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Abstract

This paper characterizes optimal unemployment insurance (UI) over the business cycle us-
ing a model of equilibrium unemployment in which jobs are rationed in recession. It offers a
simple optimal UI formula that can be applied to a broad class of equilibrium unemployment
models. In addition to the usual statistics (risk aversion and micro-elasticity of unemployment
with respect to UI), a macro-elasticity appears in the formula to capture the macroeconomic
impact of UI on unemployment. In a model with job rationing, the formula implies that optimal
UI is countercyclical. This result arises because in recession, jobs are lacking irrespective of
job search. Therefore (1) a higher aggregate search effort cannot reduce aggregate unemploy-
ment much; and (2) individual search effort creates a negative externality by reducing other
jobseekers’ probability of finding a job as in a rat race. Hence the social benefits of job search
are low. In a calibrated model, optimal UI increases significantly in recession. This quantita-
tive result holds whether the government adjusts the level or duration of benefits; whether it
balances its budget each period or uses deficit spending.
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1 Introduction

This paper studies optimal unemployment insurance (UI) when workers cannot insure themselves

against unemployment risk, and unemployed workers’ job search cannot be monitored. The gov-

ernment chooses unemployment benefits by trading off their insurance value with their cost in

terms of additional unemployment caused by reduced job-search efforts. A large literature stud-

ies this trade-off [Baily, 1978; Chetty, 2006a; Hopenhayn and Nicolini, 1997; Shavell and Weiss,

1979]. In these models, unemployment depends solely on job-search effort. But the long queues of

unemployed workers at factory gates observed during the Great Depression suggest that jobs are

lacking in recessions, however intensively unemployed workers search. Hence, existing models

seem inadequate to explain recessionary unemployment and analyze UI in recession.

To study optimal UI in recession, this paper uses the equilibrium unemployment model of

Michaillat [forthcoming]. This model combines real wage rigidity and a downward-sloping la-

bor demand to capture two critical aspects of recessions. First, unemployment is high and above

its socially efficient level in recessions. Second, jobs are rationed in recessions, in the sense that

some unemployment would remain even if unemployed workers devoted arbitrarily large efforts to

job search. A key property of the model is that, although the labor market always sees vast flows of

workers and a great deal of matching activity, recessions are periods of acute job shortage during

which job search has little influence on labor market outcomes.

We build on the model of Michaillat [forthcoming] by introducing risk-averse workers who

choose their job-search effort when unemployed. Unemployment benefits are financed by a labor

tax. Some frictions impede matching on the labor market, hence equilibrium wages are indetermi-

nate and labor market tightness acts as a price equilibrating labor supply and labor demand. Our

model is quite general. If we make labor demand perfectly elastic, unemployment depends solely

on search effort and we obtain the model of Baily [1978] and Chetty [2006a]. At the polar opposite

if we make labor demand perfectly inelastic, unemployment is completely independent of search

effort and we obtain a rat-race model.

Our first contribution is to derive an optimal UI formula in a one-period model of equilibrium
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unemployment. Our formula presents two departures from the classical Baily-Chetty formula.

First, while the Baily-Chetty formula expresses the optimal replacement rate as a function of risk

aversion and micro-elasticity of unemployment with respect to net reward from work, our formula

replaces the micro-elasticity by a macro-elasticity. In an equilibrium unemployment model, only

the macro-elasticity is able to capture the budgetary costs incurred by the government when in-

creasing UI. Micro- and macro-elasticity are different. The micro-elasticity is the elasticity of the

probability of unemployment for a worker whose individual unemployment benefits change. The

macro-elasticity is the elasticity of aggregate unemployment when the generosity of UI changes

for all workers. The macro-elasticity accounts for the equilibrium adjustment in labor market tight-

ness that follows a change in UI, whereas the micro-elasticity takes labor market tightness as given.

Second, our formula includes an additional term increasing with the wedge between micro- and

macro-elasticity. This wedge captures the first-order welfare effects of the adjustment of aggregate

employment that arises from the equilibrium adjustment of labor market tightness after a change

in UI.1 Last, our formula is robust to changes in the primitives of the model because it is expressed

in terms of sufficient statistics [Chetty, 2006a]. It is easily adapted to a broader class of models:

models in which wages respond to UI, such as the Pissarides [2000] model with Nash bargaining;

or models in which workers can partially insure themselves against unemployment.

Our second contribution is to prove that there exists a positive wedge between micro- and macro-

elasticity in our model. When jobs are rationed, searching more to increase one’s probability

of finding a job mechanically decreases others’ probability of finding one of the jobs left, thus

reducing the macro-elasticity compared to the micro-elasticity. Indeed since unemployed workers

choose their effort taking the per-unit job-finding probability as given, they do not internalize their

influence on others’ employment probability, thus imposing a negative rat-race externality. We

also prove that this wedge is countercyclical and the macro-elasticity is procyclical. Intuitively in

recession, jobs are lacking irrespective of job search. Efforts of jobseekers have little influence

on aggregate unemployment, and the rat-race externality is exacerbated. Thus the macro-elasticity

is small and the wedge between micro- and macro-elasticity is large. Last, the positive wedge

1In contrast, jobs destroyed through reduced search efforts have no first-order welfare effects as the unemployed
set their search efforts to maximize expected utility.
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between micro- and macro-elasticity is a testable implication of our model that distinguishes it

from standard models of equilibrium unemployment. For instance, the wedge is nil in the Hall

[2005] model with rigid wages, and negative in the Pissarides [2000] model with Nash bargaining.

Our third and most important contribution is to prove that the optimal generosity of UI is coun-

tercyclical. The first reason is that the macro-elasticity decreases sharply in recession. Hence a

more generous UI, while reducing aggregate search effort, has smaller budgetary cost because it

only increases unemployment negligibly. The second reason is that the wedge between micro- and

macro-elasticity, which measures the welfare cost of the rat-race externality, increases in recession.

Accordingly UI, which corrects this externality by discouraging job search, is more desirable. Al-

though we model only technology shocks, we conjecture that other shocks affecting labor demand

such as credit shocks or aggregate demand shocks would affect optimal UI in the same way.

Finally, we use numerical methods to assess the robustness of our theoretical results in an

infinite-horizon, stochastic model under various arrangements for the administration of UI. We

calibrate the model with US data. In the baseline case, in which the government balances its bud-

get each period and unemployment benefits never expire, we find large variations in the optimal

replacement rate: from 67% when unemployment is as low as 4% to 85% when unemployment

reaches 9%. Next, we allow the government to borrow and save. After an adverse economic shock

the optimal replacement rate responds as in the baseline case, although the government provides

higher consumption to both employed and unemployed workers. Lastly, we make the UI system

more realistic by allowing the government to adjust the duration of unemployment benefits. In a

model calibrated to match an optimal duration of 26 weeks when unemployment is at 5.9%, as

in the US, the optimal duration of unemployment benefits is strongly countercyclical: it increases

from less than 10 weeks to over 100 weeks when unemployment increases from 4% to 8%.

The paper is organized as follows. Section 2 presents a one-period model in which we derive

optimal UI formulas in terms of estimable sufficient statistics. Section 3 specializes this model to

introduce job rationing, and characterizes optimal UI over the business cycle. Section 4 verifies

the robustness of our theoretical results in a calibrated infinite-horizon model. Section 5 discusses

empirical evidence. Derivations, proofs, and robustness checks are collected in the Appendix.
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2 Optimal Unemployment Insurance Formula

This section derives an optimal UI formula in a generic one-period model of equilibrium unem-

ployment. The formula is expressed in terms of sufficient statistics (curvature of the utility func-

tion, micro- and macro-elasticity of unemployment with respect to net reward from work) and does

not require more structure on the primitives of the model. We extend the formula if workers can

partially insure themselves, and if UI influences wages. This static model transparently captures

the economic mechanisms at play; it is embedded in a more realistic dynamic setting in Section 4.

2.1 Labor market

There is a unit mass of workers. Initially, u ∈ (0,1) workers are unemployed and search for a job

with effort e, while 1−u workers are employed. Firms post o job openings to recruit unemployed

workers. The number of matches h made is given by a constant-returns matching function h =

h(e · u,o) of aggregate search effort e · u and vacancies o, differentiable and increasing in both

arguments, with the restriction that h(e · u,o) ≤ min{u,o}. Conditions on the labor market are

summarized by labor market tightness θ≡ o/(e ·u). A jobseeker finds a job with probability f (θ)≡

h(e ·u,o)/(e ·u) = h(1,θ) per unit of search effort; hence a jobseeker searching with effort e finds

a job with probability e · f (θ). A vacancy is filled with probability q(θ)≡ h(e ·u,o)/o = h(1/θ,1).

In a tight market it is easy for jobseekers to find jobs—the per-unit job-finding probability f (θ) is

high—and difficult for firms to hire—the job-filling probability q(θ) is low.

2.2 Worker

A worker’s utility is v(c)−k(e), where v(c) is an increasing and concave function of consumption

c and k(e) is an increasing and convex function of effort e. Employed workers earn a wage w(a)

that is taxed at rate t to finance unemployment benefits b ·w(a). The parameter a proxies for the

position in the business cycle, and is fixed throughout Section 2. Workers neither borrow nor save,

so consumption is ce = w(a) · (1− t) when employed and cu = b ·w(a) when unemployed.2 We
2We relax the assumptions that wages do not respond to UI and workers cannot self-insure in Sections 2.7 and 2.8.
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denote by ∆c = ce− cu and ∆v = v(ce)− v(cu) the net reward from work in terms of consumption

and utility, respectively. Given labor market tightness θ and net reward from work ∆v, a jobseeker

chooses effort e to maximize expected utility

v(cu)+ e · f (θ) ·∆v− k(e).

The optimal job-search effort satisfies the following first-order condition:

k′(e) = f (θ) ·∆v. (1)

Equation (1) implicitly defines the optimal effort e(θ,∆v), which increases with θ—as the per-unit

job-finding probability f (θ) increases with θ—and with the net utility gain from working ∆v.

For a given labor market tightness θ and average job-search effort e, a fraction e · f (θ) of the

u unemployed workers finds a job during matching. These u · e · f (θ) new hires add to the 1− u

workers already employed before matching, to give aggregate employment after matching

ns(e,θ) = (1−u)+u · e · f (θ). (2)

ns(e,θ) increases mechanically with e and θ, so that labor supply ns(e(θ,∆v),θ) increases with

θ and ∆v. θ affects labor supply through the optimal provision of job-search effort e(θ,∆v), and

mechanically, through the per-unit job-finding probability f (θ). ns(e(θ,∆v),θ) is a labor supply

because it gives the number of employed workers after matching when jobseekers choose search

effort optimally for a given labor market tightness θ.

2.3 Labor demand and equilibrium

In a model of equilibrium unemployment, labor market tightness θ equalizes labor demand and

labor supply:

ns(e(θ,∆v),θ) = nd(θ;a)≡ n(∆v;a), (3)
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where ∆v is fixed by the UI policy, a is the fixed parameter determining the position in the business

cycle, nd(θ;a) is a general function that summarizes firms’ demand for labor, and n(∆v;a) denotes

equilibrium employment. We assume that equilibrium labor market tightness θ(∆v;a) is uniquely

defined by equation (3). We put more structure on nd(θ;a) in Section 3 when we characterize

optimal UI over the business cycle using a model with job rationing.

Equation (3) is the key departure from the canonical Baily-Chetty model of optimal UI. The

Baily-Chetty framework is a partial-equilibrium model of unemployment in the sense that it fixes

labor market tightness θ and per-unit job-finding probability f (θ). In contrast, our framework

is a general-equilibrium model of unemployment in the sense that labor market tightness θ is

determined endogenously in equation (3) to equilibrate supply and demand for labor. While the

Baily-Chetty framework studies the partial-equilibrium response ∂ns [e(θ,∆v),θ]/∂∆v|θ of labor

supply to a change in unemployment benefits, we focus on the general-equilibrium response of

aggregate employment dn/d∆v to a change in unemployment benefits.

A cut in benefits increases the utility gain from work by d∆v> 0, which increases effort by de=

[∂e(θ,∆v)/∂∆v|θ] ·d∆v> 0 and labor supply by dns
e = [∂ns/∂e|θ] ·de> 0 in partial equilibrium with

θ constant. However in general equilibrium, θ adjusts so that (3) continues to hold. The response

of aggregate employment takes into account the partial-equilibrium response of labor supply dns
e

as well as the equilibrium adjustment of labor market tightness dθ, which affects equilibrium

employment by dns
θ
= [∂ns/∂θ|e] · dθ. Our framework nests the Baily-Chetty framework as a

special case in which labor demand nd is perfectly elastic and determines θ independently of UI.

But as long as labor demand is not perfectly elastic, the implications of our model differ from those

of the Baily-Chetty model because the general-equilibrium response of aggregate employment

dn = dns
e +dns

θ
differs from the partial-equilibrium response dns

e of labor supply.

2.4 Government

The government chooses consumption levels ce and cu to maximize social welfare

ns(e,θ) · v(cu +∆c)+ [1−ns(e,θ)] · v(cu)−u · k(e) (4)
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where e(θ,∆v) is given by the worker’s optimal choice of effort (1); θ(∆v;a) clears the labor market

as imposed by (3); and consumptions ce,cu satisfy the government’s budget constraint:

n · ce +(1−n) · cu = n ·w. (5)

2.5 Micro-elasticity and macro-elasticity

To solve the government’s problem, we need to characterize the response of jobseekers (through a

change in effort) and of the aggregate labor market (through a change in tightness) to a change in

UI. To this end, we define two elasticities.

DEFINITION 1. The micro-elasticity of unemployment with respect to net reward from work is

ε
m ≡ ∆c

1−n
· ∂ns

∂e

∣∣∣∣
θ

· ∂e
∂∆v

∣∣∣∣
θ

· d∆v
d∆c

. (6)

The macro-elasticity of unemployment with respect to net reward from work is

ε
M ≡ ∆c

1−n
· dn

d∆c
= ε

m +
∆c

1−n
·
(

∂ns

∂θ

∣∣∣∣
e
+

∂ns

∂e

∣∣∣∣
θ

· ∂e
∂θ

∣∣∣∣
∆v

)
· dθ

d∆v
· d∆v

d∆c
. (7)

If labor demand is perfectly elastic, θ is determined by firms independently of UI and εM = εm.

Both elasticities are normalized to be positive. The micro-elasticity measures the percentage

increase in unemployment 1−n when the net reward from work ∆c decreases by 1%, ignoring the

equilibrium adjustment of θ on n.3 This elasticity can be estimated by measuring the reduction

in the job-finding probability of an individual unemployed worker whose unemployment benefits

are increased, keeping the benefits of all other workers constant such that labor market conditions

remain unchanged. The macro-elasticity measures the percentage increase in unemployment when

the net reward from work decreases by 1%, assuming all variables adjust. This elasticity can be

estimated by measuring the increase in aggregate unemployment following a general increase in
3Equations (1) and (2) define labor supply ns(e(θ,∆v),∆v) as a function of ∆v and θ, so the natural partial-

equilibrium elasticity of labor supply is defined relative to ∆v. To obtain an elasticity with respect to ∆c, we need
to include the term d∆v/d∆c that specifies the increase in ∆v in response to a budget-balanced increase in ∆c.
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unemployment benefits. Section 5 proposes empirical strategies to estimate these elasticities.

Critically, as long as labor demand is not perfectly elastic, these two elasticities differ in a model

of equilibrium unemployment. As an illustration, consider a pure rat-race model in which there

are u jobseekers, and a fixed number o < u of job openings. For a given job-finding probability f

per unit of search effort, the unconditional probability to be employed after the matching process

for a worker searching with effort e is ns(e, f ) = (1− u)+ u · e · f . At the micro level, searching

harder increases employment probability so that micro-elasticity εm > 0. But firms only need to fill

a fixed number of vacant jobs, so that equilibrium employment is fixed, independent of aggregate

search effort: n = 1− u+ o < 1. Hence macro-elasticity εM = 0. The discrepancy between εm

and εM arises because, as a result of the job shortage, per-unit job-finding probability f falls when

aggregate search effort e rises to equilibrate labor supply ns(e, f ) with the fixed labor demand

1−u+o. Indeed in equilibrium, f = o/(u · e).

2.6 Formula

Following optimal income tax theory, the government chooses the net consumption gain from work

∆c, which determines cu = n · (w−∆c) and ce = cu +∆c through the budget constraint.4 Denoting

average marginal utility by v̄′ ≡ n · v′(ce) + (1− n) · v′(cu), and using the envelope theorem as

workers choose effort e optimally, the first-order condition of the government’s problem (4) with

respect to ∆c is5

n · v′(ce)+ v̄′ · dcu

d∆c
+∆v · ∂ns

∂θ

∣∣∣∣
e
· dθ

d∆c
= 0. (8)

To gain intuition, consider a small increase d∆c > 0 in the net reward from work—equivalent

to a cut in unemployment benefits. The first term in (8) captures the utility gain of the n em-

ployed workers, whose consumption ce = cu +∆c increases by d∆c: dS1 = n · v′(ce) · d∆c. To

satisfy the budget constraint, increasing ∆c requires cutting unemployment benefits cu = n · (w−
4Optimal income tax theory always expresses optimal tax rates as a function of the elasticity of earnings with

respect to one minus the marginal tax rate. The optimal UI problem is isomorphic to an optimal tax problem where (i)
the implicit tax rate on work is t∗ = t +b, the sum of labor tax and benefits rate, and (ii) there are two earning levels,
“working” and “not working”. ∆c is directly related to t∗: ∆c = (1− t∗) ·w.

5To apply the envelope theorem, we notice that social welfare (4) is (1−u) ·v(ce)+u · [v(cu)+ e · f (θ) ·∆v− k(e)].
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∆c), which reduces by dcu the consumption of all workers, including the employed as ce =

cu + ∆c. The second term in (8) captures this utility loss: dS2 = −v̄′ · dcu. Since dcu = −n ·

d∆c+(w−∆c) · dn = −
{

n− (1−n) · [(w−∆c)/∆c] · εM} · d∆c, then we can rewrite dS2 = −v̄′ ·{
n− (1−n) · [(w−∆c)/∆c] · εM} ·d∆c. The macro-elasticity εM appears in this expression of dS2

to capture the budgetary cost of the increase in equilibrium unemployment caused by higher UI.

In our model, the per-unit job-finding probability f (θ) depends on labor market tightness θ,

which is determined in equilibrium by (3) as the intersection of demand and supply for labor. The

increase d∆c > 0 in net reward from work increases the incentive to search by d∆v > 0, which

shifts labor supply ns(e(θ,∆v),θ) outwards. Hence, a small increase d∆c > 0 leads to a small

equilibrium adjustment dθ of labor market tightness. This change dθ in turn leads to a small

change dnθ in aggregate employment through two channels: (i) a change (∂ns/∂e) · (∂e/∂θ) · dθ

in employment through a reduction in search effort—this reduction, however, does not have any

welfare effect by the envelope theorem as workers choose effort to maximize expected utility; and

(ii) a change (∂ns/∂θ) · dθ in employment through a change in per-unit job-finding probability

f (θ). Each new job created through (ii) generates a first-order utility gain ∆v > 0 as finding a

job discretely increases consumption. The third term in (8) captures the welfare change from

this equilibrium adjustment dθ. As indicated by the definition (7) of the macro-elasticity εM, the

employment change dnθ can be measured by the wedge between micro-elasticity εm and macro-

elasticity εM. In fact, we can even relate the change (∂ns/∂θ) ·dθ in employment, which is the only

relevant change from a welfare perspective, to the wedge εm− εM, as showed in Lemma 1.

LEMMA 1. The partial derivative of equilibrium labor market tightness satisfies:

∆c
θ
· dθ

d∆c
=− κ

κ+1
· 1

1−η
· 1−n

h
·
[
ε

m− ε
M] ,

∆c
1−n

· ∂ns

∂θ

∣∣∣∣
e
· dθ

d∆c
=− κ

κ+1
·
[
ε

m− ε
M] ,

where κ = e · k′′(e)/k′(e) is the elasticity of the marginal disutility of effort k′(·), 1− η = θ ·

f ′(θ)/ f (θ) is the elasticity of the per-unit job-finding probability f (·), and h = u · e · f (θ) is the

number of new hires.
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Using this Lemma, we can rewrite dS3 = −∆v · [κ/(1+κ)] · [(1− n)/∆c] · [εm− εM] · d∆c. At

the optimum the sum of the three effects dS1+dS2+dS3 is zero, yielding first-order condition (8).

We rewrite (8) in terms of elasticities in Proposition 1.

PROPOSITION 1. The optimal replacement rate τ = cu/ce satisfies

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(cu)

v′(ce)

]−1

·
{

n
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce) ·∆c

· κ

κ+1
·
[

εm

εM −1
]}

. (9)

If n≈ 1, and if the third and higher order terms of v(·) are small, the optimal formula simplifies to

τ

1− τ
≈ ρ

εM · (1− τ)+

[
εm

εM −1
]
· κ

1+κ
·
[
1+

ρ

2
· (1− τ)

]
, (10)

where ρ =−ce · v′′(ce)/v′(ce) is the coefficient of relative risk aversion.

If labor demand is perfectly elastic, εm = εM, the second term in the right-hand side of (9)

and (10) vanishes, and the formulas reduce to those in Baily [1978] and Chetty [2006a].

The proposition provides a formula for the optimal replacement rate τ = cu/ce, which measures

the generosity of the UI system. Equation (9) provides an exact formula while equation (10) pro-

vides a simpler formula using the approximation method of Chetty [2006a]. The approximated

formula (10) is expressed in terms of sufficient statistics, which means that the formula is robust to

changes in the primitives of the model. Indeed the formula is valid for: any utility over consump-

tion with coefficient of relative risk aversion ρ; any marginal disutility of effort with elasticity κ

and associated micro-elasticity εm; any labor demand, function only of labor market tightness and

an exogenous shock, yielding a macro-elasticity εM; and any constant-returns matching function.

