Allows for duration dependence, heterogeneity, assets, etc.
- $\bullet\,$ Externalities, equilibrium effects, internalities \Rightarrow additional terms
- Sufficient for what?
 - Statistics sufficient for characterizing optimal benefit profile
 - Evaluate welfare effect of small deviations from actual policy

$$CS_k \ge MH_k \Rightarrow \uparrow b_k$$

Implementation:

- MH_k cost: estimated from the benefit duration response to Δb_k
- CS_k gain: consumption implementation $CS_k \approx \gamma_k \cdot \Delta C_k / C$

$$CS_1/CS_2 \ge MH_1/MH_2 \Rightarrow \uparrow b_1/b_2$$

CS Gains: Consumption Implementation

ヨト

If CS_{b_t} and MH_{b_t} were constant over the spell, *constant* benefits would be optimal. However,

- Forward-looking job seekers \Rightarrow MH_{b_t} increasing over the spell
 - declining benefits become optimal
 - see Shavel&Weiss '79, Hopenhayn&Nicolini '97,...
- Unobservable savings $\Rightarrow CS_{b_t}$ increasing over the spell
 - inclining benefits would be optimal
 - see Werning '02, Shimer&Werning '08,...
- Non-stationarity, heterogeneity \Rightarrow ??
 - example: negative duration dependence of exit rates
 - MH_{b_t} may well be decreasing over the spell \Rightarrow *inclining* benefits
 - see Pavoni '09, Shimer&Werning '09

イロト イポト イヨト イヨト

1 Introduction

2 Theory: Identifying Sufficient Statistics in Dynamic Setting

Context & Data

- 4 Empirics I: Duration Responses
- 5 Empirics II: Consumption Profiles
- 6 Welfare Calibrations

- Universe of unemployment spells from unemployment registers in Sweden (1999-2013)
- Sweden levied a wealth tax, up until 2007. We link unemployment registers to income and wealth registers for full Swedish population (1999-2007).
- Unemployment benefits replace 80% of pre-unemployment wage, but are capped at a threshold close to the median wage
- Unemployment benefits can be received forever. Participation into ALMP is required after 60 or 90 wks of unemployment.

1 Introduction

- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- 3 Context & Data
- 4 Empirics I: Duration Responses
 - 5 Empirics II: Consumption Profiles
- 6 Welfare Calibrations

Flat Benefit Profile with Benefit Cap ['99-'00]

Duration-Dependent Benefit Cap ['01]

Optimal Timing of UI

February 23, 2016

31 / 56

Flat Benefit Profile (with High Benefit Cap) ['02-'06]

Regression Kink Design

• General model:

$$Y = y(b_1, b_2, w, \varepsilon)$$

- Y: duration outcome of interest
- b_k: endogenous regressor of interest; deterministic, continuous function of earnings w, kinked at w = w

 k
- **Non-parametric identification** of the average marginal effect of b_k on *Y*:

$$\alpha_{k} = \frac{\lim_{w \to \bar{w}_{k}^{+}} \frac{\partial E[Y|w]}{\partial w} - \lim_{w \to \bar{w}_{k}^{-}} \frac{\partial E[Y|w]}{\partial w}}{\lim_{w \to \bar{w}_{k}^{+}} \frac{\partial b_{k}}{\partial w} - \lim_{w \to \bar{w}_{k}^{-}} \frac{\partial b_{k}}{\partial w}} = \frac{\hat{\delta}_{k}}{\nu_{k}}$$

- $\hat{\delta}_k$: estimated change in slope between Y and w at kink \bar{w}_k
- v_k : deterministic change in slope between b_k and w at kink \bar{w}_k

• Identifying assumptions:

- direct marginal effect of w on Y is smooth
- smooth pdf of ε at \bar{w}_k

KLNS (LSE)

Wage and Unemployment Duration: Kink in b_1 and b_2

Wage and Unemployment Duration: Kink in b_2

Wage and Unemployment Duration: No Kink

RKD: Estimated Duration Responses

KLNS (LSE)

February 23, 2016

37 / 56

Duration Responses: Takeaways

• Estimates imply $MH_{b_1} > MH_{b_2}$

•
$$\varepsilon_{D,b_1} = \varepsilon_{D,b} - \varepsilon_{D,b_2} = .84 \ (.19) \ge \varepsilon_{D,b_2} = .69 \ (.14)$$

•
$$MH_{b_k} = \varepsilon_{D,b_k} \frac{D}{D_k}$$
, for flat profile, and $D_1 \approx D_2$