Since these four statistics are estimable, the formula can be used to assess the current UI system.6

Admittedly, the statistics are endogenous functions of the replacement rate τ, so we cannot infer

directly the optimal replacement rate from current estimates of the statistics. Nevertheless, we

can infer that increasing the replacement rate is desirable if the current τ/(1− τ) is lower than the

6Section 5 discusses how to estimate micro- and macro-elasticity. In the Appendix, we explain how to estimate κ

from the micro-elasticity of unemployment with respect to benefits. Many studies estimate the coefficient of relative
risk aversion [Chetty, 2004, 2006b].
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right-hand side of formula (10) evaluated using current estimates of the four statistics.

The first term in the optimal replacement rate (10) increases with the coefficient of relative risk

aversion ρ, which measures the value of insurance. Absent any wedge between micro- and macro-

elasticity (εm = εM), our formulas reduce to the classical Baily-Chetty formula. For instance, the

approximated formula (10) becomes τ/(1− τ) ≈ (ρ/εm) · (1− τ). In this formula, the trade-off

between need for insurance (captured by the coefficient of relative risk aversion ρ) and need for

incentives to search (captured by the micro-elasticity εm) appears transparently. In a model of

equilibrium unemployment, there is generally a wedge between micro- and macro-elasticity, and

our formula presents two departures from the Baily-Chetty formula.

The first term in the right-hand side of formulas (9) and (10) involves the macro-elasticity εM

and not the micro-elasticity εm that has been conventionally used to calibrate optimal benefits

[Chetty, 2008; Gruber, 1997]. What matters for the government is the cost of UI in terms of higher

aggregate unemployment and hence higher outlays of unemployment benefits. Only the macro-

elasticity εM is able to capture this cost of moral hazard in general equilibrium. The optimal

replacement rate naturally decreases with the elasticity εM.

A second term, increasing with the ratio εm/εM, also appears in the right-hand side of formu-

las (9) and (10) when εm 6= εM. This term is a correction that accounts for the first-order welfare

effects of the adjustment of aggregate employment that arises from the equilibrium adjustment of

labor market tightness after a change in UI. Even in the absence of any concern for insurance—for

instance, if workers are risk neutral—some unemployment insurance should be provided as long

as this correction term is positive.

2.7 Workers are able to partially insure themselves

We now extend our model to include partial self-insurance by workers. Chetty [2006a] shows

that the Baily formula carries over to models with savings, borrowing constraints, private insur-

ance, or leisure benefits of unemployment. Similarly, formulas (9) and (10) carry over with minor

modifications. Introducing self-insurance through borrowing and saving would require a fully dy-
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namic model. Instead, we consider the simpler case of self-insurance through home production.

In addition to unemployment benefits cu received from the government, unemployed workers who

have not been matched to a job consume an amount y of good produced at home at a utility cost

m(y), increasing, convex, and normalized so that m(0) = 0. We denote by ĉu = cu + y the total

consumption when unemployed, and by ∆̂v = v(ce)− [v(cu + y)−m(y)] the utility gain from work.

Jobseekers choose effort e and home production y to maximize

[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e).

Home production y is chosen so that v′(cu + y) = m′(y). It provides additional insurance that is

partially crowded out by UI, as y decreases with cu. The government chooses ∆c to maximize

ns(e,θ) · v(cu +∆c)+ [1−ns(e,θ)] · [v(cu + y)−m(y)]−u · k(e),

where both e and y are chosen optimally by individuals, subject to the same constraints as in our

original problem. Using the envelope theorem as earlier, we derive an optimal UI formula:

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(ĉu)

v′(ce)

]−1

·
{

n
εM ·

[
v′(ĉu)

v′(ce)
−1
]
+

∆̂v
v′(ce) ·∆c

· κ

κ+1
·
[

εm

εM −1
]}

.

Hence, formula (9) carries over simply by replacing v′(cu) by v′(ĉu), and ∆v by ∆̂v.7 Although the

structure of the formula does not change, the benefit from consumption smoothing: v′(ĉu)/v′(ce)−

1 in the first term of the formula is smaller if individuals can partially self-insure using home

production, because ĉu ≥ cu. The welfare effect of the equilibrium adjustment of θ is also smaller

because maxy [v(cu + y)−m(y)] ≥ v(cu) so ∆̂v = v(ce)− [v(cu + y)−m(y)] ≤ ∆v = v(ce)− v(cu).

Hence, if workers can partially smooth consumption on their own, the optimal replacement rate τ=

ce/cu is lower than in our original model without self-insurance. As already noted by Baily [1978]

and Chetty [2006a], a UI program is less desirable in this case. This extended formula can be

implemented using estimates of the consumption-smoothing benefit of UI [Gruber, 1997]. Finally,

7The Appendix derives an approximated optimal UI formula expressed in terms of sufficient statistics as in (10).
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it is conceivable that self-insurance technology is not available in recessions as workers exhaust

savings or ability to borrow. This absence would provide an additional rationale for increasing UI

in recession, over and above the mechanism described in this paper.8

2.8 UI influences wages

We now extend our model to account for a possible response of wages to UI. Formula (9) carries

over with minor modifications. We assume that the wage w(t∗;a) is a function of the total implicit

tax on work t∗ = t +b. In that case, a change d∆c in the generosity of UI affects the government

budget’s constraint not only through a change dn in employment, but also through a change dw in

wages. Let εw = ([1− t∗]/w) · (dw/dt∗) be minus the elasticity of equilibrium wages with respect

to one minus the total implicit tax on work. εw is typically positive if wages are bargained.9 The

optimal UI formula (9) becomes

1
n

τ

1− τ
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1{ n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

κ

κ+1

[
εm

εM −1
]}

+
[n+ τ/(1− τ)]εw

(1−n)(1− εw)εM .

A new term appears on the right-hand side of the formula because wages respond to UI.10 This

term is positive if εw > 0, as higher benefits translate into higher wages and hence a bigger tax

base. More importantly, the macro-elasticity εM is likely to be much higher than in our basic

model because higher benefits now increase wages, depress labor demand, and hence increase

unemployment further. Therefore, optimal UI is likely to be lower when wages respond to UI.

8Kroft and Notowidigdo [2011] estimate that the consumption-smoothing benefit of UI is acyclical, suggesting that
this channel may not be quantitatively important.

9Higher unemployment benefits typically strengthen the outside option of workers and raise wages in bargaining.
10This formula also applies to any setting in which the government’s budget constraint is n · ce + (1− n) · cu =

n · x(t∗;a), where x(t∗;a) is taxable output per employed worker, by simply replacing the elasticity εw by εx =
([1− t∗]/x) · (dx/dt∗). For instance, it applies if the government taxes wages and some fraction of firms’ profits.
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3 Optimal Unemployment Insurance over the Business Cycle

This section applies formula (9) to a model capturing two key properties of recessions: (i) unem-

ployment is higher in recessions; and (ii) jobs are rationed in recessions, as some unemployment

remains even if unemployed workers search for jobs intensively. In this model of job rationing, we

characterize micro- and macro-elasticity to infer that the optimal UI is countercylical.

3.1 The job-rationing model of Michaillat [forthcoming]

The representative firm takes prices as given. It takes labor n as input to produce a consumption

good according to the production function a · g(n) = a · nα. α > 0 measures marginal returns to

labor. a > 0 is the level of technology, which proxies for the position in the business cycle.

ASSUMPTION 1. The production function has diminishing marginal returns to labor: α < 1.

This assumption yields a downward-sloping demand for labor in the price θ-quantity n diagram,

which has important macroeconomic implications. This assumption is motivated by the observa-

tion that, at business cycle frequency, some production inputs are slow to adjust so that a short-run

production function exhibits diminishing marginal returns to labor.

As in Pissarides [2000], it costs r ·a to open a vacancy, where r > 0 denotes the resources spent

on recruiting due to matching frictions. We assume away randomness at the firm level: a worker is

hired with certainty by opening 1/q(θ) vacancies and spending r ·a/q(θ). When the labor market

is tighter, a firm posts more vacancies to fill a job, and recruiting is more costly.

Wages are set once worker and firm have matched. Since the costs of search are sunk at the

time of matching, there are always mutual gains from trade. There is no compelling theory of

wage determination in such an environment [Hall, 2005]. Given the indeterminacy of wages, we

use a simple wage schedule: w(t∗;a) =ω(t∗) ·aγ. As in Blanchard and Galı́ [2010], the parameter γ

captures the rigidity of wages over the business cycle. If γ = 0, wages do not respond to technology

and are completely fixed over the cycle. If γ = 1, wages are proportional to technology and are

fully flexible over the cycle. The function ω(t∗) captures the response of wages to a change in the
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implicit tax on work t∗ = t +b.

ASSUMPTION 2. The wage schedule is rigid: ω(t∗) = ω > 0 and γ < 1.

We assume that wages are rigid, in the sense that (i) they only partially adjust to a change in

technology, and (ii) they do not respond to a change in UI. Rigidity (i) generates unemployment

fluctuations over the business cycle [Hall, 2005]. Rigidity (ii) makes labor demand independent

of UI and allows us to focus on the classical trade-off between insurance and incentive to search.

Both assumptions are empirically grounded. Many ethnographic and empirical studies document

wage rigidity over the business cycle [Michaillat, forthcoming]. Empirical studies consistently find

that re-employment wages of unemployed workers do not respond to changes in unemployment

benefits [for example, Card et al., 2007].

The firm starts with 1−u workers, and decides how many additional workers to hire such that

employment nd maximizes real profit:11

π = a ·g(nd)−w(a) ·nd− r ·a
q(θ)

·
[
nd− (1−u)

]
.

The first-order condition (after dividing by a) defines implicitly labor demand nd(θ;a):

g′(nd) =
w(a)

a
+

r
q(θ)

. (11)

Under Assumption 1, g′(n) decreases in n. Thus labor demand nd(θ;a) decreases with labor market

tightness θ, since the job-filling probability q(θ) decreases in θ. Intuitively, when the labor market

is slack, it is easy and cheap for firms to recruit, stimulating labor demand. Under Assumption 2,

w(a)/a decreases with a, and hence nd(θ;a) increases with a. When technology is low, wages are

relatively high, depressing labor demand.

The equilibrium in the labor market is depicted in Figure 1 in a price θ-quantity n diagram. This

figure plots labor demand curves for high (left panel) and low (right panel) technology; it also plots

11We assume that technology a is high enough such that it is optimal for the firm to choose positive hiring: h =

nd− (1−u)> 0. This assumption requires a > (ω/α) · (1−u)(1−α)/(1−γ).
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labor supply for low (dotted line) and high (solid line) incentive to search ∆v. Equilibrium employ-

ment n(∆v;a) is given by the intersection of the downward-sloping labor demand curve nd(θ;a)

with the upward-sloping labor supply curve ns(e(θ,∆v),θ). In this frictional labor market wages

are indeterminate so labor market tightness θ acts as a price that equalizes labor supply and labor

demand. If labor supply is above labor demand, a reduction in θ: increases labor demand nd by

reducing recruiting costs; reduces labor supply ns by reducing the per-unit job-finding probability

as well as optimal search effort; until labor supply and labor demand are equalized.

Jobs are rationed in recessions in the sense that the labor market does not clear and some un-

employment remains even as the search effort of unemployed workers becomes arbitrarily large.

The mechanism creating this job shortage is quite simple, and is depicted in Figure 1. After a neg-

ative technology shock, the marginal product of labor falls but rigid wages adjust downwards only

partially, so that the labor demand shifts inward (from the left to the right panel). If the adverse

shock is sufficiently large, the marginal product of the least productive workers falls below the

wage. It becomes unprofitable for firms to hire these workers even if recruiting is costless at θ = 0:

labor demand cut the x-axis at nR < 1 on the right panel. Even if workers searched infinitely hard,

shifting labor supply outwards and pushing the labor market tightness θ to 0, firms would never

hire more than nR < 1 workers: jobs are rationed. This property implies that when the shortage of

jobs is acute in recessions, the social returns to search are small because an increase in aggregate

search effort leads only to a negligible increase in aggregate employment.

Our model is quite general as it nests as polar opposites: (i) the pure rat-race in which the

number of jobs is fixed because labor demand is perfectly inelastic; and (ii) the Baily-Chetty

model in which jobs are not rationed because labor demand is perfectly elastic and aggregate

employment is solely driven by job-search efforts. To obtain the pure rat-race model, we set the

job-filling probability as a constant: q(θ) = q.12 To obtain the Baily-Chetty model, we set constant

marginal returns to labor: α = 1. In Figure 1, labor demand nd(θ;a) is vertical for the pure rat-race

model, and horizontal for the Baily-Chetty model.

12With a Cobb-Douglas matching function h(e ·u,o) = ωh · (e ·u)η ·o1−η, we achieve q(θ) = q by setting η = 0.
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Figure 1: Labor market equilibrium in a price θ–quantity n diagram

3.2 Wedge between micro-elasticity and macro-elasticity

Section 2.5 defined micro- and macro-elasticity εm and εM. In the standard Baily-Chetty model,

εm = εM. In contrast, εm > εM = 0 in the pure rat-race model with a fixed number of jobs. This

section shows that a positive wedge between micro- and macro-elasticity arises in our model with

endogenous job rationing.

ASSUMPTION 3. The utility functions are isoelastic: v(c) = c1−ρ/(1−ρ), k(e) = ωk ·e1+κ/(1+

κ). The matching function is Cobb-Douglas: h(e ·u,o) = ωh · (e ·u)η ·o1−η.

ρ > 0 is the coefficient of relative risk aversion, ωk > 0 measures the disutility of searching,

ωh > 0 measures the effectiveness of matching, 1− η > 0 is the elasticity of the per-unit job-

finding probability with respect to labor market tightness θ, and as showed in the Appendix, κ > 0

is the elasticity of effort with respect to net reward from work ∆v = v(ce)− v(cu). Assumption 3

enables us to derive a simple expression for the ratio εm/εM, and simplifies the study of formula (9).

PROPOSITION 2. Under Assumption 3, the ratio εm/εM admits a simple expression

εm

εM = 1+χ ·q(θ) · h
n
·nα−1
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where χ=α ·(1−α) · [(1−η)/η] · [(1+κ)/κ] ·(1/r) is constant. Under Assumption 1: εm/εM > 1.

This proposition shows that there is a positive wedge between micro- and macro-elasticity when

the demand for labor is downward-sloping, as illustrated by Figure 1. To understand where the

wedge between these elasticities come from, consider a cut in unemployment benefits d∆c > 0.

This change creates variations in all variables d∆v, dn, dθ, and de, so that all equilibrium con-

ditions continue to be satisfied. The change in effort can be decomposed as de = de∆v + deθ,

where de∆v = (∂e/∂∆v)d∆v is a partial-equilibrium variation in response to the change in UI,

and deθ is a general-equilibrium adjustment following the change dθ in labor market tightness.

Using the labor supply equation (2), we have dn = dne + dnθ where dne = (∂ns/∂e)de∆v and

dnθ = [∂ns/∂θ+(∂ns/∂e)(∂e/∂θ)]dθ. Following a cut in benefits an individual jobseeker in-

creases his search effort, increasing his own probability to find a job by dne > 0. From the job-

seeker’s perspective, labor market tightness θ remains constant. The interval A–C in Figure 1 rep-

resents dne. However when the jobseeker finds a job, he reduces the profitability of the marginal

jobs left vacant because (1) the productivity of these jobs falls by diminishing returns to labor,

but (2) the prevailing wage does not adjust to this drop in marginal productivity . Thus, the firm

reduces the number of vacancies posted to fill these less profitable jobs. Labor market tightness

falls by dθ < 0, reducing the per-unit job-finding probability f (θ) of jobseekers who are still un-

employed. This is the exact same mechanism as in the pure rat-race model of Section 2.5. dnθ < 0

is the corresponding reduction in employment, represented by interval C–B in Figure 1. As a

consequence, the general-equilibrium increase in aggregate employment dn following an increase

in aggregate search efforts is smaller than the partial-equilibrium increase dne in the individual

probability to find a job following an increase in individual search efforts. The interval A–B in

Figure 1 represents dn < dne. The difference between the micro-effect dne and the macro-effect

dn is dnθ < 0. This difference arises because of job rationing, and is captured by the wedge εm−εM

(as formalized by Lemma 1).

Policy implications. Proposition 2 has important implications for the design of UI. It implies

that private insurers under-provide UI from a social perspective. Small private insurers would
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use the Baily-Chetty formula and solely take into account the micro-elasticity of unemployment

when they determine the optimal level of insurance for their client. From the perspective of the

private insurer’s budget, it is optimal to have unemployed workers search hard for jobs to increase

their individual probability to find a job. When jobs are rationed this additional search effort

reduces the probability of other jobseekers to find a job, but private insurers do not internalize this

externality. If the government provides UI instead, it would take into account the macro-elasticity

of unemployment and offer a more generous UI.13

Testable implication. Proposition 2 shows that there is a positive wedge εm > εM in our model

with job rationing. This positive wedge is a testable implication of our model that distinguishes

it from standard models of equilibrium unemployment. For instance, the wedge is nil in the Hall

[2005] model with rigid wages, and negative in the Pissarides [2000] model with Nash bargaining.

Estimating the sign of this wedge empirically would therefore allow us to distinguish between

these different models of equilibrium unemployment, which have very different implications for

the design of optimal UI. We now briefly discuss the sign of the wedge (εm/εM)−1 in the models

of Hall [2005] and Pissarides [2000].

To capture the main features of the model with rigid wages from Hall [2005], we modify the

model of Section 3.1 by assuming that the production function is linear: α = 1. This model gen-

erates large employment fluctuations but does not exhibit job rationing [Michaillat, forthcoming].

In Figure 1, the labor demand nd(θ;a) would be horizontal because of constant marginal returns to

labor. Hence, points B and C would be superposed: εm = εM.

To capture the main features of the canonical model from Pissarides [2000], we modify the

model presented in Section 3.1 by assuming that (i) the production function is linear: α= 1; and (ii)

wages are determined by Nash bargaining and, without loss of generality, workers are risk neutral:

v(c) = c. The firm’s surplus from an established relationship is the hiring cost r · a/q(θ) since

a firm can replace a worker immediately at that cost during the matching period. The worker’s

surplus from work is ∆v = ∆c = (1− t∗) ·w. As the bargaining solution divides the surplus of

13We are grateful to Guido Lorenzoni for pointing out to us this application of the result of Proposition 2.
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the match between worker and firm with the worker keeping a fraction β ∈ (0,1) of the surplus,

worker’s and firm’s surplus are related by

(1− t∗) ·w =
β

1−β
· r ·a

q(θ)
. (12)

Using the firm’s first-order condition (11), we infer that the wage schedule satisfies w(t∗;a) =

ω(t∗) ·a with ω(t∗) = β/[β+(1−β) ·(1−t∗)]. The equilibrium wage arising from Nash bargaining

is fully flexible over the business cycle as it is proportional to technology a. It increases when

the implicit tax on work t∗ = t + b increases, because a higher t∗ implies a better outside option

for workers. Increasing ∆c = (1− t∗) ·w by reducing t∗ leads workers to search harder but also

reduces wages and leads firms to recruit more. In equilibrium, labor market tightness increases. In

the diagram of Figure 1, the labor supply shifts outwards and the horizontal labor demand shifts

upwards. Hence, the macro-elasticity is higher than the micro-elasticity. Formally, the surplus-

sharing condition (12) can be rewritten as ∆c = [β/(1−β)] ·(r ·a)/q(θ) and therefore the elasticity

of θ with respect to ∆c is simply εθ
∆c = 1/η > 0. From Lemma 1 we infer that the macro-elasticity

is larger than the micro-elasticity: εM > εm.

3.3 Elasticities and optimal replacement rate over the business cycle

ASSUMPTION 4. Assume that ρ≥ 1, η≥ (1+κ)/(1+2 ·κ), and γ < γ where

1− γ

γ
= (ρ−1) · η

1−η
· 1

κ+1
· sup

∆v,a

{
a ·g′ [n(∆v;a)]

w(a)
−1
}
. (13)

PROPOSITION 3. Under Assumptions 1, 2, 3, and 4:
∂(εm/εM)

∂a

∣∣
τ
< 0 and ∂εM

∂a

∣∣
τ
> 0.

The proposition shows that the wedge εm/εM between micro- and macro-elasticity is small in

good times, but large in recessions when unemployment is high. Furthermore, the macro-elasticity

εM is high in expansions, but small in recessions. Intuitively, recessions are periods of acute

job shortage during which the job-search behavior of unemployed workers has little influence on

aggregate unemployment. Hence the macro-elasticity is bound to be small. Furthermore, because
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of the acute lack of jobs in recessions, searching more to increase one’s probability of finding a job

mechanically decreases other jobseekers’ probability of finding one, as in the pure rat-race model.

Hence, the wedge between micro- and macro-elasticity is large.

Assumption 4 gathers a set of technical conditions used to compute the comparative statics with

respect to technology a, taking the replacement rate τ as given. These conditions are satisfied by

our preferred calibration later presented in Table 1, and are satisfied for a broad range of parameter

values. For instance, with log-utility (ρ = 1), Assumption 4 boils down to a condition on η.

If wages are completely rigid (γ = 0), it boils down to the conditions on ρ and η. Finally, if

technology a is bounded above, there exists a wage rigidity γ > 0 that satisfies equation (13).14

Proposition 4 infers the cyclicality of the optimal replacement rate τ using formula (9) and the

cyclical properties of elasticities εm and εM.

PROPOSITION 4. Assume that formula (9) implicitly defines a unique function τ(a), continuous

and differentiable. Then under Assumptions 1, 2, 3, and 4, dτ/da < 0.

This proposition proves that the optimal UI replace rate τ = cu/ce is more generous in reces-

sions than in expansions. The intuition for this result can be seen using approximated formula (10)

and the results from Proposition 3. In recessions, εM is smaller as job-search has little effect on

aggregate unemployment. Hence a more generous UI, while reducing aggregate search effort be-

cause of moral hazard, has smaller budgetary cost since it only increases unemployment negligibly

(the first term in formula (10) increases). Furthermore, the wedge εm/εM is larger in recession.

Since unemployed workers choose their effort taking the per-unit job-finding probability as given,

they do not internalize their influence on others’ employment probability, thus imposing a negative

rat-race externality. The wedge between micro- and macro-elasticity measures the welfare cost

of the rat-race externality. Accordingly UI, which corrects the rat-race externality by discouraging

job search, is more desirable in recession (the second term in formula (10) increases).

14a ·g′(n)/w(a)> 1 is the wedge between the marginal product of labor and the wage (the wedge is > 1 because of
the existence of positive recruiting costs r/q(θ)). Since employment n ∈ (1−u,1], the marginal product of labor g′(n)
is bounded. a/w = (1/ω) ·a1−γ is bounded above if technology a is bounded above (which is a natural assumption at
business cycle frequency). Thus, the right-hand side of (13) is bounded above if technology is bounded above. In that
case there exists a wage rigidity γ > 0 that satisfies (13).
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4 Extension to an Infinite-Horizon Model

This section verifies numerically that our central theoretical result (Proposition 4) holds in an

infinite-horizon, stochastic extension of the static model of Section 3. In the model calibrated with

US data, the increase in the generosity of optimal UI in recession is quantitatively large. This

numerical result is robust to various institutional arrangements for the administration of UI that

could not be studied in the static model. It holds whether the government adjusts level or duration

of benefits; and whether the government balances its budget each period or uses deficit spending.

4.1 The economy

Technology follows a stochastic process {at}+∞

t=0. Together with initial employment n−1 in the

representative firm, the history of technology realizations at ≡ (a0,a1, . . . ,at) fully describes the

state of the economy in period t. The time-t element of the worker’s choice, firm’s choice, and

government policy must be measurable with respect to (at ,n−1).

The labor market is similar to that in the one-period model. The only difference is that at the

end of period t−1, a fraction s of the nt−1 existing worker-job matches is exogenously destroyed.

Workers who lose their job become unemployed, and start searching for a new job at the beginning

of period t. At the beginning of period t, ut unemployed workers look for a job:

ut = 1− (1− s) ·nt−1.

In steady state, inflow to unemployment s · n equals outflow from unemployment u · e · f (θ), so

labor market tightness θ, effort e, and employment n are related through a Beveridge curve

n =
e · f (θ)

s+(1− s) · e · f (θ)
. (14)

The government chooses {cu
t ,c

e
t }

+∞

t=0 subject to the sequence of budget constraints: for all t,

nt ·w(at) = nt · ce
t +(1−nt) · cu

t . (15)
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Given government policy {ce
t ,c

u
t }

+∞

t=0 and labor market tightness {θt}+∞

t=0, the representative worker

chooses job-search effort {et}+∞

t=0 to maximize the expected utility

E0

+∞

∑
t=0

δ
t ·
{
(1−ns

t ) · v(cu
t )+ns

t · v(ce
t )−

[
1− (1− s) ·ns

t−1
]
· k(et)

}
, (16)

subject to the law of motion of the probability to be employed in period t,

ns
t = (1− s) ·ns

t−1 +
[
1− (1− s) ·ns

t−1
]
· et · f (θt).

E0 denotes the mathematical expectation conditioned on time-0 information, δ < 1 is the discount

factor. Let 1+κ be the elasticity of the disutility from searching k(·). The optimal effort satisfies

{
k′(et)

f (θt)
−δ · (1− s) ·Et

[
k′(et+1)

f (θt+1)

]}
+κ ·δ · (1− s) ·Et [k(et+1)] = v(ce

t )− v(cu
t ). (17)

The representative firm is owned by risk-neutral entrepreneurs. Given labor market tightness and

technology {θt ,at}+∞

t=0, the firm chooses employment
{

nd
t
}+∞

t=0 to maximize expected profit

E0

+∞

∑
t=0

δ
t ·
{

at ·g(nd
t )−w(at) ·nd

t −
r ·at

q(θt)
·
[
nd

t − (1− s) ·nd
t−1

]}
.

As in Hall [2005], we require that no worker-firm pair has an unexploited opportunity for mutual

improvement. Wages should neither interfere with the formation of an employment match that

generates a positive bilateral surplus, nor cause the destruction of such a match.15 In that case,

endogenous layoffs and quits never occur, and nd
t − (1− s) · nd

t−1 ≥ 0 is the number of hires in

period t. The optimal employment satisfies

at ·g′(nd
t ) =w(at)+

r ·at

q(θt)
−δ · (1− s) ·Et

[
r ·at+1

q(θt+1)

]
, (18)

which implies that the firm hires labor until marginal revenue from hiring equals marginal cost.

15As in Michaillat [forthcoming], we can derive a sufficient condition for the wage process to respect the private
efficiency of all worker-firm matches. This condition imposes a lower bound on wage rigidity γ.
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Table 1: Parameter values in simulations (weekly frequency)

Interpretation Value Source

s Separation rate 0.94% JOLTS, 2000–2010
δ Discount factor 0.999 Corresponds to 5% annually
ωh Efficiency of matching 0.19 JOLTS, 2000–2010
η Effort-elasticity of matching 0.7 Petrongolo and Pissarides [2001]
γ Real wage rigidity 0.5 Pissarides [2009], Haefke et al. [2008]
r Recruiting cost 0.21 Barron et al. [1997], Silva and Toledo [2005]
ω Steady-state real wage 0.67 Matches unemployment of 5.9%
α Returns to labor 0.67 Matches labor share of 0.66
ρ Relative risk aversion 1 Chetty [2004, 2006b]
κ Elasticity of marginal disutility

of effort
2.1 Matches micro-elasticity of 0.9 [Meyer, 1990]

ωk Disutility of search effort 0.58 Matches effort of 1 for t = 7.65%, b = 60%

Notes: The calibration of these parameters is detailed in the Appendix.

Wages follow an exogenous stochastic process and cannot equalize labor supply and demand.

Hence labor market tightness {θt}+∞

t=0 equalizes labor demand
{

nd
t
}+∞

t=0 to labor supply {ns
t}

+∞

t=0:

nt = nd
t = ns

t . (19)

An equilibrium with unemployment insurance is a collection of stochastic processes {ce
t , cu

t , et , nt ,

θt}+∞

t=0 that satisfy equations (17), (18), (15), (19). The unemployment insurance program is fully

contingent on the history of realizations of shocks, and is taken as given by firms and workers.

Importantly, we assume that the government can fully commit to the policy plan. The government’s

problem is to choose a government policy {cu
t ,c

e
t }

+∞

t=0 to maximize social welfare (16) over all

equilibria with unemployment insurance. An optimal equilibrium is an equilibrium that attains

the maximum of (16). Finally, we calibrate all parameters of the model at a weekly frequency as

shown in Table 1. The calibration strategy is described in the Appendix.16

16There remains considerable uncertainty about some of the parameters and our model abstracts from a number of
relevant issues. Particularly, there is no consensus about the size of the coefficient of relative risk aversion [Chetty,
2004, 2006b]. Thus, this exercise is only illustrative of the magnitudes of the optimal policy.
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4.2 Optimal unemployment insurance over the business cycle

This section considers static equilibria where technology at = a if fixed (no aggregate shocks) and

analyzes how the equilibria vary with technology level a.17 Environments with lower technol-

ogy have higher unemployment. Figure 2 displays in six panels, as a function of unemployment:

(a) labor market tightness, (b) job-search effort, (c) optimal replacement rate τ = cu/ce, (d) opti-

mal consumptions ce and cu, (e) optimal labor tax rate t = 1− ce/w, and (f) optimal benefit rate

b = cu/w. Panels (a) is a Beveridge curve, showing that labor market tightness decreases with

unemployment. Panel (b) shows that effort decreases with unemployment. Panel (c) displays the

critical result of this section: the optimal replacement rate is strongly countercyclical, for it in-

creases from 64% to 86% when unemployment increases from 4% to 11%. The simulation in

panel (c) confirms that the theoretical result of Proposition 4 also holds in our calibrated infinite-

horizon model. It implies that consumption of unemployed workers increases relative to that of

employed workers in recession. Panel (d) goes one step further: it shows that consumption of un-

employed workers even increases in absolute terms. Panels (e) and (f) show that both benefit rate

and labor tax rate should be countercyclical. In recession, labor tax should increase substantially,

not only to finance benefits to a larger number of unemployed workers, but also to finance benefits

that are more generous relative to the prevailing wage.

4.3 Formula in sufficient statistics

Figure 2 depicts the optimal replacement rate τ(a) as a function of the underlying technology level.

To obtain such a schedule τ(a), one needs to specify and calibrate the entire structure of the model.

In this section, we present an alternative approach to determining optimal UI, which only requires

estimating a few sufficient statistics that summarize the relevant characteristics of the model.

We assume that disutility of effort is isoelastic: k(e) = ωk ·e1+κ/(1+κ). In the infinite-horizon

17In a static environment, the labor market is in steady state: the Beveridge curve (14) holds. In search-and-matching
models, the comparison of static environments delivers the same qualitative predictions as the study of a stochastic
environment [Michaillat, forthcoming; Pissarides, 2009].
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Figure 2: Optimal unemployment insurance over the business cycle
Notes: All computations are based on the infinite-horizon model calibrated in Table 1. Each panel plots a collection of
optimal equilibria in static environments characterized by different underlying technology levels: the unemployment
rate u spans [0.04,0.11] for technology a ∈ [0.96,1.04]. The Appendix characterizes these optimal equilibria, and
presents the numerical computations in detail.
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Figure 3: Micro-elasticity, macro-elasticity, and replacement rates
Notes: Both panels are based on the infinite-horizon model calibrated in Table 1. The left panel plots, as a function
of unemployment, the elasticities of unemployment 1−n with respect to reward from work ∆c = ce−cu, obtained for
τ = 65%. Macro-elasticity εM (blue, solid line) and micro-elasticity εm (red, dashed line) are defined and computed
in the Appendix. The right panel plots replacement rates as a function of unemployment. The red, dashed line is
the replacement rate obtained with the Baily-Chetty formula using micro-elasticity εm: τ/(1− τ) = (ρ/εm) · (1− τ).
The magenta, dotted with circles, line is the replacement rate obtained with the Baily-Chetty formula using macro-
elasticity εM: τ/(1− τ) = (ρ/εM) · (1− τ). The blue, solid line is the replacement rate obtained with formula (20).
For comparison, the green, dashed with circles, line is the exact optimal replacement rate plotted in Figure 2. Each
point corresponds to a different underlying technology level a: u ∈ [0.04,0.11] for a ∈ [0.96,1.04].

setting formula (10), obtained in the one-period model of Section 2, becomes:18

τ

1− τ
≈ ρ

εM · [1− τ]+
1+κ

κ
·
[

εm

εM −1
]
·
[
1+

ρ

2
· (1− τ)

]
. (20)

This approximated formula is valid in a static environment if n≈ 1, u� κ, δ≈ 1, and the third and

higher order terms of v(·) are small. The term κ/(1+κ) in (10) is replaced by (1+κ)/κ in (20),

capturing an increase in the welfare cost of the rat-race externality in the infinite-horizon model,

relative to the one-period model.19

The left panel in Figure 3 displays micro-elasticity εm and macro-elasticity εM of unemploy-

ment with respect to net reward from work as a function of the unemployment rate for a constant

replacement rate τ = 65% (the average replacement rate in the US). The panel confirms that the

18The optimal UI formula (10) in the one-period environment is obtained without making any functional-form
assumption. The optimal search decision (17) is more complex in the infinite-horizon environment as it involves not
only k′(e) as in the static model but also the level k(e). Relating k(e) to k′(e) requires the isoelasticity assumption.

19The Appendix details reasons why the rat-race externality has higher welfare costs in the infinite-horizon model.
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results from Propositions 2 and 3 extend to this infinite-horizon environment: (1) macro-elasticity

is always smaller than micro-elasticity and the wedge between the two elasticities increases in

recessions; and (2) the macro-elasticity decreases in recessions. Furthermore, these cyclical fluc-

tuations are quantitatively large: the ratio εm/εM increases from 5/4 when unemployment is 4% to

8 when unemployment is 11%; the macro-elasticity decreases from 0.40 when unemployment is

4% to 0.05 when unemployment is 11%. At the same time, the micro-elasticity remains broadly

constant. It stays in the narrow 0.4–0.5 range when unemployment varies between 4% and 11%.

The right panel in Figure 3 displays the replacement rate obtained from three alternative for-

mulas, as a function of unemployment. This panel illustrates the discussion of the optimal UI

formula presented in Section 2.6. The green dotted line plots the exact optimal replacement rate

of Figure 2. The blue solid curve is the replacement rate obtained with the approximated optimal

UI formula (20). Those two curves are almost identical showing that formula (20) delivers an

excellent approximation to the exact optimum. Next, the magenta dotted line is the replacement

rate obtained from a Baily-Chetty formula, similar to (20) but excluding the term correcting for the

rate-race externality. This replacement rate is lower than the full optimum because the correction

term is positive as there is a positive wedge between micro- and macro-elasticity. Finally, the red

dashed line is the replacement rate obtained from a standard Baily-Chetty formula, similar to (20)

but excluding the correction term and replacing macro-elasticity εM by micro-elasticity εm in the

first term. As micro-elasticity is almost acyclical, this replacement rate is almost acyclical as well:

it varies within the narrow 48%–52% range. While this replacement rate, used in the public eco-

nomics literature [for example, Gruber, 1997], is close to the optimum when unemployment is low,

it departs significantly from it in recession.20

4.4 The government can borrow and save

So far, we constrained the government to balance its budget each period. The government could not

use deficit spending to shift resources intertemporally from expansions to recessions and smooth

20The micro-elasticity would be slightly more cyclical with higher risk aversion. A higher risk aversion would also
increase significantly the optimal replacement rate and would quantitatively reduce the difference in replacement rates
between our formula and the standard Baily-Chetty formula.
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Figure 4: Impulse response of optimal unemployment insurance to a negative technology shock
Notes: This figure displays impulse response functions (IRFs), which represent the percentage-deviation from steady
state for each variable. We assume that the log-deviation of technology ǎt ≡ d ln(at) follows an AR(1) process:
ǎt+1 = ν · ǎt + zt+1 where zt ∼ N(0,σ2) is an innovation to technology. As in Michaillat [forthcoming], we estimate
this AR(1) process using BLS data for 1964:Q1–2010:Q2 and find ν = 0.991 and σ = 0.0026 at weekly frequency.
IRFs are obtained by imposing an unexpected negative technology shock z1 =−0.01 to the log-linear infinite-horizon
model. The time period displayed on the x-axis is 300 weeks. The blue solid IRFs are responses of the optimal
equilibrium when the government is constrained by (15) to balance its budget each period. The red dashed IRFs are
responses of the optimal equilibrium when the government is subject to a single intertemporal budget constraint (21).
Both log-linear systems and the IRFs computations are described in the Appendix.
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workers’ consumption. This modelling choice allowed us to focus on the trade-off between insur-

ance and incentive to search within each period. However, it is important to understand how our

results change when the government is able to borrow and save as is the case in practice.

In this section, we show that our results are robust to assuming that the government has access to

a complete market for Arrow-Debreu securities. We assume that the government faces risk-neutral

investors with discount factor δ on the security market. An Arrow-Debreu security pays one unit

of consumption good after history at . The price of this security is δt · p(at), where p(at) is the

probability of history at based on time-0 information. The government trades securities at time 0

to finance UI in all histories, and faces a unique intertemporal budget constraint:

0 = E0

+∞

∑
t=0

δ
t · [nt ·w(at)−nt · ce

t − (1−nt) · cu
t ] . (21)

We solve the government’s problem by log-linearization as described in the Appendix. To con-

firm the comovements of technology with optimal UI in a stochastic environment, we compute

impulse response functions. Figure 4 depicts the response of optimal UI to a negative technology

shock in two cases: (1) the blue solid lines are responses in the baseline case in which the gov-

ernment is constrained by (15) to balance his budget each period; and (2) the red dashed lines are

responses when the government is subject to a single intertemporal budget constraint (21). The

response of the optimal replacement rate to an adverse economic shock is almost identical whether

the government uses deficit spending or not. On impact, the replacement rate increases by 0.5%;

it then falls slightly, before building again for 100 weeks; at its peak, it increases by about 0.7%

in both cases. While the generosity of UI is similar in both cases, consumption of both employed

and unemployed workers is higher when the government can borrow. In that case, the government

smoothes consumption of employed workers almost perfectly. In contrast, the consumption of

employed workers falls by about 0.7% on impact when the government must balance its budget

each period. Indeed when the government is able to borrow, its budget deficit—defined as bene-

fit outlays minus tax revenue in the period—increases by about 1% on impact, a consequence of

the additional consumption smoothing provided to workers in recessions. Finally, unemployment
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responds similarly in both cases: it builds slowly and peaks after about 20 weeks.

4.5 Unemployment benefits have finite duration

For simplicity, we assumed that unemployment benefits were available to all unemployed workers,

independently of the length of their unemployment spell, and that the government adjusted the level

of unemployment benefits over the business cycle. In practice, unemployment benefits have finite

duration and governments often modulate the generosity of UI over the business cycle by adjusting

the duration rather than the level of benefits.21 While we could not account for the duration of UI

in a one-period model, we build on our infinite-horizon model to analyze quantitatively this option.

In this section, we assume that the replacement rate of UI is fixed, that unemployment bene-

fits have finite duration, and that the government can adjust the duration of UI over the business

cycle. We confirm that the optimal duration of UI is countercyclical. For tractability, we follow

Fredriksson and Holmlund [2001] and assume that workers exhaust their unemployment benefits

with probability λt at the end of each period t. Eligible unemployed workers receive consumption

cu
t from unemployment benefits, and ineligible unemployed workers receive consumption ca

t < cu
t

from social assistance until they find a job. At the beginning of period t, there are xu
t jobseek-

ers exerting job-search effort eu
t , and xa

t ineligible jobseekers exerting job-search effort ea
t . The

matching process is the same as in the baseline model of Section 4.1, except that we redefine labor

market tightness θt ≡ ot/(ea
t · xa

t + eu
t · xu

t ). After the matching, zu
t eligible jobseekers and za

t ineli-

gible jobseekers are still unemployed. The stocks of workers are linked by the following relations:

zu
t = xu

t · (1− eu
t · f (θt)), za

t = xa
t · (1− ea

t · f (θt)), nt = 1− (za
t + zu

t ), xu
t = zu

t−1 · (1−λt−1)+ s ·nt−1,

xa
t = za

t−1 + λt−1 · zu
t−1. Worker’s and firm’s problems are very similar to those in Section 4.1,

and are described in the Appendix. We assume that the generosity of unemployment benefits:

τu,e = cu
t /ce

t , as well as the generosity of social assistance: τa,e = ca
t /ce

t , are constant over time.

The government chooses the rate λt at which eligible unemployed workers become ineligible, in

21US unemployment benefits have a maximum duration of 26 weeks in normal times. Duration is automatically
extended by up to 20 weeks in states where unemployment is above 8%. Duration is often further extended by
the government in severe recessions. For example, the federal Emergency Unemployment Compensation program,
enacted in 2008, extends durations by an additional 53 weeks when state unemployment is above 8.5%.
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order to maximize social welfare

E0

+∞

∑
t=0

δ
t · [−xu

t · k(eu
t )− xa

t · k(ea
t )+nt · v(ce

t )+ zu
t · v(cu

t )+ za
t · v(ca

t )] ,

subject to a budget constraint in each period t:

nt ·w(at) = nt · ce
t + zu

t · cu
t + za

t · ca
t .

We calibrate the model so that an expected duration of 26 weeks is optimal when the unemploy-

ment rate is at its average level of 5.9%. The left panel in Figure 5 shows how unemployment and

its composition varies with technology. When technology increases, total unemployment falls, the

number of eligible jobseekers falls, but the number of ineligible jobseekers increases because the

expected duration of benefits falls drastically. In fact, all unemployed workers should be eligible

when unemployment reaches 9%, whereas only 60% of them should be eligible when unemploy-

ment falls to 4%. The government chooses the arrival rate λ of ineligibility, and the expected

duration of unemployment benefits is 1/λ. The right panel shows that quantitatively, the optimal

expected duration of benefits is strongly countercyclical. When unemployment is 4%, the optimal

arrival rate of ineligibility is 15% and the optimal expected duration of benefits is 7 weeks. When

unemployment reaches 5.9%, the optimal arrival rate falls to 3.9%, and the optimal duration of

benefits increases to 26 weeks. Finally, when unemployment reaches 8.0%, the optimal arrival rate

drops to 0.5%, and the optimal duration of benefits increases to 200 weeks.22

5 Some Empirical Evidence

To assess the current UI system over the business cycle using formula (20), we need estimates of

micro- and macro-elasticity at various points of the business cycle. Although a large empirical

literature examines the effects of UI on unemployment duration, no study has estimated separately

22As the government chooses the instantaneous arrival rate of ineligibility, durations would not last 200 weeks if a
recession ends quickly. The key point is that jobseekers hardly ever loose their eligibility to UI during deep recessions.
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Figure 5: Optimal duration of unemployment benefits
Notes: Both panels are obtained with the infinite-horizon model in which unemployment benefits have finite duration.
The model is calibrated according to Table 1 (except that ωk = 0.43 here). These panels plot optimal equilibria in
static environments corresponding to different underlying technology levels. In the right panel, u ∈ [0.04,0.09] for
a ∈ [0.96,1.04]. The Appendix characterizes the optimal equilibria, and describes calibration and simulations.

micro- and macro-elasticity, let alone the cyclicality of these two elasticities. This section discusses

the ideal experiments to estimate micro- and macro-elasticity, reviews the existing findings of the

literature, and reports our own new estimates of micro-elasticity over the US business cycle.