- Unemployed are forward-looking ($\varepsilon_{D_1,b_2} > 0$), but non-stationary more than offsets this! Hazard Rates
- Estimates can explain different findings in earlier works
 - $\varepsilon_{D,b_1} \approx$ Meyer [1990], Landais [2015] in U.S. (where b_1 for 26 weeks)
 - Schmieder&al. [2012], Rothstein [2011], Valetta&Farber [2011] : smaller effects of extensions from long baseline durations

RKD: Estimated Responses for D_1

KLNS (LSE)

Optimal Timing of UI

February 23, 2016

39 / 56

Non-stationarity: Elasticity of Remaining Duration

KLNS (LSE)

February 23, 2016

40 / 56

1 Introduction

- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- 3 Context & Data
- 4 Empirics I: Duration Responses
- 5 Empirics II: Consumption Profiles
 - 6 Welfare Calibrations

Consumption Profile: Empirical Strategy

- **Data**: household consumption surveys (HUT) merged with universe of administrative UI records and income & wealth registers.
 - Observe full employment history of individuals surveyed in the HUT.
 - Sample: individuals unemployed or who will be unemployed
 - Flow measure of consumption at time of HUT itw
 - Confirm findings with registry-based residual measure of consumption from income and wealth
- Model: event studies

$$c_{it} = \sum_{t} \beta_t \cdot \mathbb{1}[HUT = t] + X'_i \gamma + \varepsilon_{it}$$
⁽²⁾

• $\mathbb{1}[HUT = t]$: indicator for being surveyed at spell time t.

- Investigate role of selection
 - Selection on consumption levels
 - Selection on consumption profiles

KLNS (LSE)

Household Consumption Over the Spell

KLNS (LSE)

February 23, 2016

43 / 56

Log Household Consumption Relative To Pre-U

	(1)	(2)	(3)	(4)
	0.0000			0.0465
$\mathbb{1}[0 < t \le 20 \; \mathrm{wks}]$	-0.0606^{*}	-0.0415	-0.03/9	-0.0465
$\mathbb{1}[t > 20 \text{ wks}]$	-0.130***	-0.131***	-0.113***	-0.108***
$\mathbbm{1}[L>20 \text{ wks}]$	(0.0328)	(0.0326)	(0.0379) -0.0294 (0.0200)	(0.0414) -0.0342 (0.0278)
$\mathbb{1}[t \leq 20 \text{ wks}] imes \mathbb{1}[L > 20 \text{ wks}]$			(0.0300)	0.0134
				(0.0629)
Year F-E	×	×	×	×
Calendar months F-E	×	×	×	×
Marital status		×	×	×
Family size		×	×	×
Age group F-E		×	×	×
R^2	0.0493	0.139	0.139	0.0872
N	1551	1548	1548	1548
Notes: Robust standard errors in parentheses. * $p < .10$, ** $p < .05$, *** $p < .01$				

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - のへで

Consumption Smoothing Means Over the Spell

- Household consumption drops significantly and quickly over the spell
 - Average drop in consumption after a year \approx average drop in annual household income
 - Corroborated by evidence from residual measure of expenditures based on registry-data • Registry consumption
- Limited means to smooth consumption and high MPC out of UI
 - Majority starts spell with no financial nor real assets Table Wealth
 - Limited added-worker effect HH Income
 - Limited use of debt over the spell Debt
 - UI transfers play entire role in smoothing consumption Decomposition

From Consumption Profile To CS Gains of UI

- Consumption Implementation Approach
 - CS gains can be approximated using consumption drops

$$CS_k \approx \gamma_k \cdot \Delta C_k / C$$

Taylor Approximations

- $\bullet~\mbox{Consumption} \downarrow \Rightarrow \mbox{CS gains} \uparrow \mbox{over U spell}$
- Robustness to selection:
 - No significant selection on consumption levels or profiles, nor on wealth
 - Limited evidence of selection on risk preferences Risk Preferences
- Consumption vs Expenditures Expenditure categories
 - Unemployed increase home production
 - Unemployed decrease durable good expenditures
 - No dynamic selection on profiles of various categories of expenditures

Welfare: Putting Things Together

	(1) Moral hazard cost. <i>MH</i> ×	(2) Consumption drop. ΔC_{x}	(3) Value of kroner spent. <i>CS₂ / MH₂</i>
Ь	1.53	.10	$ ilde{\gamma} imes$.07
	(.13)	(.01)	
b_1	1.67	.06	$ ilde{\gamma_1} imes$.04
	(.37)	(.03)	
b_2	1.38	.13	$ ilde{\gamma_2} imes$.09
	(.27)	(.03)	