5.1 Estimating the micro-elasticity of unemployment

The ideal experiment to estimate the micro-elasticity is to offer higher UI benefits to a randomly

selected small subset of individuals within a labor market and compare unemployment durations

between these treated individuals and the rest of the unemployed. Studies in the literature compar-

ing individuals with different benefits in the same labor market at a given time, while controlling

for individual characteristics, estimate primarily micro-elasticities. To investigate the cyclicality of

the micro-elasticity, it is necessary to replicate this estimation across labor markets with different

unemployment levels. The closest empirical setting to the ideal experiment is that of Schmieder et

al. [2011]. They use sharp variations in the potential duration of unemployment benefits by age in

Germany, population-wide administrative data, and a regression discontinuity approach to identify

compellingly the micro-elasticity of unemployment duration with respect to the potential duration
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of benefit entitlement. Their elasticity estimates are broadly constant over the German business

cycle. The estimates are also small in magnitude relative to estimates of elasticities with respect to

benefit levels such as Meyer [1990].

To estimate the micro-elasticity of unemployment duration with respect to benefit levels, we

use administrative data from the Continuous Wage and Benefit History (CWBH) that record em-

ployment and unemployment history for all workers in 8 US states from 1976 to 1983. To identify

the micro-elasticity, we estimate the effect of benefits using only within state×year variations in

individual benefits. We fit a Cox proportional hazard model with state and year fixed effects in-

teracted, and controlling for observable characteristics of the unemployed (age, education, marital

status, ethnicity, number of dependents). We also introduce a series of non-parametric controls for

previous wage and previous work experience. When adding this rich set of controls, the residual

variation in benefits is likely to be exogenous, and comes primarily from non-linearities in the ben-

efit schedule. We estimate this model for low- and high-unemployment regimes.23 The Appendix

provides all the details. Our main finding is that the elasticity of duration with respect to benefits

is 0.34 (0.04) for low-unemployment regimes, and 0.32 (0.04) for high-unemployment regimes.24

These estimates are very close, suggesting that the micro-elasticity is acyclical as in the simulation

of our calibrated model presented in Figure 3. These findings imply that the conventional Baily-

Chetty formula would recommend a constant replacement rate over the business cycle, in sharp

contrast with the optimal UI in our calibrated model, displayed in Figure 2.

5.2 Estimating the macro-elasticity of unemployment

The ideal experiment to estimate the macro-elasticity is to offer higher UI benefits to all individ-

uals in a randomly selected subset of labor markets and compare unemployment durations across

treated and control labor markets. Estimating the macro-elasticity is inherently more difficult than

23A spell is in a low unemployment regime if the quarterly unemployment rate of the state is below the median
unemployment rate of all states in the US at the beginning of the spell.

24Those estimates are lower than the classic estimates of Meyer [1990]. As shown in Table A1 in the Appendix,
we can replicate almost perfectly the higher magnitude of the estimates of Meyer [1990] when using his exact set of
controls (i.e., not including state×year fixed effects nor non-parametric controls in prior wages and experience). This
suggests that the discrepancy in magnitude is likely due to omitted variable bias in Meyer [1990] estimates.
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estimating the micro-elasticity because it requires finding exogenous variation in benefits across a

large set of otherwise comparable labor markets, instead of exogenous variation across individu-

als within a single labor market. Estimating the cyclicality of the macro-elasticity would require

repeating the same experiment for different initial levels of labor market tightness. Although no

existing study offers compelling identification of the macro-elasticity, studies comparing individ-

uals with different benefits across labor markets—for example across US states or within state

over time—capture mainly macro-elasticities. Moffitt [1985] finds that estimates of the elasticity

of unemployment duration with respect to unemployment benefits decline significantly with state

unemployment rates. More recently, Valletta and Kuang [2010] find modest effects of unemploy-

ment benefit extensions on average unemployment in the US Great Recession. Using survey data,

Kroft and Notowidigdo [2011] use variation in average benefits within states over time, control-

ling for state fixed effects. They provide the most convincing evidence to date that the elasticity of

duration with respect to benefits is smaller when state unemployment is higher, suggesting that the

macro-elasticity is countercyclical. In contrast to our basic job-rationing theory, their estimates are

larger than our micro-elasticity estimates presented above. This could be due to differences in time

periods and data, potential endogeneity in the variation of average state benefits over time in Kroft

and Notowidigdo [2011], or other factors increasing the macro-elasticity (such as wage bargaining

discussed at the end of Section 3.2). Unfortunately the CWBH data used above do not span a long

enough time period, and therefore do not include sufficient variation in average benefits within

state over time, for us to investigate the cyclicality of the macro-elasticity.25

5.3 Alternative: estimating the wedge between micro- and macro-elasticity

As it is difficult to obtain comparable estimates of both the micro- and macro-elasticity, it may

be easier to estimate directly the wedge between micro- and macro-elasticity. This could be done

by analyzing whether there are search spillovers. The ideal experiment is to offer higher benefits

to a large fraction of randomly chosen individuals in a randomly selected subset of labor mar-

25The elasticity of duration with respect to average benefits in each state×quarter found fitting our Cox proportional
hazard model without state fixed effects is higher for low- than for high-unemployment regimes. The validity of such
estimates, however, is questionable because they suffer from a potentially serious omitted variable bias.
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kets and compare unemployment durations of untreated individuals across treated labor markets

and control labor markets. Because a change in benefits for a large fraction of workers within a

labor market affects aggregate search effort, it affects labor market tightness and ultimately unem-

ployment durations of workers who did not experience a change in benefits. A small body of work

finds evidence of such a rat-race externality, although identification is not fully satisfactory. Levine

[1993] finds that an increase in benefits for insured unemployed workers results in a reduction of

unemployment duration among uninsured workers. Burgess and Profit [2001] also find evidence

of such externalities across neighboring areas. Policy variation could be used to credibly test for

spillover effects. For example, the Regional Extended Benefit Program (REBP) in Austria dramat-

ically increased the duration of benefits from 30 to 209 weeks for workers aged above 50 in some

regions of Austria during 1988–1993. Lalive [2008] shows that this program led to a large de-

crease in job-search effort for treated workers. Evaluating whether comparable untreated workers

in treated regions experience a reduction in unemployment duration could provide a compelling

estimate of spillover effects. This project is left for future research.
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Appendix – NOT FOR PUBLICATION

A Proofs

A.1 Notations

We define the following functions, which we study in the Appendix:

• Labor supply: ns(e,θ) is increasing in e and θ, and is defined by

ns(e,θ) = (1−u)+u · e · f (θ).

• Labor demand: for α < 1, nd(θ,a) is increasing in a, decreasing in θ, and is defined by

nd(θ,a) =
{

1
α

(
ω ·aγ−1 +

r
q(θ)

)}1/(α−1)

.

• Effort supply: es(θ,∆v) is increasing in θ and ∆v, and is defined implicitly by

k′(es) = f (θ) ·∆v.

• A useful constant: χ is defined by

χ = (1−α) ·α · κ+1
κ
· 1−η

η
· 1

r

• Ratio of elasticities
(
εm/εM−1

)
: Q(n,θ) is defined by

Q(n,θ) = χ ·q(θ) ·
[

n− (1−u)
n

]
·nα−1 = χ ·q(θ) ·

(
h
n

)
·nα−1 (A1)

• Another ratio of elasticities n ·
(
εm/εM−1

)
: T (n,θ) is defined by

T (n,θ) = χ ·q(θ) · [n− (1−u)] ·nα−1 = χ ·q(θ) ·h ·nα−1

• Equilibrium labor market tightness: θ(a,∆v) is defined implicitly by

nd(θ,a) = ns (es(θ,∆v),θ)

• Equilibrium effort: e(a,∆v) is defined by

e(a,∆v) = es(θ(a,∆v),∆v)
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• Equilibrium employment: n(a,∆v) is defined by

n(a,∆v) = ns(e(a,∆v),θ(a,∆v))

• Ratio of elasticities
(
εm/εM−1

)
: R(a,∆v) is defined by

R(a,∆v) = Q(n(a,∆v),θ(a,∆v))

• Another ratio of elasticities n ·
(
εm/εM−1

)
: X(a,∆v) is defined by

X(a,∆v) = T (n(a,∆v),θ(a,∆v)) (A2)

• Incentive to search: ∆v∗(a,τ) is defined implicitly by the system:

∆v∗ = v(ce)− v(cu)

n(a,∆v∗) ·w(a) = n(a,∆v∗) · ce +[1−n(a,∆v∗)] · cu

τ = cu/ce

• Equilibrium labor market tightness: θ∗(a,τ) is defined by

θ
∗(a,τ) = θ(a,∆v∗(a,τ))

• Equilibrium effort: e∗(a,τ) is defined by

e∗(a,τ) = e(θ∗(a,τ),∆v∗(a,τ))

• Equilibrium employment: n∗(a,τ) is defined by

n∗(a,τ) = n(a,∆v∗(a,τ))

• Ratio of elasticities
(
εm/εM−1

)
: R∗(a,τ) is defined by

R∗(a,τ) = R(a,∆v∗(a,τ))

• Another ratio of elasticities n ·
(
εm/εM−1

)
: X∗(a,τ) is defined by

X∗(a,τ) = X(a,∆v∗(a,τ))
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• Incentive to search: ∆v†(a,∆c) is defined implicitly by the system:

∆v† = v(ce)− v(cu)

n(a,∆v†) ·w(a) = n(a,∆v†) · ce +
[
1−n(a,∆v†)

]
· cu

∆c = ce− cu

• Equilibrium labor market tightness: θ†(a,∆c) is defined by

θ
†(a,∆c) = θ(a,∆v†(a,∆c))

• Equilibrium effort: e†(a,∆c) is defined by

e†(a,∆c) = e(θ†(a,∆c),∆v†(a,∆c))

• Equilibrium employment: n†(a,∆c) is defined by

n†(a,∆c) = n(a,∆v†(a,∆c))

• Equilibrium consumption: cu†(a,∆c) is defined by

cu†(a,∆c) = n†(a,∆c) · (w(a)−∆c)

As in the text, we formally define the elasticities of unemployment with respect to UI “in con-
sumption”:

ε
M ≡ ∆v

1−n
· ∂n†

∂∆c

ε
m ≡ ∆v

1−n
·
[

∂ns

∂e
· ∂es

∂∆v

]
· ∂∆v†

∂∆c
.

We define the elasticities of unemployment with respect to UI “in utility”:

ε
M
v ≡

∆v
1−n

· ∂n
∂∆v

(A3)

ε
m
v ≡

∆v
1−n

·
[

∂ns

∂e
· ∂es

∂∆v

]
. (A4)
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We also define the following elasticities:

ε
n
a ≡

a
n
· ∂n

∂a

ε
θ
∆v ≡

∆v
θ
· ∂θ

∂∆v

ε
∆v∗
a ≡ a

∆v
· ∂∆v∗

∂a

ε
n∗
a ≡

a
n
· ∂n∗

∂a

ε
∆v†
∆c ≡

∆c
∆v
· ∂∆v†

∂∆c
.

A.2 Proof of Lemma 1

We prove that the partial derivative of equilibrium labor market tightness θ†(a,∆c) satisfies:

ε
θ†
∆c ≡

∆c
θ
· ∂θ†

∂∆c
=

κ

κ+1
· 1

1−η
· 1−n

h
·
(
ε

M− ε
m) .

By definition:

1−n
∆v

(
ε

M
v − ε

m
v
)
=

∂n
∂∆v
− ∂ns

∂e
· ∂es

∂∆v
∂n

∂∆v
=

∂ns

∂e
·
(

∂es

∂θ
· ∂θ

∂∆v
+

∂es

∂∆v

)
+

∂ns

∂θ
· ∂θ

∂∆v
∂n

∂∆v
− ∂ns

∂e
· ∂es

∂∆v
=

(
∂ns

∂e
· ∂es

∂θ
+

∂ns

∂θ

)
· ∂θ

∂∆v
1−n
∆v

(
ε

M
v − ε

m
v
)
=

(
∂ns

∂e
· ∂es

∂θ
+

∂ns

∂θ

)
· ∂θ

∂∆v
.

LEMMA A1. Denote κ = e · k′′(e)/k′(e) the elasticity of the marginal disutility of effort k′(e),
and denote 1−η = θ · f ′(θ)/ f (θ) the elasticity of the per-unit job-finding probability. The partial
derivatives of effort supply es(θ,∆v) satisfy:

∆v
es ·

∂es

∂∆v
=

1
κ

θ

es ·
∂es

∂θ
=

1−η

κ
.

Proof. The worker’s optimal choice of effort (1) gives k′(es) = f (θ) ·∆v. Thus, differentiating with
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respect to ∆v (keeping θ constant):

k′′(es) · ∂es

∂∆v
=

k′(es)

∆v
∆v
es ·

∂es

∂∆v
=

1
κ

And differentiating with respect to θ (keeping ∆v constant):

k′′(es) · ∂es

∂θ
= (1−η) · k

′(es)

θ

θ

es ·
∂es

∂θ
=

1−η

κ
.

LEMMA A2. Denote κ = e · k′′(e)/k′(e) the elasticity of the marginal disutility of effort k′(e),
and denote 1−η = θ · f ′(θ)/ f (θ) the elasticity of the per-unit job-finding probability. Denote
h = u ·e · f (θ) = ns(e,θ)− (1−u) the number of new hires. The partial derivatives of labor supply
ns(e,θ) satisfy:

∂ns

∂θ
= (1−η) · h

θ

∂ns

∂e
=

h
e

∂ns

∂e
· ∂es

∂θ
=

1
κ
· ∂ns

∂θ
.

Proof. The first two results are obvious using the definition (2) of labor supply: ns(e,θ) = (1−
u)+u · e · f (θ). Then using Lemma A1:

∂ns

∂e
· ∂es

∂θ
=

1−η

κ
· h

θ
=

1
κ
· ∂ns

∂θ
.

Using Lemma A2, we write:

1−n
∆v

(
ε

M
v − ε

m
v
)
=

1+κ

κ
· ∂ns

∂θ
· ∂θ

∂∆v

∆v · ∂ns

∂θ
· ∂θ

∂∆v
=

κ

κ+1
· (1−n) ·

(
ε

M
v − ε

m
v
)

∆v
θ
· ∂θ

∂∆v
=

κ

κ+1
· 1

1−η
· 1−n

h
·
(
ε

M
v − ε

m
v
)
.

Multiplying each equation by ∆c
∆v ·

∂∆v†

∂∆c yields our result. The second result in the lemma is obtained
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by combining the first result with the result of Lemma A2. Note that these results can be rewritten
in terms of the partial derivative of equilibrium labor market tightness θ(a,∆v):

ε
θ
∆v ≡

∆v
θ
· ∂θ

∂∆v
=

κ

κ+1
· 1

1−η
· 1−n

h
·
(
ε

M
v − ε

m
v
)

∂ns

∂θ
· ∂θ

∂∆v
=−1−n

∆c
· κ

κ+1
·
(
ε

m
v − ε

M
v
)
.

A.3 Proof of Proposition 1

The government chooses ∆c to maximize:

(1−u) · v(ce)+u · [v(cu)+ e · f (θ) ·∆v− k(e)] = ns(e,θ) · v(cu +∆c)+(1−ns(e,θ)) · v(cu)−u · k(e)

Using the envelope theorem (as workers choose search effort e to maximize v(cu)+ e · f (θ) ·∆v−
k(e)), the first-order condition becomes

0 =
[
n · v′(ce)+(1−n)v′(cu)

]
· ∂cu†

∂∆c
+n · v′(ce)+∆v · ∂ns

∂θ
· ∂θ†

∂∆c

0 = v′ · ∂cu†

∂∆c
+n · v′(ce)+∆v · ∂ns

∂θ
· ∂θ†

∂∆c

where we define v′ ≡ [n · v′(ce)+(1−n) · v′(cu)].

Fist step. Lemma 1 allows us to write:

∆v · ∂ns

∂θ
· ∂θ†

∂∆c
=

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)< 0.

This negative term is the cost of the job-rationing externality.

LEMMA A3.
∂cu†

∂∆c
=

1−n
n
· τ

1− τ
· εM−n

Proof. We start from the budget constraint, which defines cu†(a,∆c):

cu†(a,∆c) = n†(a,∆c) · [w(a)−∆c]

∂cu†

∂∆c
=

1−n
∆c
· [w(a)−∆c] · εM−n

∂cu†

∂∆c
=

1−n
n
· cu

∆c
· εM−n

∂cu†

∂∆c
=

1−n
n
· τ

1− τ
· εM−n.
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Second step. Lemma A3 exploits the budget constraint to yield:

∂cu†

∂∆c
=

1−n
n
· τ

1− τ
· εM−n.

Third step. We come back to the formula:

0 = v′
[

1−n
n
· τ

1− τ
ε

M−n
]
+n · v′(ce)+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′
[

1−n
n
· τ

1− τ
ε

M
]
+n ·

[
v′(ce)− v′

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′
[

1−n
n
· τ

1− τ
ε

M
]
+n(1−n)

[
v′(ce)− v′(cu)

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

Dividing the equation by (1−n) · εM · v′ yields:

1
n
· τ

1− τ
=

n
εM ·

1
v′
·
[
v′(cu)− v′(ce)

]
+

∆v
v′∆c
· κ

κ+1
·
(

εm

εM −1
)

1
n
· τ

1− τ
=

v′(ce)

v′

[
n

εM ·
{

v′(cu)

v′(ce)
−1
}
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)]

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(cu)

v′(ce)

]−1

·
[

n
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)]

Approximation: Assuming n≈ 1 allows us to simplify the optimal formula to

τ

1− τ
=

1
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce) ·∆c

· κ

κ+1
·
(

εm

εM −1
)

If the third and higher order terms of v(·) are small (v′′′(c) ≈ 0), we can make the following
approximations:

∆v
v′(ce) ·∆c

≈ 1− 1
2
· v
′′(ce)

v′(ce)
· c

e

ce · [c
e− cu] = 1+

1
2
·ρ · (1− τ)

v′(cu)

v′(ce)
≈

v′(ce)− v′′(ce) · ce · ∆c
ce

v′(ce)
= 1+ρ(1− τ).
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ρ is the coefficient of relative risk aversion of the utility function measured at ce. The optimal UI
formula becomes:

τ

1− τ
=

1
εM ·ρ · [1− τ]+

κ

κ+1
·
[

εm

εM −1
]
·
[
1+

ρ

2
· (1− τ)

]
.

A.4 Proof of Proposition 2

Step 1: Equivalence with ratio “in utility”. Notice that n†(a,∆c) = n(a,∆v†(a,∆c)). Hence
the micro- and macro-elasticity “in consumption” defined in the text can be rewritten as:

ε
M =

∆c
∆v
·
(

∆v
1−n

· ∂n
∂∆v

)
· ∂∆v†

∂∆c
(A5)

ε
m =

∆c
∆v
·
(

∆v
1−n

· ∂ns

∂e
· ∂es

∂∆v

)
· ∂∆v†

∂∆c
(A6)

The ratio of micro- and macro-elasticity are the same with both definitions:

εm

εM =
εm

v
εM

v
.

In this step, we work with elasticities “in utility” as they are easier to manipulate.

Step 2: Differentiate the firm’s first-order condition. The firm’s first-order condition, evalu-
ated at the equilibrium, is

g′ (n(a,∆v))−w(a)/a =
r

q(θ(a,∆v))

Under Assumption 3, we differentiate the first-order condition with respect to ∆v keeping a con-
stant, and we use Lemma 1:

(α−1) · g
′(n)
n
· ∂n

∂∆v
= η · r

q(θ)
· 1

θ
· ∂θ

∂∆v

(α−1) ·g′(n) · 1−n
n
· εM

v =
r

q(θ)
· κ

κ+1
· 1−n

h
· η

1−η
·
(
ε

M
v − ε

m
v
)

−(1−α) ·g′(n) = r
q(θ)

· κ

κ+1
· n

h
· η

1−η
·
(

1− εm
v

εM
v

)
εm

v
εM

v
= 1+(1−α) ·α · κ+1

κ
· 1

r
· 1−η

η
·q(θ) ·

(
h
n

)
·nα−1. (A7)

Then since θ > 0, h > 0, η ∈ (0,1): εm/εM > 1 iff α ∈ (0,1).
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A.5 Some preliminary comparative-static results

LEMMA A4. Denote κ = e ·k′′(e)/k′(e) the elasticity of the marginal disutility of effort k′(e), and
denote h = u ·e · f (θ) = ns(e,θ)−(1−u) the number of new hires. The micro-elasticity “in utility”
satisfies:

ε
m
v =

h
1−n

· 1
κ
.

Proof. The definition (A4) of εm
v gives

ε
m
v =

(
∆v

1−n

)
·
(

∂ns

∂e

)
·
(

∂es

∂∆v

)
.

Using Lemma A1 and Lemma A2:

∂es

∂∆v
=

e
∆v
· 1

κ

∂ns

∂e
=

h
e
.

Therefore,

ε
m
v =

(
∆v

1−n

)
·
(

h
e

)
·
(

e
∆v
· 1

κ

)
ε

m
v ==

h
1−n

· 1
κ
.

LEMMA A5. If γ∈ [0,1) and α∈ (0,1), we have the following comparative statics for equilibrium
variables:

∂θ

∂a
> 0,

∂e
∂a

> 0,
∂n
∂a

> 0.

Proof. We have the following comparative statics:

∂es

∂θ
> 0,

∂ns

∂θ
> 0,

∂ns

∂e
> 0. (A8)

Assume γ ∈ [0,1) and α ∈ (0,1). We have ∂nd

∂θ
< 0, ∂nd

∂a > 0. Differentiating equilibrium condi-
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tion (3) with respect to a , keeping ∆v constant:[
∂ns

∂e
· ∂es

∂θ
+

∂ns

∂θ

]
· ∂θ

∂a
=

∂nd

∂a
+

∂nd

∂θ
· ∂θ

∂a

∂θ

∂a
=

∂nd

∂a︸︷︷︸
+

·




∂ns

∂e︸︷︷︸
+

· ∂es

∂θ︸︷︷︸
+

+
∂ns

∂θ︸︷︷︸
+

−
∂nd

∂θ︸︷︷︸
−


−1

.

Thus we infer that ∂θ

∂a > 0. We conclude by using the comparative statics (A8) and noting that
e(a,∆v) = es(θ(a,∆v),∆v) and n(a,∆v) = ns(e(a,∆v),θ(a,∆v)).

LEMMA A6. If α ∈ (0,1), we have the following comparative statics for equilibrium variables:

∂e
∂∆v

> 0,
∂n

∂∆v
> 0,

∂θ

∂∆v
< 0.

Proof. We have the following comparative statics:

∂es

∂θ
> 0,

∂es

∂∆v
> 0,

∂ns

∂θ
> 0,

∂ns

∂e
> 0. (A9)

Notice that ∂nd

∂θ
< 0. Differentiating equilibrium condition on the labor market (3) with respect to

∆v, keeping a constant, yields:

∂ns

∂e
· ∂es

∂∆v
+

[
∂ns

∂e
· ∂es

∂θ
+

∂ns

∂θ

]
· ∂θ

∂∆v
=

∂nd

∂θ
· ∂θ

∂∆v

∂θ

∂∆v
=−

 ∂ns

∂e︸︷︷︸
+

· ∂es

∂∆v︸︷︷︸
+

 ·



∂ns

∂e︸︷︷︸
+

· ∂es

∂θ︸︷︷︸
+

+
∂ns

∂θ︸︷︷︸
+

−
∂nd

∂θ︸︷︷︸
−


−1

.

We can conclude that ∂θ

∂∆v < 0. We conclude by using (A9), noting that n(a,∆v) = nd(a,θ(a,∆v)),
and

e(a,∆v) =
n(a,∆v)− (1−u)

u · f (θ(a,∆v))
.

LEMMA A7. Under Assumptions 1, 2,and 3, ∂X
∂∆v > 0. Furthermore, if η≥ 1+κ

1+2·κ , then ∂X
∂a < 0.

Proof. We make Assumption 3 such that T (n,θ) and X(a,∆v) = T (n(a,∆v),θ(a,∆v)) be well
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defined. Recall that

T (n,θ) = χ ·q(θ) · [n− (1−u)] ·nα−1

χ = (1−α) ·α · κ+1
κ
· 1−η

η
· 1

r
.

We make Assumption 1 such that T > 0, X > 0.

Step 1. From the definition of T (n,θ) it is clear that

∂T
∂θ

< 0,
∂T
∂n

> 0.

From Lemma A6, under Assumptions 1,

∂θ

∂∆v
< 0,

∂n
∂∆v

> 0.

We can conclude that ∂X
∂∆v > 0 because

∂X
∂∆v

=
∂T
∂θ︸︷︷︸
−

· ∂θ

∂∆v︸︷︷︸
−

+
∂T
∂n︸︷︷︸
+

· ∂n
∂∆v︸︷︷︸
+

.

Step 2. Using the equilibrium condition n(a,∆v) = ns(es(θ(a,∆v),∆v),θ(a,∆v)) and Lemma A2:

∂X
∂a

=−η · X
θ
· ∂θ

∂a
+

X
n
·
{
(α−1)+

n
h

}
·
[

∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]
· ∂θ

∂a
∂X
∂a

=
X
θ
· ∂θ

∂a
·
[
−η+

{
(α−1)+

n
h

}
· θ

n
·
[

∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]]
∂X
∂a

=
X
θ
· ∂θ

∂a
·
{
−η+

[
1+(α−1) · h

n

]
· (1−η) · κ+1

κ

}
.

From Lemma A5, under Assumption 2, ∂θ

∂a > 0. Hence ∂X
∂a < 0 iff

−η+

[
1+(α−1) · h

n

]
· (1−η) · κ+1

κ
< 0

η

1−η
>

[
1+(α−1) · h

n

]
· κ+1

κ

η >
1

1+ κ

κ+1 ·
[
1− (1−α) · h

n

]−1
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Since h/n > 0, a sufficient condition for ∂X
∂a < 0 is η≥ 1+κ

1+2·κ .

LEMMA A8. Under Assumptions 1, 2,and 3, ∂R
∂∆v > 0. Furthermore, ∂R

∂a < 0 if η≥ 1+κ

1+2·κ .

Proof. We make Assumption 3 such that R(a,∆v) be well defined. We make Assumption 1 such
that R > 0.

Step 1. Using the equilibrium condition n(a,∆v)= ns(es(θ(a,∆v),∆v),θ(a,∆v)), we differentiate
R(a,∆v) with respect to a:

∂R
∂a

=−η · R
θ
· ∂θ

∂a
+

R
n
·
{
(α−2)+

n
h

}
·
[

∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]
· ∂θ

∂a
∂R
∂a

∆v =
R
θ
· ∂θ

∂a
·
[
−η+

{
(α−2)+

n
h

}
· θ

n
·
[

∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]]
.

As in the proof of Lemma A7, we conclude that

∂R
∂a

=
R
θ
· ∂θ

∂a
∆v ·

{
−η+

[
1+(α−2) · h

n

]
· (1−η) · κ+1

κ

}
Under Assumption 2: ∂θ

∂a > 0. Hence ∂R
∂a < 0 iff

η >
1

1+ κ

κ+1 ·
[
1− (2−α) · h

n

]−1

Since h/n > 0, a sufficient condition for ∂R
∂a < 0 is η≥ 1+κ

1+2·κ .

Step 2. Differentiating R(a,∆v) with respect to ∆v yields:

∂R
∂∆v

=−η · R
∆v
· εθ

∆v +
R
n
·
{
(α−2)+

n
h

}
· 1−n

∆v
· εM

v .

Using the result from Lemma 1:

∂R
∂∆v

=
1−n

n
· R

∆v
· εM

v ·
{

η

1−η
· n

h
· κ

1+κ
·Q(n,θ)− (1−α)+

(n
h
−1
)}

.
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Notice that, using the firm’s FOC, and under Assumption 1:

η

1−η
· n

h
· κ

1+κ
·Q(n,θ) = (1−α) ·α ·nα−1 · q(θ)

r
η

1−η
· n

h
· κ

1+κ
·Q(n,θ) = (1−α)

{
w(a)

a
· q(θ)

r
+1
}

η

1−η
· n

h
· κ

1+κ
·Q(n,θ)− (1−α) = (1−α) · w(a)

a
· q(θ)

r
> 0

Since h/n≤ 1, we conclude that ∂R
∂∆v > 0.

LEMMA A9. Under Assumptions 3:

ε
∆v∗
a = (1−ρ) · γ+H(n,τ) · εn

a

1− (1−ρ) ·H(n,τ) · 1−n
n · εM

v
,

where we define H(n,τ)≡ τ/ [(1− τ) ·n+ τ]> 0. Under Assumptions 2, and assuming that ρ≥ 1:

∂∆v∗

∂a
≤ 0.

Proof. Under Assumption 3:

∆v = c1−ρ
e · 1− τ1−ρ

1−ρ

From the government’s budget constraint n · ce +(1−n) · cu = n ·w(a):

ce =
w(a)

(1− τ)+ τ/n

Combining both equations:

∆v = [(1− τ)+ τ/n]ρ−1 ·w(a)1−ρ · j(τ)

where we simplify the expression by defining:

j(τ) =
1− τ1−ρ

1−ρ
,

which satisfies z′(τ) = −τ−ρ < 0. Let us fix τ and consider a marginal change da. We denote
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x̌ = d ln(x) = dx/x. Differentiating the expression above:

∆̌v = (1−ρ) · γ · ǎ− (ρ−1) · ň ·
[

τ

(1− τ) ·n+ τ

]
ε

∆v∗
a = (1−ρ) · γ− (ρ−1) · εn∗

a ·H(n,τ).

Moreover, using the definition of n∗(a,τ):

ε
n∗
a =

a
n

[
∂n
∂a

+
∂n

∂∆v
· ∂∆v∗

∂a

]
ε

n∗
a = ε

n
a +

a
n
· 1−n

∆v
· εM

v ·
∆v
a
· ε∆v∗

a

ε
n∗
a = ε

n
a +

1−n
n
· εM

v · ε∆v∗
a ,

which allows us to write:

ε
∆v∗
a ·

[
1− (1−ρ) ·H(n,τ) · 1−n

n
· εM

v

]
= (1−ρ) · γ+(1−ρ) ·H(n,τ) · εn

a

ε
∆v∗
a = (1−ρ) · γ+H(n,τ) · εn

a

1− (1−ρ) ·H(n,τ) · 1−n
n · εM

v
.

We know from Lemma A5 that under Assumption 2, ∂n
∂a > 0 and from Lemma A6 that ∂n

∂∆v > 0
such that εM

v > 0. We infer that if ρ≥ 1, ∂∆v∗
∂a ≤ 0.

LEMMA A10. Under Assumptions 1, 2, 3, and imposing ρ≥ 1 and η≥ (1+κ)/(1+2κ): ∂R∗
∂a < 0.

Proof. Under Assumptions 1, 2, and 3, using Lemmas A8 and A9 when ρ≥ 1 and η≥ 1+κ

1+2·κ , then
∂R∗
∂a < 0 because

∂R∗

∂a
=

∂R
∂a︸︷︷︸
−

+
∂R
∂∆v︸︷︷︸
+

· ∂∆v∗

∂a︸ ︷︷ ︸
−

.

LEMMA A11. Under Assumptions 1, 2, 3, and imposing ρ≥ 1 and η≥ (1+κ)/(1+2κ): ∂X∗
∂a < 0.

Proof. Under Assumptions 1, 2, and 3, using Lemmas A7 and A9 when ρ≥ 1 and η≥ 1+κ

1+2·κ , then
∂X∗
∂a < 0 because

∂X∗

∂a
=

∂X
∂a︸︷︷︸
−

+
∂X
∂∆v︸︷︷︸
+

· ∂∆v∗

∂a︸ ︷︷ ︸
−

.
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LEMMA A12. We make Assumptions 1 and 3. We impose ρ≥ 1 as well as

1− γ

γ
> (ρ−1) · η

1−η
· 1

κ+1
·Ω,

where the constant Ω ∈ (0,+∞) satisfies

Ω <

[
α

ω
· a1−γ

(1−u)1−α

]
−1,

where a = supA . Then:
∂n∗

∂a
> 0.

Proof. By definition and using Lemma A9:

∂n
∂a

=
n
a
· εn

a > 0

∂n
∂∆v

=
1−n
∆v
· εM

v > 0

∂∆v∗

∂a
= (1−ρ) · ∆v

a
· γ+H(n,τ) · εn

a

1− (1−ρ) ·H(n,τ) · εM
v · 1−n

n

Recall that n∗(a,τ) = n(a,∆v∗(a,τ)). Given that ρ≥ 1, the sign of ∂n∗
∂a is also the sign of

n · εn
a ·
[

1− (1−ρ) ·H(n,τ) · εM
v ·

1−n
n

]
+ γ · (1−ρ) · (1−n) · εM

v +(1−ρ) · (1−n) · εM
v ·H(n,τ) · εn

a

= n · εn
a + γ · (1−ρ) · (1−n) · εM

v

=

[
ε

n
a + γ · (1−ρ) · 1−n

n
· εM

v

]
·n

Under Assumption 3, using Lemma A4 and Proposition 2:

n
εM

v
= κ · (1−n) ·n

h
·
[

εm
v

εM
v

]
(A10)

1−n
n
· εM

v =
h
n
· 1

κ
· 1

1+Q(n,θ)
.

Under Assumption 1, we evaluate the firm’s first-order condition (11) at the equilibrium employ-
ment n(a,∆v) = ns(es(θ(a,∆v),∆v),θ(a,∆v)) and labor market tightness θ(a,∆v). We differentiate
the first-order condition with respect to a, holding ∆v constant:

(α−1) · θ
n
·
[

∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]
· εθ

a = (γ−1) · [1− j(θ,n)]+ j(θ,n) ·η · εθ
a
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where we define to simplify the notations:

j(θ,n) =
r
α
· n

1−α

q(θ)
.

Lemma A2 says that: [
∂ns

∂θ
+

∂ns

∂e
· ∂es

∂θ

]
= (1−η) · κ+1

κ
· h

θ

Hence, [
(1−α) · θ

n
·
[
(1−η) · κ+1

κ
· h

θ

]
+ j(θ,n) ·η

]
· εθ

a = (1− γ) · [1− j(θ,n)]

ε
θ
a = (1− γ) · [1− j(θ,n)]

1
(1−α) · (1−η) · κ+1

κ
· h

n + j(θ,n) ·η

Furthermore, using the result from Lemma A2 once more,

ε
n
a =

θ

n
·
[
(1−η) · κ+1

κ
· h

θ

]
· εθ

a

ε
n
a =

[
(1−η) · κ+1

κ
· h

n

]
· εθ

a

We can infer

ε
n
a = (1− γ) · [1− j(θ,n)] · 1

(1−α)+ j(θ,n) · η

1−η
· κ

1+κ
· n

h

ε
n
a =

1− γ

1−α
· [1− j(θ,n)] · Q(n,θ)

1+Q(n,θ)
,

because we simplified, using the definition (A1) of Q(n,θ):

j(θ,n) · η

1−η
· κ

1+κ
· n

h
=

n1−α

q(θ)
· η

1−η
· κ

1+κ
· r

α
· n

h
=

1−α

Q(n,θ)
.

Under Assumption 3, Q(n,θ)≥ 0. Signing ∂n∗
∂a is equivalent to signing:

κ · 1− γ

1−α
· [1− j(θ,n)] ·Q(n,θ) · n

h
+ γ · (1−ρ)

Using once again the firm’s first-order condition we have

[1− j(θ,n)] ·Q(n,θ) · n
h
=

χ

α
·q(θ) ·

[
α ·nα−1− r

q(θ)

]
=

χ

α
· w(a)

a
·q(θ).
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Hence we need to sign

κ · 1− γ

1−α
· χ

α
· w(a)

a
·q(θ)+ γ · (1−ρ)

= (1− γ) · 1−η

η
· (κ+1) ·w(a) · q(θ)

r ·a
+ γ · (1−ρ)

We define the wedge between wage and marginal product of labor

W (a,τ)≡ w(a)
mpl(a,τ)

∈ (0,1).

Hence we need to sign

(1− γ) · 1−η

η
· (κ+1) · W (a,τ)

1−W (a,τ)
− γ · (ρ−1). (A11)

The expression (A11) is positive for all τ ∈ (0,1) if

1− γ

γ
>

η

1−η
· 1

κ+1
1−W (a,τ)

W (a,τ)
· (ρ−1)

1− γ

γ
>

η

1−η
· 1

κ+1
Ω · (ρ−1),

where we define Ω ∈ (0,+∞) by

Ω = max
a,τ

{
1

W (a,τ)
−1
}
=

1
mina,τW (a,τ)

−1.

We can express the constant Ω solely as a function of the parameters of the model (more pre-
cisely the boundaries of the admissible values for the parameters). Since n(a,τ) ∈ (1− u,1] and
technology is bounded: a ∈ A = (a∗,a). We infer that

W (a,τ)≥ w(a)
a
· 1

α
· (1−u)1−α

Ω≤

[
α

ω
· a1−γ

(1−u)1−α

]
−1.
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A.6 Proof of Proposition 3

LEMMA A13. Under Assumption 3:

∆v
∆c · v′(ce)

=
1− τ1−ρ

(1−ρ) · (1− τ)

v′(cu)

v′(ce)
= τ
−ρ

Proof. Immediate using the fact that under Assumption 3, v(c) = c1−ρ/(1−ρ), v′(c) = c−ρ, and
τ− cu/ce.

Step 1: cyclicality of εm/εM. From Lemma A10, because under Assumption 3, εm/εM = 1+
R∗(a,τ).

Step 2: cyclicality of εM. We express εM as a function of εM
v and τ. Using Lemma A3 and

Lemma A13 (valid under Assumption 3) we get:

∂∆v†

∂∆c
= v′(ce)+∆v′ · ∂cu†

∂∆c
∂∆v†

∂∆c
=
[
(1−n)v′(ce)+nv′(cu)

]
+∆v′ · 1−n

n
· τ

1− τ
· εM (A12)

ε
∆v†
∆c =

∆c · v′(ce)

∆v
·
{[

(1−n)+n
v′(cu)

v′(ce)

]
+

{
1− v′(cu)

v′(ce)

}
· 1−n

n
· 1

1/τ−1
· εM
}

ε
∆v†
∆c =

(1−ρ) · (1− τ)

1− τ1−ρ
·
{[

(1−n)+n · τ−ρ
]
+
{

1− τ
−ρ
}
· 1−n

n
· 1

1/τ−1
· εM
}

ε
∆v†
∆c = j(τ) ·

{[
(1−n)+n · τ−ρ

]
− i(τ) · 1−n

n
· εM
}
.

where for all τ ∈ (0,1) and all ρ > 0 we define to simplify the notations

i(τ)≡
(
τ
−ρ−1

)
· 1

1/τ−1
> 0

j(τ)≡ (1−ρ) · (1− τ)

1− τ1−ρ
> 0.
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Equation (A5) shows that εM = εM
v · ε

∆v†
∆c so that

ε
M ·
[

1+ j(τ) · i(τ) · 1−n
n
· εM

v

]
= j(τ) ·

[
(1−n)+n · τ−ρ

]
· εM

v

ε
M =

j(τ) · [(1−n)+n · τ−ρ] · εM
v

1+ j(τ) · i(τ) · 1−n
n · εM

v

ε
M = j(τ) ·

[
(1−n)+n · τ−ρ

]
· 1
(εM

v )−1 + j(τ) · i(τ) · 1−n
n

(A13)

According to Lemma A12, under Assumptions 1 and 3, and imposing ρ ≥ 1 as well as 1−γ

γ
>

(ρ− 1) · η

1−η
· 1

κ+1 ·Ω, then ∂n∗
∂a > 0. Using Lemma A4: εm

v = (1/κ) · [(n− (1−u))/n]. Under
Assumption 3, the elasticity κ is a constant and therefore εm

v is increasing in n. We infer that

∂εm
v

∂a

∣∣∣∣
τ

> 0.

Under Assumption 3, εm
v /εM

v = 1+R∗(a,τ). According to Lemma A10, under Assumptions 1, 2, 3,
and imposing ρ≥ 1 and η≥ (1+κ)/(1+2κ), ∂R∗

∂a < 0. Hence under these assumptions ∂εM
v

∂a

∣∣
τ
> 0.

Finally, using (A13), we conclude that ∂εM

∂a

∣∣
τ
> 0.

A.7 Proof of Proposition 4

The proof requires using the elasticities of unemployment “in utility” (εm
v ,ε

M
v ) instead of the elas-

ticities of unemployment “in consumption” (εm,εM) used in the text. Therefore, we re-derive our
optimal UI formula (9) in terms of the elasticities εm

v ,ε
M
v .

LEMMA A14. The optimal replacement rate τ satisfies

1
n
· τ

1− τ
=

∆v
v′(ce) ·∆c

·
{

n
εM

v
·
[

1− v′(ce)

v′(cu)

]
+

[
(1−n) · v

′(ce)

v′(cu)
+n
]
· κ

κ+1
·
(

εm
v

εM
v
−1
)}

. (A14)

Proof.

First step. The government chooses ∆v to maximize:

max(1−u) · v(ce)+u · v(cu)+u · e · f (θ)∆v−u · k(e) = v(cu)+ns(e,θ) ·∆v−u · k(e)

Using the envelope theorem, the first-order condition becomes

0 = v′(cu) · dcu

d∆v
+n+∆v · ∂ns

∂θ
· dθ

d∆v
.
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Second step. We start from the budget constraint:

ce +
1−n

n
· cu = w

∆v = v(w− 1−n
n
· cu)− v(cu)

1 = v′(ce) ·
[
−1−n

n
· dcu

d∆v
+

1
n2 · c

u dn
d∆v

]
− v′(cu) · dcu

d∆v

v′(ce) · 1
n2 · c

u · dn
d∆v
−1 =

[
v′(ce) · 1−n

n
+ v′(cu)

]
· dcu

d∆v

v′(ce) · 1−n
n
· cu

∆v
· εM

v −n =

[
(1−n) · v

′(ce)

v′(cu)
+n
]

v′(cu) · dcu

d∆v

Third step. We come back to the formula, and use Lemma 1:

0 =

[
(1−n)

v′(ce)

v′(cu)
+n
]

v′(cu)
dcu

d∆v
+n
[
(1−n)

v′(ce)

v′(cu)
+n
]
+

[
(1−n)

v′(ce)

v′(cu)
+n
]

∆v
∂ns

∂θ

dθ

d∆v

0 = v′(ce)
1−n

n
cu

∆v
ε

M
v −n+n

[
(1−n)

v′(ce)

v′(cu)
+n
]
+

[
(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1
(1−n)

(
ε

M
v − ε

m
v
)

0 = v′(ce)
1−n

n
cu

∆v
ε

M
v +n(1−n)

[
v′(ce)

v′(cu)
−1
]
+

[
(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1
(1−n)

(
ε

M
v − ε

m
v
)

Dividing by (1−n) · v′(ce) · εM
v :

1
n

cu

∆v
=

1
v′(ce)

n
εM

v

[
1− v′(ce)

v′(cu)

]
+

1
v′(ce)

[
(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1

(
εm

v
εM

v
−1
)

1
n

cu

∆c
=

∆v
∆c

1
v′(ce)

n
εM

v

[
1− v′(ce)

v′(cu)

]
+

∆v
∆c

1
v′(ce)

[
(1−n)

v′(ce)

v′(cu)
+n
]

κ

κ+1

(
εm

v
εM

v
−1
)

Note that cu

∆c =
τ

1−τ
since τ = cu/ce. The exact optimal UI formula in sufficient statistics becomes

1
n
· τ

1− τ
=

∆v
v′(ce) ·∆c

{
n

εM
v

[
1− v′(ce)

v′(cu)

]
+

[
(1−n) · v

′(ce)

v′(cu)
+n
]

κ

κ+1
·
(

εm
v

εM
v
−1
)}

.