- Benefits are too high throughout the spell (for standard $\gamma \leq$ 2)
- Value of marginal kroner spent on unemployed after 20wks is twice as high as before 20wks (for equal γ̃_k)
- Starting from existing flat profile, our local evaluation pushes towards an inclining benefit profile!
 - Calibration: optimal inclining tilt $b_2 \ge b_1$ survives at lower generosity level \bullet fig

Optimal Profile: CS vs. MH in Calibrated Model

KLNS (LSE)

- We provided a simple framework to connect theory to data in the context of dynamic UI policies:
 - focus on the timing of benefits for behavioral responses
 - use admin data to evaluate consumption smoothing effects
 - find no evidence to support the switch from flat to declining benefit profiles
- Framework can be used to think about various policy-relevant issues: role of business cycles, role of heterogeneity,...
- Framework can be used to think about any time-dependent policies: pensions (career length/age), poverty relief (child's age),...

APPENDIX SLIDES

イロト イポト イヨト イヨト

Ξ

RKD estimates on hazard rates at the SEK725 kink

RKD estimates at the SEK725 kink by year of entry

KLNS (LSE)

February 23, 2016

RKD: P.d.f. of Daily Wage

RKD: Wage and Age

Back

RKD: Wage and Fraction Men

KLNS (LSE)

Back

Optimal Timing of UI

February 23, 2016

55 / 56

RKD: Wage and Fraction Foreigners

RKD: Wage and Fraction With Higher Education

RKD Estimates by Bandwidth Size

Non-parametric detection using placebo kinks

RKD estimates: Inference

	(1)	(2)	(3)	
	Unemployment	Duration D_1	Duration D ₂	
	Duration D	(< 20 weeks)	(\geq 20 weeks)	
	1.1999-2000 Kink in by and by			
Linear - δ_k	0569	0246	0299	
Robust s.e.	(.0047)	(.0013)	(.0036)	
Bootstrapped s e	([°] 0050)	(0012)	(0039)	
95% CI - permut. test	[0595 ;0566]	[0319 ;0189]	[0402 ;019]	
	II. 2001: Kink in b_2 only			
Linear - δ_k	0255	0115	0105	
Robust s e	(005)	(0021)	(0028)	
Robust S.C.	(.003)	(.0021)	(.0020)	
Bootstrapped s.e.	(.0049)	(.0020)	(.0030)	
95% CI - permut. test	[0325 ;0190]	[0127 ;0103]	[0115 ;0091]	

Back

イロト イポト イヨト イヨト

Ξ

RKD estimates: Sensitivity to polynomial order

	(1)	(2)	(3)
	Unemployment	Duration D_1	Duration D_2
	Duration D	(< 20 weeks)	$(\geq$ 20 weeks)
	I. 1999-2	2000: Kink in b_1	and b ₂
Linear - δ_k	0569	0246	0299
	(.0047)	(.0013)	(.0036)
RMSE	28.285	7.049	23.972
AIC	1785650.8	1264546	1723601.1
Quadratic - δ_k	0474	0344	0183
	(.0185)	(.0049)	(.0143)
RMSE	28.285	7.048	23.971
AIC	1785650.5	1264518.9	1723588.4
Cubic - δ_k	0527	0291	0221
	(.0455)	(.0122)	(.0351)
MSE	28.284	7.046	23.971
AIC	1785644.8	1264394.7	1723590

글 > 글

	Mean	P10	P50	P90
	I. Unemployment			
Duration of spell (wks) Duration on b_1 (wks)	26.64 12.87	2.86 2.86	13.43 13.43	65.29 20
Duration on <i>b</i> ₂ (wks)	12.22 0 0 45.29			
Age Fraction men Fraction married Number of children	34.12 .49 .39 1.27	21 0 0 0	33 0 0 1	51 1 1 3
	III. Income and Wealth, SEK 2003(K)			
Gross earnings (individual) Household disposable income Household consumption Household net wealth Household bank holdings Household real estate Household debt	202.9 354.4 343 510.1 65.6 770.7 427.2	9.8 116.9 150.3 -258.3 0 0 0	172.6 330.1 305.1 0 44 193.3	386.2 585.3 572.6 1691.6 149.8 1948.3 1154.3

Table : SUMMARY STATISTICS AT START OF U SPELL: HUT SAMPLE

イロト イポト イヨト イヨト

э

Household Consumption: Registry Based Measure

KLNS (LSE)

Yearly Income of All Other HH Members

KLNS (LSE)