LEMMA A15. Under Assumption 3, the optimal UI formula (A14) simplifies to

(1−ρ) · τ

1− τ1−ρ
= κ · (1−n) ·n

h
· (n+X) · [1− τ

ρ]+
κ

1+κ
· [(1−n) · τρ +n] ·X .

Proof. Using Lemma A13 (valid under Assumption 3), we can re-express various terms as a func-
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tion of τ: [
1− v′(ce)

v′(cu)

]
= 1− τ

ρ[
(1−n)

v′(ce)

v′(cu)
+n
]
= [(1−n)τρ +n]

∆v
v′(ce) ·∆c

=
1− τ1−ρ

(1−ρ) · (1− τ)

Furthermore, the definition (A2) of X(a,∆v) and the result from Proposition 2 imply that X =

n · ( εm
v

εM
v
−1), which in turn implies that n · εm

v
εM

v
= n+X . Building on equation (A10) we obtain:

n2

εM
v

= κ · (1−n) ·n
h

(n+X(a,∆v)) .

Bringing all these results together, and evaluating all terms at the equibrium, we obtain:

(1−ρ) · τ

1− τ1−ρ
= κ · (1−n) ·n

h
· (n+X) · [1− τ

ρ]+
κ

1+κ
· [(1−n) · τρ +n] ·X .

Let us define

F(τ)≡ (1−ρ) · τ

1− τ1−ρ

Q(τ,n,X)≡ κ · (1−n) ·n
n− (1−u)

· (n+X) · [1− τ
ρ]+

κ

1+κ
· [(1−n) · τρ +n] ·X . (A15)

Recall that h = n− (1−u). We can rewrite the optimal UI formula as

F(τ) = Q(τ,n,X).

LEMMA A16. Assuming n ∈ [1/2,1), we have the following comparative statics:

dF
dτ

> 0,
∂Q
∂τ

< 0,
∂Q
∂n

< 0,
∂Q
∂X

> 0.

Proof. First notice that for any ρ≥ 0:

dF
dτ

=
1−ρ

[1− τ1−ρ]
2 ·
[
1−ρ · τ1−ρ

]
> 0.
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Moreover:

∂Q
∂τ

=−
[
κ ·ρ · τρ−1 · (1−n)

]
·
[

n+X
h/n

− X
1+κ

]
∂Q
∂X

= κ · (1−n) ·n
h

· [1− τ
ρ]+

κ

1+κ
· [(1−n) · τρ +n]

∂Q
∂n

= κ · (1− τ
ρ) ·
[

1−2n
h/n

−X ·
(

1
h/n
− 1

1+κ

)
− (1−n)

h2 · (n+X) · (1−u)
]

Noting that h/n ≤ 1, and n ∈ (0,1) allows us to conclude ∂Q
∂τ

< 0. Since n ∈ (0,1), ∂Q
∂X > 0.

Assuming that n ∈ [1/2,1), and noting that 0≤ h/n≤ 1, X ≥ 0, we can conclude ∂Q
∂n < 0.

The optimality condition can be expressed as

F(τ) = Q(τ,n∗(a,τ),X∗(a,τ)) .

Let us define
G(τ,a)≡ Q(τ,n∗(a,τ),X∗(a,τ)) . (A16)

We assume that F(τ) and G(τ,a) cross only once for τ ∈ (0,1), such that the solution to the
government’s problem is unique. The function τ(a), which characterizes the optimal replacement
rate, is defined implicitly as the unique intersection of these two curves.

The combination of Lemmas A11 and A16, under the appropriate assumptions, implies

∂Q
∂X
· ∂X∗

∂a
< 0,

The combination of Lemmas A12 and A16, under the appropriate assumptions, implies

∂Q
∂n
· ∂n∗

∂a
< 0.

We are at technology a and optimal replacement rate τ(a). We consider a marginal change in
technology to a∗ > a. At τ(a),

F(τ(a)) = Q(τ(a),n(a,τ(a)),X(a,τ(a)))> Q(τ(a),n(a∗,τ(a)),X(a∗,τ(a))).

We assume that F(τ) and G(τ,a) cross only once for τ ∈ [0,1]. Moreover, limτ→0 F(τ) = 0. At the
same time limτ→0 G(τ,a)> 0. To see this, consider the following two cases:

1. limτ→0 n = n0 ∈ [1− u,1). Since X ≥ 0 and h ≤ u, using the definition (A16) of G and
equation (A15), we infer that

lim
τ→0

G(τ,a)≥ κ ·n2
0 · (1−n0)> 0.
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2. limτ→0 n = 1. Then limτ→0 h = u. Using the firm’s first-order condition (11), we infer that

lim
τ→0

q(θ) =
r

α−w/a
> 0.

This implies, using the definition (A2) of X, that

lim
τ→0

X = χ ·u ·
[

lim
τ→0

q(θ)
]
> 0.

Thus, using the definition (A16) of G and equation (A15),

lim
τ→0

G(τ,a)≥ κ

1+κ
·
[

lim
τ→0

X
]
> 0.

Hence it must be that F(τ) crosses G(τ,a) from below and that τ < τ(a) iff F(τ) < G(τ,a). We
showed that

F(τ(a))> G(τ(a),a∗),

therefore
τ(a)> τ(a∗)

Accordingly, dτ

da < 0.

B Extensions in the One-Period Model

B.1 Workers can partially insure themselves

An unemployed worker consumes y in addition to the unemployment benefits cu received from
the government. We denote ĉu = cu + y the total consumption when unemployed. Unemployed
workers now pick effort e and home production y to maximize

[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e)

The first-order condition with respect to y yields:

m′(y) = v′(cu + y), (A17)

which implicitly defines optimal home production y(cu). The first-order condition with respect to
e yields:

k′(e) = f (θ) · ∆̂v,

where we denote ∆̂v = v(ce)− [v(cu + y(cu))−m(y(cu))] the utility difference between being em-
ployed and unemployed. This first-order condition implicitly defines optimal effort e(θ, ∆̂v).
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The government chooses ∆c to maximize:

(1−u) · v(ce)+u · {[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e)}
= ns(e,θ) · v(cu +∆c)+ [1−ns(e,θ)] · [v(cu + y)−m(y)]−u · k(e)

Using the envelope theorem, as workers choose search effort e and home production y to maximize
[1− e · f (θ)] · [v(cu + y)−m(y)]+ [e · f (θ)] · v(ce)− k(e), the first-order condition becomes

0 =
[
n · v′(ce)+(1−n) · v′(ĉu)

]
· ∂cu†

∂∆c
+n · v′(ce)+ ∆̂v · ∂ns

∂θ
· ∂θ†

∂∆c
.

As in the case without self-insurance, we derive the optimal UI formula in three steps. The first
and second step are identical to those in the case without self-insurance (notice that the proof of
Lemma 1 would be modified by taking derivatives with respect to ∆̂v instead of ∆v. However, the
results regarding the derivatives with respect to ∆c would carry over.).

1
n
· τ

1− τ
=

[
n+(1−n) · v

′(ĉu)

v′(ce)

]−1

·
[

n
εM ·

[
v′(ĉu)

v′(ce)
−1
]
+

∆̂v
v′(ce) ·∆c

· κ

κ+1
·
(

εm

εM −1
)]

Approximation: We assume that n≈ 1. The formula simplifies to

τ

1− τ
=

1
εM ·

[
v′(ĉu)

v′(ce)
−1
]
+

∆̂v
v′(ce) ·∆c

· κ

κ+1
·
(

εm

εM −1
)

We define
ξ =

ĉu

cu = 1+
y
cu ≥ 1.

If the third and higher order terms of v(·) are small (v′′′(c) ≈ 0), we can make the following
approximations:

v′(ĉu)

v′(ce)
≈

v′(ce)− v′′(ce) · ce ·
(

ce−ξ·cu

ce

)
v′(ce)

= 1+ρ · (1−ξ · τ).

ρ is the coefficient of relative risk aversion of the utility function measured at ce. Next, we need to
approximate

∆̂v
v′(ce) ·∆c

=
v(ce)− v(ĉu)

v′(ce) ·∆c
+

m(y)
v′(ce) ·∆c

.
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If the third and higher order terms of v(·) are small (v′′′(c)≈ 0), we can approximate the first term:

v(ce)− v(ĉu)

v′(ce) ·∆c
≈ ce−ξ · cu

ce− cu −
1
2
· v
′′(ce)

v′(ce)
· c

e

ce ·
[ce−ξ · cu]2

ce− cu

=

[
1−ξ · τ

1− τ

]
·
[

1+
1
2
·ρ · (1−ξ · τ)

]
.

To approximate the second term, we need to assume that m(·) is isoelastic: m(y) = ωm · y1+µ

1+µ with
µ ∈ (0,+∞), ωm ∈ (0,+∞). Then

m(y) = y · m
′(y)

1+µ
.

But the unemployed worker’s optimality condition (A17) implies

m(y) = y · v
′(ĉu)

1+µ
= cu · (ξ−1) · 1

1+µ
· v′(ĉu)

m(y)
v′(ce) ·∆c

=
τ

1− τ
· ξ−1

1+µ
· v
′(ĉu)

v′(ce)

m(y)
v′(ce) ·∆c

=
τ

1− τ
·
[

ξ−1
1+µ

]
· [1+ρ · (1−ξ · τ)] .

Accordingly, the optimal UI formula in sufficient statistics becomes:

τ

1− τ
=

ρ

εM · [1−ξ · τ]+ κ

κ+1
·
[

εm

εM −1
]
· 1

1− τ
·{

τ · ξ−1
1+µ

+(1−ξ · τ) ·
[

1+ρ

(
1−ξ · τ

2
+ τ · ξ−1

1+µ

)]}
.

If unemployed workers fully insure themselves without any insurance from the government: cu = 0
and ĉu = y = ce. This implies that τ = 0 such that the left-hand side of the formula is nil. It also
implies that ξ · τ = ĉu/ce = 1 (and τ · (ξ− 1) = τ · ξ− τ = 1), such that the right-hand side of the
formula is positive. Therefore, even though workers can fully insure themselves without UI, it is
optimal for the government to provide some UI because of the cost of home production.

B.2 UI influences wages

If UI influences wages, labor demand becomes a function of UI: nd = nd(a,θ,∆c), which reflects
the influence of UI on firm’s recruiting decision through wages. Labor market tightness θ†(a,∆c)
is now characterized by

nd(θ,∆c) = ns(es(θ,∆v†(a,∆c)),θ).

This generalization does not affect the derivations: the macro-elasticity captures the influence of
UI on aggregate employment and labor market tightness through all channels, including possibly
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wages. If the equilibrium wage responds to ∆c: w = w†(a,∆c), we amend the budget constraint
and modify the end of the derivation of the optimal UI formula.

Second step. We start from the budget constraint:

cu†(a,∆c) = n†(a,∆c) ·
[
w†(a,∆c)−∆c

]
∂cu†

∂∆c
=

1−n
∆c
· [w−∆c] · εM−n · (−∂w†

∂∆c
+1)

∂cu†

∂∆c
=

1−n
n
· τ

1− τ
· εM−n+n · ∂w†

∂∆c

Third step. We come back to the formula:

0 = v′ ·
[

1−n
n

τ

1− τ
ε

M−n+n · ∂w†

∂∆c

]
+nv′(ce)+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

0 = v′ · 1−n
n
· τ

1− τ
· εM + v′ ·n · ∂w†

∂∆c
+n · (1−n)

[
v′(ce)− v′(cu)

]
+

∆v
∆c
· κ

κ+1
· (1−n) ·

(
ε

M− ε
m)

Dividing the equation by (1−n) · εM · v′ and rearranging the terms: yields:

1
n
· τ

1− τ
+

1
εM ·

n
1−n

· ∂w†

∂∆c
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1

·
{

n
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

· κ

κ+1
·
(

εm

εM −1
)}

It is convenient to express the wage w = w(a, t∗) as a function of the implicit total tax on work
t∗ = t + b. We can also write the net reward from work ∆c = ∆c(a, t∗) as a function of t∗. By
definition

∆c = w(a, t∗) · (1− t∗)
∂∆c
∂t∗

=
∂w
∂t∗
· (1− t∗)−w.

As ∆c/w = (1− t∗), we can rewrite the elasticity εw†:

w(a, t∗) = w†(a,∆c(a, t∗))

∂w
∂t∗

=
∂w†

∂∆c
· ∂∆c

∂t∗

∂w†

∂∆c
=

∂w
∂t∗

∂w
∂t∗ · (1− t∗)−w

∂w†

∂∆c
=− εw

1− εw ·
1

1− t∗
,
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where εw is the minus the elasticity of wages with respect to one minus the total implicit tax on
work:

ε
w =

1− t∗

w
· ∂w

∂t∗
.

Notice using the budget constraint that

1
1− t∗

=
w
∆c

= 1+
1
n
· cu

∆c
= 1+

1
n
· τ

1− τ
.

Combining these results, we obtain the optimal UI formula in the text.

B.3 Estimation of the elasticity of k′ : κ, and the elasticity of m′ : µ

Estimation of κ. Consider an unemployed workers receiving benefits cu, expecting to receive ce

if employed, and facing a labor market tightness θ. We denote by λ = e · f (θ) the hazard rate out
of unemployment. Assume that the worker receives an increase dcu > 0 in benefits, and reduces
his search effort by de < 0, which leads to a reduction dλ = f (θ) ·de < 0 in the hazard rate. If we
can measure consumption level, consumption change, hazard rate, and change in hazard rate, we
can estimate the following elasticity:

ε
∗ =

cu

λ

dλ

dcu .

In turn, this elasticity allows us to estimate the coefficient κ. From Lemma A1, d ln(e)/d ln(∆v) =
1/κ. Since we are considering a change in benefits for only one worker, labor market conditions
are not affected by the policy experiment, and θ remains constant. Hence d ln(λ) = d ln(e). Fur-
thermore, d∆v =−v′(cu)dcu such that, if the second and higher order terms of v(·) are small,

d ln(∆v) =
d∆v
∆v
≈− v′(cu)

v′(cu) ·∆c
·dcu =

dcu

∆c
.

Therefore,

1
κ
≈ dλ

λ
· cu

dcu ·
∆c
cu

1
κ
≈ ε
∗ · 1− τ

τ

κ≈ 1
ε∗
· τ

1− τ
.

Estimation of µ. Consider an unemployed workers receiving benefits cu and consuming a total
amount ĉu = cu+y. Assume that the worker receives an increase dcu > 0 in benefits, and increases
his total consumption by dĉu > 0. If we can measure all the consumptions and consumption
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changes, we can estimate the following elasticity:

ε̂ =
cu

ĉu
dĉu

dcu =
1
ξ
· dĉu

dcu .

In turn, this elasticity allows us to estimate the coefficient µ.
The optimal choice of home production given by (A17), the assumption that m(·) is isoelastic,

and the identities ĉu = y+ cu = ξ · cu yield:

v′(ĉu) = m′(y)

v′′(ĉu) · dĉu

dcu = m′′(y) ·
(

dĉu

dcu −1
)

dĉu

dcu =
1

1− v′′(ĉu)
m′′(y)

m′′(y) = µ
m′(y)

y
=

µ
ξ−1

· v
′(ĉu)

cu =
µ ·ξ

ξ−1
· v
′(ĉu)

ĉu

dĉu

dcu =
1

1− ĉu · v′′(ĉu)
v′(ĉu) ·

ξ−1
µ·ξ

ε̂ =
1

ξ+ρ · ξ−1
µ

µ = ρ ·
[

ξ−1
1/ε̂−ξ

]
.

So by measuring the ratio of consumptions ξ = ĉu/cu, estimating the elasticity ε̂ (as in Gruber
[1997]), and estimating the coefficient of relative risk aversion ρ (as in Chetty [2006b]), we can
estimate the coefficient µ.

B.4 Micro-elasticity and macro-elasticity with Nash bargaining

Let L denote the value to a worker of being employed after the matching process. Let U denote the
value to a worker of remaining unemployed after the matching process.

L = (1− t) ·w
U = b ·w.

Let t∗ = t +b. The worker’s surplus from an established relationship with a firm is therefore:

L−U = {1− (t +b)} ·w = (1− t∗) ·w.

In our model, the firm’s surplus from an established relationship is simply given by the hiring cost
r ·a/q(θ) because a firm can immediately replace a worker at that cost during the matching period.
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Since the bargaining solution divides the surplus of the match between worker and firm with the
worker keeping a fraction β ∈ (0,1) of the surplus, the worker’s surplus is related to the firm’s
surplus:

(1− t∗) ·w =
β

1−β
· r ·a

q(θ)
. (A18)

The firm’s first-order condition is:
a = w+

r ·a
q(θ)

,

which, combined with (A18), gives both equilibrium labor market tightness θ(a, t∗) and equilib-
rium wage w(a, t∗) as a function of technology a and the tax rate t∗:

w(a, t∗) = a · β

β+(1−β) · (1− t∗)

q(θ(a, t∗)) = r ·
[

1+
β

(1−β) · (1− t∗)

]
.

Notice that the wage obtained from Nash bargaining is proportional to technology a, and that labor
market tightness does not depend on a: in the model with Nash bargaining, wages are completely
flexible and there are no labor market fluctuations.

Equation (A18) can be rewritten to define implicitly equilibrium labor market tightness θ†(a,∆c):

∆c =
β

1−β
· r ·a

q(θ)
.

Thus, the elasticity of equilibrium labor market tightness with respect to ∆c is:

ε
θ†
∆c =

d lnθ

d ln(∆c)
=

1
η
> 0.

This is a critical result. Since ε
θ†
∆c > 0, the macro-elasticity is greater than the micro-elasticity:

εM > εm. This can be seen using the result from Lemma 1, which is also valid in this model with
Nash bargaining, and which implies:

ε
θ†
∆c > 0⇔ ε

M > ε
m.

C Derivations in the Infinite-Horizon Model
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C.1 Firm’s and worker’s problem

Representative firm: Endogenous layoffs never occur in equilibrium so the Lagrangian of the
firm’s problem is

L = E0

+∞

∑
t=0

δ
t ·
{

at ·g(nd
t )−wt ·nd

t −
r ·at

q(θt)
·
[
nd

t − (1− s) ·nd
t−1

]}
.

I assume that the firm maximization problem is concave and admits an interior solution (which will
always be the case in equilibrium). Immediately, we can show that employment nd

t is determined
by first-order condition (18).

Representative worker: The Lagrangian of the worker’s problem is

E0

+∞

∑
t=0

δ
t ·
{
−
[
1− (1− s)ns

t−1
]
· k(et)+(1−ns

t ) · v(cu
t )+ns

t · v(ce
t )

+At
{[

1− (1− s) ·ns
t−1
]
· et f (θt)+(1− s) ·ns

t−1−ns
t
}}

,

where ns
t is the probability to be employed in period t after period at and {At(at)} is a collection of

Lagrange multipliers. The first-order condition with respect to effort in the current period et gives:

k′(et) = f (θt) ·At .

The first-order condition with respect to expected employment status ns
t yields

At = [v(ce
t )− v(cu

t )]+δ(1− s)Et [k(et+1)]+δ · (1− s) ·Et [At+1 (1−Et+1 f (θt+1))]

k′(et)

f (θt)
= [v(ce

t )− v(cu
t )]+δ · (1− s) ·Et

[
k′(et+1)

f (θt+1)

]
−δ · (1− s)(κ∗+1) ·Et [k(et+1)]+δ(1− s)Et [k(et+1)]

Thus, the optimal effort function therefore satisfies the Euler equation (17), where we define (1+
κ∗)≡ d ln(k(e))/d ln(e), the elasticity of k(·) with respect to e.

C.2 Optimal UI formula in the dynamic model

Assumptions. We consider a static equilibrium of the infinite-horizon model: all variables are
constant, technology a is constant, and the net reward from work ∆c is constant. We assume that
there is no time discounting: δ = 1. In that case, the government chooses ∆c to maximize the
per-period social welfare.

Notations. We define the following functions, which we study in the Appendix:
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• Labor supply: ns : R+×R+→ [0,1] is defined by the Beveridge curve:

ns(e,θ) =
e · f (θ)

s+(1− s) · e · f (θ)
.

• effort supply: es : R+×R+→R+ defined implicitly by the worker’s optimality condition at
the limit where δ→ 1:

s · k
′(es)

f (θ)
+κ
∗ · (1− s) · k(es) = ∆v, (A19)

where (1+κ∗) is the elasticity of k(·) with respect to e.

• Incentive to search: ∆v : R++×R++→ R++ is defined implicitly by the system:

∆v = v(ce)− v(cu)

n(a,∆c) ·w(a) = n(a,∆c) · ce +[1−n(a,∆c)] · cu

∆c = ce− cu).

• Equilibrium labor market tightness: θ : R++×R++→ R+ is defined implicitly by

nd(θ,a) = ns (es(θ,∆v(a,∆c)),θ)

• Equilibrium effort: e : R++×R++→ R+ defined by

e(a,∆c) = es(θ(a,∆c),∆v(a,∆c))

• Equilibrium employment: n : R++×R++→ [0,1] defined by

n(a,∆c) = ns(e(a,∆c),θ(a,∆c))

• Equilibrium consumption: cu : R++×R++→ R++ is defined by

cu(a,∆c) = n(a,∆c) · (w(a)−∆c) .

We also define the elasticities:

ε
M ≡ ∆c

1−n
· ∂n

∂∆c
(A20)

ε
m ≡ ∆c

1−n
·
[

∂ns

∂e
· ∂es

∂∆v

]
· ∂∆v

∂∆c
. (A21)

Preliminary results.

ASSUMPTION A1. The disutility of effort is isoelastic: k(e) = ωk · e1+κ/(1+κ).
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LEMMA A17. Under Assumption A1, the partial derivatives of effort supply es(θ,∆v) satisfy:

θ

es ·
∂es

∂θ
= (1−η) · u

κ

∆v
es ·

∂es

∂∆v
=

1
κ
· u+κ

1+κ
.

Proof. First, we differentiate with respect to θ the optimality condition (A19) of the jobseeker’s
problem under Assumption A1, keeping ∆v fixed:

f (θ) ·∆v = s · k′(e)+(1− s) · f (θ) ·κ · k(e)

(1−η) · f (θ)
θ
·∆v =

(
s · k′′(e)+(1− s) · f (θ) ·κ · k′(e)

) ∂es

∂θ
+(1− s) · (1−η) · f (θ)

θ
·κ · k(e)

(1−η) · s · k
′(e)
θ

=
(
s · k′′(e)+(1− s) · f (θ) ·κ · k′(e)

) ∂es

∂θ

(1−η) · s
θ
=

(
s
k′′(e)
k′(e)

+(1− s) · f (θ) ·κ
)

∂es

∂θ

(1−η) · s
θ
=

κ

e
· [s+(1− s) · f (θ) · e] ∂es

∂θ

θ

e
· ∂es

∂θ
= (1−η) · u

κ
.

We repeat the exercise by differentiating the optimality condition (A19) with respect to ∆v,
keeping θ fixed:

f (θ) =
κ

e
· s

u
· ∂es

∂∆v
∆v
e
· ∂es

∂∆v
=

f (θ)
s · k′(e)

· u
κ

∆v

∆v
e
· ∂es

∂∆v
=

u+κ

κ · (1+κ)
,

where the last line derives from Lemma A20.

LEMMA A18. The partial derivatives of labor supply ns(e,θ) satisfy:

∂ns

∂θ
= (1−η) · u ·n

θ

∂ns

∂e
=

u ·n
e

,
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where 1−η is the elasticity of f (·) with respect to θ. Furthermore under Assumption A1,

∂ns

∂e
· ∂es

∂θ
=

u
κ
· ∂ns

∂θ
.

Proof. The Beveridge curve (14), implies that

u = 1− (1− s) ·n =
s

s+(1− s) · e · f (θ)
,

and hence

∂ns

∂e
=

s · f (θ)
[s+(1− s) · e · f (θ)]2

=
u ·n

e
∂ns

∂θ
=

s · e · f ′(θ)
[s+(1− s) · e · f (θ)]2

= (1−η) · u ·n
θ

where 1−η = θ · f ′(θ)/ f (θ) is the elasticity of f (θ) with respect to θ. Combining this result with
those from Lemma A17, we infer:

∂ns

∂e
· ∂es

∂θ
=

u
κ
· ∂ns

∂θ
.

LEMMA A19. Under Assumption A1, the partial derivative of equilibrium labor market tightness
θ(a,∆c) satisfies:

ε
θ
∆c ≡

∆c
θ
· ∂θ

∂∆c
=− κ

κ+u
· 1

1−η
· 1−n

u ·n
·
(
ε

m− ε
M)

∆c
1−n

· ∂ns

∂θ
· ∂θ

∂∆c
=− κ

κ+u
·
(
ε

m− ε
M) .

Proof. As in the proof of Lemma 1, by definition:

1−n
∆c
·
(
ε

M− ε
m)= [∂ns

∂e
∂es

∂θ
+

∂ns

∂θ

]
∂θ

∂∆c
.

We conclude using Lemma A18.

LEMMA A20. The optimal job-search effort, determined by (A19), satisfies two equivalent con-
ditions:

s · k
′(e)

f (θ)
= ∆v ·u · (1+κ∗)

u+κ∗

k(e) = ∆v · n
u+κ∗

.
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Proof. From the worker’s optimality condition (A19):

∆v = s · k
′(e)

f (θ)
+(1− s) ·κ∗ · k(e)

∆v = s · k
′(e)

f (θ)
+(1− s) ·κ∗ · e

1+κ∗
k′(e)

∆v = k′(e) ·
[

s
f (θ)

+(1− s) · κ∗

1+κ∗
e
]

∆v = e · k′(e) ·
[

u
n
+(1− s) · κ∗

1+κ∗

]
∆v = e · k′(e) ·

[
u · (1+κ∗)+(1− s)n ·κ∗

n(1+κ∗)

]
∆v = e · k′(e) ·

[
u · (1+κ∗)+(1−u) ·κ∗

n(1+κ∗)

]
∆v =

e
n
· k′(e) · u+κ∗

(1+κ∗)

∆v =
1
u
·
[

s · k
′(e)

f (θ)

]
u+κ∗

(1+κ∗)
,

using s/ f (θ) = u · e/n. This allows us to conclude.

Derivation. The government chooses ∆c to maximize

ns(e,θ) · v(cu +∆c)+(1−ns(e,θ)) · v(cu)− [1− (1− s) ·ns(e,θ)] · k(e).

The first-order condition of the government’s problem with respect to e is:

∂ns

∂e
· [∆v+(1− s) · k(e)]−u · k′(e) = 0.

Using Lemma A18, we can rewrite the condition as:

∆v =
e
n
· k′(e)− (1− s) · k(e).

Notice that from the Beveridge curve:

n
e
=

f (θ)
s+(1− s) · e · f (θ)

= f (θ) · u
s
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Hence the first-order condition becomes (using s ·n = e ·u · f (θ)):

∆v = s · k
′(e)

f (θ)
+

s(1−u)
u f (θ)e

·
[
e · k′(e)

]
− (1− s) · k(e)

∆v = s · k
′(e)

f (θ)
+(1− s) · [(1+κ

∗) · k(e)]− (1− s) · k(e)

∆v = s · k
′(e)

f (θ)
+(1− s) ·κ∗ · k(e),

which corresponds to the worker’s optimality condition for δ→ 1 given by (A19). The first-order
condition is:

0 = v′ · ∂cu

∂∆c
+n · v′(ce)+ [∆v+(1− s) · k(e)] · ∂ns

∂θ
· ∂θ

∂∆c
.

Fist step. From Lemma A20:

(1− s) · (1+κ
∗) · k(e) = ∆v · (1−u) · (1+κ∗)

u+κ∗

∆v+(1− s) · k(e) = s · k
′(e)

f (θ)
+(1− s) · (1+κ

∗) · k(e)

∆v+(1− s) · k(e) = ∆v · (1+κ∗)

u+κ∗
(A22)

Under Assumption A1, and using the results from Lemma A19:

[∆v+(1− s) · k(e)] · ∂ns

∂θ
· ∂θ

∂∆c
=

∆v
∆c
· κ · (1+κ)

(κ+u)2 · (1−n) ·
(
ε

M− ε
m) .

This negative term is the cost of the job-rationing externality.

Second step. It is identical to the static case:

∂cu

∂∆c
=

1−n
n
· τ

1− τ
· εM−n.

Third step. We come back to the formula:

0 = v′ ·
[

1−n
n
· τ

1− τ
· εM−n

]
+nv′(ce)+

∆v
∆c
· (1+κ)κ

(κ+u)2 · (1−n) ·
(
ε

M− ε
m) .
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Dividing the equation by (1−n) · εM · v′ yields:

1
n

τ

1− τ
=

[
n+(1−n)

v′(cu)

v′(ce)

]−1

·
{

n
εM

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce)∆c

(1+κ)κ

(κ+u)2

(
εm

εM −1
)}

. (A23)

Comparison with formula (9) in the one-period model. The sole difference between the op-
timal UI formula (A23) in the infinite-horizon model and formula (9) in the one-period model is
that the term (1+κ) ·κ/(κ+ u)2 replaces the term κ/(1+κ). This modification captures differ-
ences between the two models in the welfare effects of a change in UI. Recall that job rationing
causes a downward adjustment of labor market tightness following a cut in unemployment benefits.
The welfare cost of this adjustment differs on two points between infinite-horizon and one-period
model.

First, the welfare cost of a job loss caused by the equilibrium adjustment of labor market
tightness is ∆v+ (1− s)k(e) = (1+ κ)/(u+ κ) ·∆v in the infinite-horizon model instead of ∆v
in the one-period model. Therefore the correction term in the optimal UI formula is multiplied by
(1+κ)/(u+κ) in the infinite-horizon model.

The second effect is more subtle. By comparing Lemma A17 to Lemma A1, notice that the
elasticity of the optimal effort with respect to θ in the one-period and infinite-horizon model is,
respectively,

θ

es ·
∂es

∂θ
= (1−η) · 1

κ

θ

es ·
∂es

∂θ
= (1−η) · u

κ
.

Since u << 1, the elasticity of optimal effort es(θ,∆v) with respect to θ is lower in the infinite-
horizon model. This is because the worker’s optimal choice of effort, described by equation (1) in
the one-period model and equation (A19) in the infinite-horizon model, involves a mix of k(·) and
k′(·) in the infinite-horizon model instead of only k′(·) in the one-period model. Since the optimal
effort is less elastic, it falls less for a given reduction in labor market tighness. On the other hand,
the changes in employment following an adjustment in effort and an adjustment in labor market
tightness are relatively similar in both models, as showed by Lemma A2 and Lemma A18:

∂ns/∂e
∂ns/∂θ

=
1

1−η
· θ

e
.

By definition, the wedge
[
εm− εM] is tied to the change in labor supply ns following a change in
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tightness θ:

1−n
∆c
·
(
ε

M− ε
m)= [∂ns

∂e
∂es

∂θ
+

∂ns

∂θ

]
∂θ

∂∆c
1−n
∆c
·
(
ε

M− ε
m)= [∂ns/∂e

∂ns/∂θ
· ∂es

∂θ
+1
]

∂ns

∂θ
· ∂θ

∂∆c
1−n
∆c
·
(
ε

M− ε
m)= [ 1

1−η
·
(

θ

e
· ∂es

∂θ

)
+1
]

∂ns

∂θ
· ∂θ

∂∆c
.

The wedge
[
εm− εM] describes the adjustment in employment following a change in ∆c. Since

the supply of search effort is more inelastic, the elasticity (θ/e) · (∂es/∂θ) is much smaller. To
obtain the same adjustment in employment (as a combination of a change in effort (∂es/∂θ)dθ

and a change in tightness dθ), it is therefore necessary to have a larger adjustment in labor market
tightness dθ, which has a larger welfare cost. In other words, ∂θ/∂∆c must be larger. In our model,
recall that changes in effort have no welfare effect by the envelope theorem, whereas changes in
labor market tightness, which affect the per-unit job-finding probability, do have welfare effects.

Comparing the results from Lemma 1 to those of Lemma A19 shows that, for a given wedge[
εm− εM], the adjustment in tightness θ in response to a change in net reward from work ∆c is

larger in the infinite-horizon model. For a given wedge
[
εm− εM] between micro- and macro-

elasticity, the amount of job destroyed by the equilibrium adjustment of labor market tightness θ is
more important in the infinite-horizon model. The amount of jobs destroyed in the infinite-horizon
and one-period model are, respectively:

∆c
1−n

· ∂ns

∂θ
· ∂θ

∂∆c
=− κ

κ+1
·
(
ε

m− ε
M)

∆c
1−n

· ∂ns

∂θ
· ∂θ

∂∆c
=− κ

κ+u
·
(
ε

m− ε
M) .

Hence there are (κ+1)/(κ+u) times more jobs destroyed in the infinite-horizon model for a given
wedge

[
εm− εM], which implies that the correction term in the optimal UI formula is once more

multiplied by (1+κ)/(u+κ) in the infinite-horizon model.
To conclude, the κ/(1+κ) term from the one-period model becomes[

κ

1+κ

]
×
[

1+κ

u+κ

]
×
[

1+κ

u+κ

]
=

(1+κ) ·κ
(κ+u)2 .

Approximation. Assuming n≈ 1 and u << κ allows us to simplify the optimal formula to

τ

1− τ
=

1
εM ·

[
v′(cu)

v′(ce)
−1
]
+

∆v
v′(ce) ·∆c

· 1+κ

κ
·
(

εm

εM −1
)
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Once we linearize the utility function, the optimal UI formula becomes:

τ

1− τ
=

1
εM ·ρ · [1− τ]+

1+κ

κ
·
[

εm

εM −1
]
·
[
1+

ρ

2
· (1− τ)

]
.

C.3 Elasticities

In the same way as we derive equation (A7) from the firm’s optimality condition, and using
Lemma A19 under Assumption A1, we obtain:

εm

εM = 1+(1−α) ·α · 1−η

η
· κ+u

κ
·u · q(θ)

[1−δ · (1− s)] · r
·nα−1 ≡ Q(u,n,θ).

where η =−θ ·q′(θ)/q(θ) is minus the elasticity of q(·) and 1−α =−n ·g′′(n)/g′(n) is minus the
elasticity of g′(·).

Combining the definition (A21) of the micro-elasticity, and the expressions of various partial
derivatives given by (A12), Lemma A17, and Lemma A18, we infer the micro-elasticity:

ε
m =

∆c
∆v
· u · (u+κ)

κ · (1+κ)
·
{

n
1−n

·
[
(1−n) · v′(ce)+n · v′(cu)

]
+∆v′ · τ

1− τ
· εM
}

ε
m =

1
µ
· u · (u+κ)

κ · (1+κ)
·
{

n
1−n

· [(1−n)+n ·ζ]+ (1−ζ) · τ

1− τ
· εm

Q(u,n,θ)

}
ε

m =
n

1−n
· [1+n · (ζ−1)]

µ · κ·(1+κ)
u·(u+κ) +(ζ−1) · τ

1−τ
·Q(u,n,θ)−1

,

where we define the functions of the consumption levels:

µ≡ ∆v
∆c · v′(ce)

ζ≡ v′(cu)

v′(ce)
.

Accordingly, the macro-elasticity is given by:

ε
M =

n
1−n

· [1+n · (ζ−1)]

µ · κ·(1+κ)
u·(u+κ) ·Q(u,n,θ)+(ζ−1) · τ

1−τ

.

Finally, in the calibration of the infinite-horizon model, we use the micro-elasticity of unemploy-
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ment with respect to benefits (instead of net reward from work) given by

ε
c ≡−ε

m ·
[

∆c
cu ·

∂cu

∂∆c

]−1

.

Given that we know εm, we need to determine the elasticity of cu with respect to ∆c to compute
this elasticity εc. But Lemma A3, which is also valid in the infinite-horizon model, implies that

∆c
cu ·

∂cu

∂∆c
=

1−n
n
· εM− 1− τ

τ
·n.

Hence this micro-elasticity can be expressed as a function of the micro- and macro-elasticity:

ε
c =

εm

1−τ

τ
·n− 1−n

n · εM
.

C.4 Optimal unemployment insurance: government’s problem

The maximization of the government is over a collection of sequences
{nt(at),et(at),θt(at),ce

t (a
t),cu

t (a
t), ∀at}+∞

t=0. We can form a Lagrangian:

E0

+∞

∑
t=0

δ
t ·
{
(1−nt) · v(cu

t )+nt · v(ce
t )− [1− (1− s)nt−1] · k(et)

+At [nt ·w(at)−ntce
t − (1−nt)cu

t ]

+Bt

[
[v(ce

t )− v(cu
t )]−

k′(et)

f (θt)
+δ(1− s)Et

[
k′(et+1)

f (θt+1)

]
−κδ(1− s)Et [k(et+1)]

]
+Ct

[
at ·g′(nt)−wt−

r ·at

q(θt)
+δ(1− s)Et

[
r ·at+1

q(θt+1)

]]
+Dt [(1− (1− s) ·nt−1) · et f (θt)+(1− s) ·nt−1−nt ]

}
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where {At(at),Bt(at),Ct(at),Dt(at), ∀at}+∞

t=0 are sequences of Lagrange multipliers. Let B−1 ≡ 0
and C−1 ≡ 0. We rewrite the Lagrangian as:

E0

+∞

∑
t=0

δ
t ·
{
(1−nt) · v(cu

t )+nt · v(ce
t )− [1− (1− s)nt−1] · k(et)

+At [nt ·w(at)−ntce
t − (1−nt)cu

t ]

+Bt

[
[v(ce

t )− v(cu
t )]−

k′(et)

f (θt)

]
+Bt−1 · (1− s)

[
k′(et)

f (θt)
−κ · k(et)

]
+Ct

[
at ·g′(nt)−wt−

r ·at

q(θt)

]
+Ct−1 · (1− s)

[
r ·at

q(θt)

]
+Dt [(1− (1− s) ·nt−1) · et · f (θt)+(1− s) ·nt−1−nt ]

}
The first-order conditions of the government’s problem with respect to nt(at) for t ≥ 0 are

0 = v(ce
t )− v(cu

t )+δ(1− s)Et [k(et+1)]

−Dt +(1− s)Et [Dt+1 · (1−Et+1 f (θt+1)]

+Ct ·at ·g′′(nt)

+At {w(at)− (ce
t − cu

t )}
Dt = v(ce

t )− v(cu
t )+δ(1− s)Et [k(et+1)]+(1− s)Et [Dt+1 · (1−Et+1 f (θt+1)]

+Ct ·at ·g′′(nt)+At {w(at)− (ce
t − cu

t )} .

The first-order conditions of the government’s problem with respect to et(at) for t ≥ 0 are

0 =−ut · k′(et)−Bt
k′′(et)

f (θt)
+(1− s)Bt−1

k′′(et)

f (θt)
−κ(1− s)Bt−1k′(et)+Dt ·ut · f (θt)

0 =−ut · k′(et)+
k′′(et)

f (θt)
((1− s)Bt−1−Bt)−κ(1− s)Bt−1k′(et)+Dt ·ut · f (θt)

0 =−(κ+1)ut · k(et)+κ
k′(et)

f (θt)
((1− s)Bt−1−Bt)−κ(κ+1)(1− s)Bt−1k(et)+Dt · ·et ·ut · f (θt)

0 =− Dt ·ht

(κ+1)k(et)
+ut +κ

1
et f (θt)

[Bt− (1− s)Bt−1]+κ(1− s)Bt−1,

where B−1 = 0. The first-order conditions of the government’s problem with respect to ce
t (a

t) for
t ≥ 0 are

At = v′(ce
t ) ·
(

1+
Bt

nt

)
.
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The first-order conditions of the government’s problem with respect to cu
t (a

t) for t ≥ 0 are

At = v′(cu
t ) ·
(

1− Bt

1−nt

)
.

The first-order conditions of the government’s problem with respect to θt(at) for t ≥ 0 are

0 = (1−η)Bt
k′(et)

θt · f (θt)
− (1−η)(1− s) ·Bt−1

k′(et)

θt · f (θt)

−Ct ·η ·
r ·at

f (θt)
+Ct−1 · (1− s) ·η r ·at

f (θt)
+Dt ·ut · (1−η) · etq(θt)

0 =
1−η

η

k′(et)

f (θt)
[Bt− (1− s) ·Bt−1]−

r ·at

q(θt)
[Ct− (1− s) ·Ct−1]+Dtut ·

1−η

η
· et f (θt)

0 = ht ·Dt
1−η

η
+

1−η

η

k′(et)

f (θt)
[Bt− (1− s) ·Bt−1]−

r ·at

q(θt)
[Ct− (1− s) ·Ct−1]

0 = ht ·Dtq(θt)
1−η

η
+

1−η

η

k′(et)

θt
[Bt− (1− s) ·Bt−1]− r ·at [Ct− (1− s) ·Ct−1] ,

where B−1 = 0 and C−1 = 0. To summarize, the optimal equilibrium {ce
t ,c

u
t ,θt ,nt ,Et}+∞

t=0 and the
sequences of Lagrange multipliers from the government’s problem {At ,Bt ,Ct ,Dt}+∞

t=0 are charac-
terized by the constraints, ∀t ≥ 0:

0 = [v(ce
t )− v(cu

t )]−
k′(et)

f (θt)
+δ · (1− s) ·Et

[
k′(et+1)

f (θt+1)

]
−κ ·δ · (1− s) ·Et [k(et+1)] (A24)

0 = at ·g′(nt)−w(at)−
r ·at

q(θt)
+δ · (1− s) ·Et

[
r ·at+1

q(θt+1)

]
(A25)

0 = [1− (1− s) ·nt−1] · et · f (θt)− [nt− (1− s) ·nt−1] (A26)
0 = nt ·w(at)−nt · ce

t − (1−nt) · cu
t , (A27)

and the first-order conditions from the government’s problem, ∀t ≥ 0:

Dt = v(ce
t )− v(cu

t )+δ · (1− s) ·Et [k(et+1)]+(1− s) ·Et [Dt+1 · (1− et+1 f (θt+1))]

+Ct ·at ·g′′(nt)+At [w(at)− (ce
t − cu

t )] (A28)

At =

[
nt

v′(ce
t )

+
1−nt

v′(cu
t )

]−1

(A29)

Bt = nt · (1−nt) ·
[

1
v′(ce

t )
− 1

v′(cu
t )

]
·At (A30)

0 =− Dt ·ht

(κ+1)k(et)
+ut +κ

1
et f (θt)

[Bt− (1− s)Bt−1]+κ(1− s)Bt−1 (A31)

0 = ht ·Dt ·q(θt) ·
1−η

η
+

1−η

η

k′(et)

θt
[Bt− (1− s)Bt−1]− rat [Ct− (1− s)Ct−1] (A32)
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where B−1 = 0 and C−1 = 0, ht = nt− (1− s) ·nt−1, ut = 1− (1− s) ·nt−1.