Yearly Change in Non-Mortgage Debt

Decomposition: Earnings

Decomposition: + Transfers

Decomposition: + Other Income

Decomposition: + Changes in Assets

February 23, 2016

14 14

Log Household Consumption Relative To Pre-U

	(1) Total exp.	(2) Food	(3) Rents	(4) Purch. of new vehicles	(5) Furn. & house appl.	(6) Trans- port.	(7) Recre- ation	(8) Restau- rant
$\mathbb{1}[t \leq 20 \text{ weeks}]$	-0.0606* (0.0316)	-0.0441 (0.0388)	-0.0404 (0.0380)	-0.418** (0.187)	-0.160 (0.102)	-0.0788 (0.0661)	-0.106 (0.0649)	-0.0807 (0.0876)
$\mathbbm{1}[t>20 \text{ weeks}]$	-0.130*** (0.0328)	-0.0823* (0.0441)	0.0430 (0.0310)	-0.252 (0.176)	-0.0883 (0.0884)	-0.348*** (0.0803)	-0.189*** (0.0719)	-0.165* (0.0888)
Year fixed effects	×	×	×	×	×	×	×	×
Marital status	×	×	×	×	×	×	×	×
Family size	×	×	×	×	×	×	×	×
R ²	0.0493	0.0650	0.0365	0.0205	0.00975	0.0208	0.0252	0.0154
N	1551	1548	798	982	1548	1488	1543	1119

Pre-U characteristics of individuals with spells \geq 20 wks

	(1)	(2)	(3)	(4)	(5)			
	Duration of future spell \geq 20 weeks							
Age: 30 to 39	0.129***	0.118***	0.116***	0.119***	0.120***			
	(0.00237)	(0.00250)	(0.00251)	(0.00305)	(0.00311)			
Age: 40 to 49	0.164***	0.153***	0.153***	0.162***	0.163***			
	(0.00277)	(0.00293)	(0.00295)	(0.00357)	(0.00363)			
Age: 50+	0.272***	0.261***	0.265***	0.281***	0.282***			
	(0.00288)	(0.00307)	(0.00319)	(0.00367)	(0.00371)			
Gender: Female	-0.00226	-0.00209	-0.00279	-0.0146***	-0.0135***			
	(0.00192)	(0.00193)	(0.00193)	(0.00230)	(0.00230)			
$0 < Net wealth \le 200k$			-0.0503***	-0.0116***	-0.0122***			
			(0.00234)	(0.00271)	(0.00315)			
200k <net th="" wealth≤500k<=""><th></th><th></th><th>-0.0466***</th><th>-0.0146***</th><th>-0.0114***</th></net>			-0.0466***	-0.0146***	-0.0114***			
			(0.00324)	(0.00350)	(0.00425)			
500k <net th="" wealth≤5m<=""><th></th><th></th><th>-0.0186***</th><th>0.00576*</th><th>0.00774*</th></net>			-0.0186***	0.00576*	0.00774*			
			(0.00300)	(0.00336)	(0.00418)			
Net wealth>5M			0.0731***	0.0852***	0.0866***			
			(0.0173)	(0.0172)	(0.0174)			
Fraction of portfolio in stocks								
3rd quartile				-0.000542				
				(0.00787)				
4th quartile				0.0303***				
				(0.00259)				
Leverage: debt / assets								
2nd quartile					0.0153***			
					(0.00390)			
3rd quartile					-0.0120***			
					(0.00322)			
4th quartile					-0.00629*			
					(0.00361)			
R ²	0.0465	0.0490	0.0511	0.0624	0.0620			
N	269931	269931	269931	190176	190176			

200

Consumption Implementation: Taylor Approximations

• Homogeneous preferences

$$CS_{k} \cong \frac{v'(\bar{c}_{k}^{u}) - v'(\bar{c}_{0})}{v'(\bar{c}_{0})} \cong -\frac{v''(\bar{c}_{0})\bar{c}_{0}}{v'(\bar{c}_{0})} \times \frac{\bar{c}_{0} - \bar{c}_{k}^{u}}{\bar{c}_{0}}, \qquad (3)$$

• Heterogeneous preferences

$$CS_{k} \cong \underbrace{\frac{E_{k} \left[v_{i}' \left(c_{i,0}\right)\right] - E_{0} \left[v_{i}' \left(c_{i,0}\right)\right]}{E_{0} \left[v_{i}' \left(c_{i,0}\right)\right]}}_{\text{Selection}} - \frac{E_{k} \left[v_{i}'' \left(c_{i,0}\right) \left(c_{i,0} - c_{i,t}^{u}\right)\right]}{E_{0} \left[v_{i}' \left(c_{i,0}\right)\right]}.$$
 (4)

Back

KLNS (LSE)

72 / 56