C.5 Optimal equilibrium in a static environment

In a static environment, there are no aggregate shocks (at = a for all t), and the labor market in
steady state (equation (14) holds). The solution to the government’s problem in a static environ-
ment is constant: the collection of 9 variables {ce,cu,n,θ,e,A,B,C,D} is characterized by the
following system of 9 equations:

[v(ce)− v(cu)] = [1−δ · (1− s)]
k′(e)
f (θ)

+δ · (1− s) ·κ · k(e) (A33)

0 =g′(n)− w(a)
a
− [1−δ · (1− s)] · r

q(θ)
(A34)

n =
e · f (θ)

s+(1− s) · e · f (θ)
(A35)

n ·w(a) =n · ce +(1−n) · cu (A36)
D [1− (1− s)(1− e · f (θ))] = [v(ce)− v(cu)]+δ(1− s)k(e)

+C ·a ·g′′(n)+A [w(a)− (ce− cu)] (A37)

A =

[
n

v′(ce)
+

1−n
v′(cu)

]−1

(A38)

B = n · (1−n)
[

1
v′(ce)

− 1
v′(cu)

]
·A (A39)

C/n =
1−η

η
· k′(e)

r ·a ·θ

[
1+

B
n
·
(

κ

u
+1
)]

(A40)

D =
k′(e)
f (θ)
·
[

1+
B
n
· κ

u

]
. (A41)

This system of equations (A33)–(A40) is obtained directly from the system of 9 equations (A24)–
(A32), except that we rewrite the first-order conditions with respect to e and θ (when the labor
market is in steady state, e f (θ)u = h):

D ·u · f (θ)
k′(e)

= u+κ(1− s)B+κ
s

e f (θ)
B

D =
k′(e)
f (θ)

{
1+κ(1− s)

B
u
+κ · B

n

}
D =

k′(e)
f (θ)

{
1+

B
n
· κ

u

}
,
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and

0 = s ·n ·D1−η

η
+

1−η

η

k′(e)
f (θ)

s ·B− r ·a
q(θ)

· s ·C

r ·a
q(θ)

·C =
1−η

η

[
n ·D+

k′(e)
f (θ)
·B
]

r ·a
q(θ)

·C =
1−η

η

k′(e)
f (θ)

[
n+B ·

(
κ

u
+1
)]

C =
1−η

η

k′(e)
r ·a ·θ

[
n+B ·

(
κ

u
+1
)]

.

To solve this system for a given a j, we perform a grid search over ∆v = [v(ce)− v(cu)]. For a
sequence {∆vi}i, we solve the system of equations (A33)–(A35) to find a collection of sequences
{ni,ei,θi}i. Using (A36) and the definition ∆vi = v(ce

i )− v(cu
i ), we compute a collection of se-

quences {ce
i ,c

u
i }i. From these sequences, we compute a collection of sequences {Ai,Bi,Ci,Di}i by

solving in turn (A38) (to get {Ai}i), (A39) (to get {Bi}i), (A40) (to get {Ci}i),and (A41) (to get
{Di}i). Lastly, we pick the index i∗ such that equation (A37) be satisfied. The optimal equilibrium
in a static environment with technology a j is {ce

i∗,c
u
i∗,ni∗,θi∗,ei∗}, the optimal replacement rate is

τ = cu
i∗/ce

i∗, the optimal labor tax rate is 1− ce
i∗/w(a), and the optimal benefit rate is cu

i∗/w(a). We
repeat this computation for a sequence of technology

{
a j
}

j to plot the graphs in Figure 2.

C.6 Log-linearization

x denotes the steady-state value of variable xt . x̌t ≡ d log(xt) denotes the logarithmic deviation of
variable xt . In steady state, the optimal equilibrium

{
ce,cu,n,θ,e

}
and the associated Lagrange

multipliers
{

A,B,C,D
}

are characterized by the system of equations (A33)–(A41) in Section C.5
when technology a = a = 1. Moreover h = s · n and u = 1− (1− s) · n. Using the calibration in
Table 1, we find that in steady state, when technology a = 1, the optimal replacement rate τ = 73%,
the optimal tax rate t = 4.0%, the optimal benefit rate b = 70%, and unemployment u = 6.2%.

The log-linearized optimal equilibrium
{

če, ču, ň, θ̌, ě
}

and the associated Lagrange multipliers{
Ǎ, B̌,Č, Ď

}
are characterized by the following system of log-linear equations:

• Definition of unemployment ut = 1− (1− s) ·nt−1:

ǔt +o1 · ňt−1 = 0

where o1 =
1−u

u .

• Definition of number of hires ht = nt− (1− s) ·nt−1:

(1− s) · ňt−1 + s · ȟt− ňt = 0.
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• Law of motion of employment (A26):

ǔt + ět +(1−η) · θ̌t− ȟt = 0

• Budget constraint (A27):

γ · ǎt + ňt−{p1 · (ňt + če
t )+ p2 · (−q1 · ňt + ču

t )}= 0,

with q1 = n/(1−n), p1 =
ce

ω
, and p2 = 1− p1.

• Firm’s optimal hiring decision (A25):

−ǎt +(1−α) · ňt + r1 · γ · ǎt + r2 ·
(
η · θ̌t + ǎt

)
+ r3Et

[
η · θ̌t+1 + ǎt+1

]
= 0

with r1 = ω · 1
α·a ·n

1−α, r2 =
c

q(θ)
· 1

α
·n1−α, and r3 = 1− r1− r2.

• Worker’s optimal search decision (A24):

−t2

[
1

1−δ(1− s)

[
κ · ět− (1−η) · θ̌t

]
− δ · (1− s)

1−δ · (1− s)
E
[
κ · ět+1− (1−η) · θ̌t+1

]]
− t1 (1+κ) ·E [ět+1]

+εe · s1 · če
t + εu · s2 · ču

t = 0

where we define the elasticity of v(·) around steady-state εi =
d ln(v(x))

d ln(x)

∣∣
x=ci

and s1 = v(ce)/∆v,

s2 = 1− s1, t2 = 1− t1, and t1 =
κ·δ(1−s)·k(e)

∆v
.

• Lagrange multiplier At defined by equation (A29):

Ǎt +u1 ·
(
ňt− ε

′
e · če

t
)
+u2 ·

(
−q1 · ňt− ε

′
u · ču

t
)
= 0

where we define the elasticity of v(·) around steady-state ε′i =
d ln(v′(x))

d ln(x)

∣∣
x=ci

and where u1 =
n/v′(ce)

n/v′(ce)+(1−n)/v′(cu) , and u2 = 1−u1.

• Lagrange multiplier Bt defined by equation (A30):

B̌t−
[
(1−q1) · ňt + Ǎt−

(
ε
′
e · čet

)
−
(
ε
′
u · ču

t
)
+
{

ε
′
e · v1 · če

t + ε
′
u · v2 · ču

t
}]

= 0

where v1 =
v′(ce)

v′(ce)−v′(cu) , and v2 = 1− v1.

• Lagrange multiplier Dt defined by equation (A31):

Ďt + ǔt +(1−η)θ̌t−κ · ět−
[

w2 · ǔt +w3 · B̌t−1−w4

[
(1−η) · θ̌t + ět−

{
1
s
· B̌t−

1− s
s
· B̌t−1

}]]
= 0

where w1 =
u·D· f (θ)

k′(e) , and w2 = u/w1, w3 = κ · (1− s) ·B/w1, w4 = 1−w2−w3.
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• Lagrange multiplier Ct defined by equation (A32):

ȟt−η · θ̌t + Ďt− x6

[
−θ̌t +κ · ět +

1
s

B̌t−
1− s

s
B̌t−1

]
− x7

[
ǎt +

1
s
Čt−

1− s
s

Čt−1

]
= 0

where x1 =−h ·q(θ) ·D · 1−η

η
, x2 =

1−η

η
· s ·B · k′(e)

θ
, and x6 = x2/x1, x7 = 1− x6.

• First-order condition (A28) with respect to nt :

Ďt−
{

y1 (εe · z1 · če
t + εu · z2 · ču

t )+ y2(1+κ)E [ět+1]+ y3 ·E
[
Ďt+1− z6

(
ět+1 +(1−η)θ̌t+1

)]
+ y4 ·

(
Čt + ǎt +(α−2) · ňt

)
+ y5

(
Ǎt +{z3 · γ · ǎt + z4 · če

t + z5 · ču
t }
)}

= 0

where εi is defined as above and z1 = v(ce)
v(ce)−v(cu) , y1 = v(ce)−v(cu)

D , y2 = δ · (1− s) · k(e)
D ,

y3 = (1− s) ·
(
1− e · f (θ)

)
, z3 = ω

ω−(ce−cu) , z4 = − ce

ω−(ce−cu) , y4 = −α · (1− α) · C·nα−2

D ,

z6 =
e· f (θ)

1−e· f (θ) , and z2 = 1− z1, z5 = 1− z3− z4, y5 = 1− y1− y2− y3− y4.

In addition we assume that the log-deviation of technology ǎt follows an AR(1) process:

ǎt = ν · ǎt−1 + zt ,

where zt ∼ N(0,σ2) is the innovation to technology driving fluctuations in the log-linear model.
We compute the unique stationary rational expectations solution to the log-linear system using

the standard Anderson and Moore [1985] method.This solution allows us to compute the IRFs of
variables to unexpected technology shocks.

C.7 Calibration

We calibrate all parameters at a weekly frequency as shown in Table 1. The calibration strategy
follows closely that in Michaillat [forthcoming], so this section only highlights differences and
novelties. We normalize average search effort ê = 1, and average technology â = 1.

We use a Cobb-Douglas matching function h(u,o) = ωh ·uη ·o1−η and set η = 0.7, in line with
empirical evidence [Petrongolo and Pissarides, 2001]. To estimate the matching efficiency ωh, we
use the Beveridge curve (14) to find

ωh = s/(1− s) · (1− û)/û · θ̂η−1. (A42)

We use the seasonally-adjusted, monthly series for the number of vacancies collected by the Bureau
of Labor Statistics (BLS) in the Job Openings and Labor Turnover Survey (JOLTS), 2000–2010,
and the seasonally-adjusted, monthly unemployment level computed by the BLS from the Current
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Population Survey (CPS) over the same period, to compute labor market tightness and unemploy-
ment. We find θ̂ = 0.47 and û = 5.9%. The resulting estimate of matching efficiency is ωh = 0.19.

We calibrate the wage flexibility γ based on estimates obtained in micro-data. As discussed in
Michaillat [forthcoming], the flexibility of wages in newly created jobs, and not that in existing
jobs, mostly drives job creation. Furthermore, the estimate closest to this flexibility in US data is
provided by Haefke et al. [2008]. They estimate an elasticity of total earnings of job movers with
respect to productivity of 0.7, using panel data following a sample of production and supervisory
workers over the 1984–2006 period. If there is “cyclical upgrading”, a improvement in the com-
position of jobs accepted by workers in expansions, 0.7 is in fact an upper bound on the elasticity
of wages in newly created jobs. A lower bound for the elasticity of wages in newly created jobs is
the elasticity of wages in existing jobs, estimated in the 0.1–0.45 range with US data [Pissarides,
2009]. Thus we set γ = 0.5, in the middle of the range of plausible values.

We choose risk aversion ρ = 1, which is on the low side of the most compelling estimates
[Chetty, 2004, 2006b]. We choose κ = 2.1 such that the micro-elasticity of unemployment 1− n
with respect to benefits cu, defined by

cu

1−n
·
[

∂ns(θ,e)
∂e

· ∂e(θ,∆v)
∂∆v

]
· d∆v

dcu = ε
m ·
[

∆c
cu ·

dcu

d∆c

]−1

be in line with the elasticity of 0.9 estimated by Meyer [1990].26

As summarized by Pavoni and Violante [2007], the state-determined weekly benefits generally
replace between 50% and 70% of the individual’s last weekly pre-tax earnings. Employee’s earn-
ings are subject to a 7.65% payroll taxes: 6.2% is taxed to finance social security and 1.45% is
taxed to finance Medicare.27 Hence, we set the replacement rate to τ̂ = 0.6/(1−0.0765) = 65%.
With κ = 2.1, ρ = 1, and τ̂ = 65%, we obtain ωk = 0.58 to match ê = 1.

C.8 The government can borrow and save

In this section, we characterize the optimal equilibrium when the government has access to a
complete market for Arrow-Debreu securities. The worker’s and firm’s problem are unchanged,
and are characterized by (A24) and (A25). The law of motion of unemployment is unchanged, and
is given by (A26). However, we remove the period-by-period budget constraint (A27). There is
now one less equation in the system characterizing the optimal equilibrium, but there is also one
less variable: the Lagrange multiplier At .

26The elasticity estimated by Meyer [1990] is conceptually close to a micro-elasticity because it either controls for
state unemployment rates or uses state fixed effects. Meyer [1990] estimates the elasticity of the hazard rate out of
unemployment with respect to benefits, which equals the elasticity of unemployment duration with respect to benefits.
In our model, the hazard rate is e · f (θ), so unemployment duration is 1/(e · f (θ)) = u/(s ·n)≈ u/s≈ (1−n)/s. Hence
the elasticity of unemployment 1− n is similar to elasticity of duration with respect to benefits. In the appendix, we
express the micro-elasticity of unemployment with respect to benefits as a function of equilibrium variables n,u,θ.

27Prior to 1987, benefit income was exempt from income tax. Since 1987 benefits have been fully taxable, so we
abstract from the income tax.
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The Lagrangian of the government’s problem is the same as in Section C.4, except that Lagrange
multiplier on the period-by-period budget constraint, At , is constant over time and across histories:
or all t,at , At(at) = A. This is because the government faces the unique intertemporal budget
constraint (21), which is weighted by one unique Lagrange multiplier. The first-order conditions
of the government’s problem simplify accordingly.

We obtain the log-linear system describing the optimal equilibrium by modifying the log-linear
system of Section C.6 accordingly. To be able to simulate the log-linear model, however, we need
to determine the Lagrange multiplier A on the intertemporal budget constraint. A is determined
such that the government’s intertemporal budget constraint (21), which replaces the sequence of
period-by-period budget constraints, be binding. We define the deficit in period t by

Λ(St) = nt · ce
t +(1−nt) · cu

t −nt ·w(at).

where we define the vector
St = [at ,nt ,ce

t ,c
u
t ] .

The intertemporal budget constraint (21) can rewritten as

+∞

∑
t=0

δ
t ·E0 [Λ(St)] = 0. (A43)

We can linearize the deficit around its steady-state value Λ
(
S
)
:

Λ(St)≈ Λ
(
S
)
+a · ∂Λ

∂a
(S) · dat

a
+n · ∂Λ

∂n
(S) · dnt

n
+ ce · ∂Λ

∂ce (S) ·
dce

t
ce + cu · ∂Λ

∂cu (S) ·
dcu

t
cu

Λ(St)≈ Λ
(
S
)
+Λ1 · ǎt +Λ2 · ňt +Λ3 · če

t +Λ4 · ču
t

E0 [Λ(St)]≈ Λ
(
S
)
+Λ1 ·E0 [ǎt ]+Λ2 ·E0 [ňt ]+Λ3 ·E0 [če

t ]+Λ4 ·E0 [ču
t ] ,

where Λ1,Λ2,Λ3,Λ4 are constant. Using (A43), we infer that the intertemporal budget con-
straint (21) is a linear combination of the expected value of the log-deviations
{E0 {ňt} ,E0 {ǎt} ,E0 {če

t } ,E0 {ču
t }}

+∞

t=0 and of the steady-state deficit Λ
(
S
)
.

We compute the unique stationary rational expectations solution to the log-linear system using
the standard Anderson and Moore [1985] method. Let Xt ∈Rk be the vector of log-deviations: Xt =
[ǎt , ňt , če

t , č
u
t , . . .]

′. Let Zt+1 ∈Rk be a vector of innovations at time t+1. In our system there is only
one exogenous shock, so there is only one non-zero entry in the vector Zt+1: Zt+1 = [0,0, . . . ,zt+1]

′

where zt+1 ∼ N(0,σ2). The solution to the log-linear system satisfies

Xt+1 = M1Xt +M2Zt+1,

where M1 ∈ Rk×k,M2 ∈ Rk×k are matrices that are constant over time. Taking expectations, and
using the fact that Xt is stationary: for all t ≥ 0,

E0 [Xt ] = E0 [Xt+1] = M1E0 [Xt ]+M2E0 [Zt+1] = M1E0 [Xt ] .
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Since all the eigenvalues from M1 have an absolute value strictly less than one, we infer that for all
t ≥ 0, E0 [Xt ] = 0. Hence the log-linear system is such that

E0 [ňt ] = E0 [ǎt ] = E0 [če
t ] = E0 [ču

t ] = 0.

We conclude that the intertemporal budget constraint is satisfied by the solution to the log-linear
system in a stochastic environment as long as it holds in steady-state and Λ

(
S
)
= 0.

Hence to determine A, we need to solve for the steady state of this model, in which the govern-
ment faces the unique budget constraint (21). This steady state is the same as that of the baseline
infinite-horizon model of Section 4.1, in which the government faces a sequence of budget con-
straints (15). So A can be determined by solving the system of equations (A33)–(A40). Obviously,
A is the same as in the steady state of the baseline infinite-horizon model of Section 4.1

C.9 Unemployment benefits of finite duration

Timing.

• beginning of period t, matching process: unemployed workers search for a job with effort et

• beginning of period t, end of matching process: jobseekers find a job with probability et ·
f (θt)

• middle of period t: production; workers consume transfer ct from the government

• end of period t, separations: a fraction of employed workers lose their jobs; a fraction λt of
eligible unemployed workers become ineligible

Notations. We introduce three superscripts: e for Employed; u for unemployed worker eligible
to receive Unemployment insurance; a for unemployed worker whose UI expired, and who only
receive social Assistance. We now define:

• ce
t : consumption of an employed worker

• cu
t : consumption of an unemployed worker who is eligible to receive UI (limited duration)

• ca
t : consumption of a worker who receives social assistance (unlimited duration)

• xu
t and xa

t : probability to be unemployed and receive UI or social assistance at the beginning
of period t

• zu
t and za

t : probability to be unemployed and receive UI or social assistance in period t after
the matching process, and before the production/consumption process.

• eu
t and ea

t : job-search effort of an unemployed worker who receives UI or social assistance
in period t
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To simplify notation, we define:

∆vu,e
t ≡ [v(ce

t )− v(cu
t )]

∆va,u
t ≡ [v(cu

t )− v(ca
t )]

∆va,e
t ≡ [v(ce

t )− v(ca
t )] .

Flows of workers. Given the timing of the model and our notations, the various stocks of em-
ployed and unemployed workers are related by:

zu
t = xu

t · (1− eu
t · f (θt)) (A44)

za
t = xa

t · (1− ea
t · f (θt)) (A45)

xu
t = zu

t−1 · (1−λt−1)+ s ·nt−1 (A46)
xa

t = za
t−1 +λt−1 · zu

t−1 (A47)
nt = 1− (za

t + zu
t ) . (A48)

Worker’s problem. The Lagrangian of the worker’s problem is

E0

+∞

∑
t=0

δ
t ·
{
− xu

t · k(eu
t )− xa

t · k(ea
t )+ v(ce

t )− zu
t ·∆vu,e

t − za
t ·∆va,e

t

+At {zu
t − xu

t · (1− eu
t · f (θt))}

+Bt {za
t − xa

t · (1− ea
t · f (θt))}

+Ct
{

xu
t − zu

t−1 · (1−λt−1)− s ·
(
1− zu

t−1− za
t−1
)}

+Dt
{

xa
t −λt−1 · zu

t−1− za
t−1
}}

.

The first-order condition with respect to efforts eu
t and ea

t in the current period gives:

k′(eu
t ) = f (θt) ·At

k′(ea
t ) = f (θt) ·Bt .

The first-order condition with respect to beginning-of-period unemployment probability xu
t and xa

t
yield:

Ct = k(eu
t )+At · (1− eu

t f (θt))

Dt = k(ea
t )+Bt · (1− ea

t f (θt)) .

The first-order condition with respect to post-matching unemployment probability zu
t and za

t yield:

At = ∆vu,e
t +(1− s) ·δ ·Et [Ct+1]+λt ·δ ·Et [Dt+1−Ct+1]

Bt = ∆va,e
t +(1− s) ·δ ·Et [Dt+1]+ s ·δ ·Et [Dt+1−Ct+1] .
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We define (1+κ) as the elasticity of the cost function k(·). Combining these equations we have:

∆k′t
f (θt)

= ∆va,u
t +(1−λt) ·δ ·Et [Dt+1−Ct+1]

Et [Dt+1−Ct+1] = Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
where ∆kt = k(ea

t )−k(eu
t ) and ∆k′t = k′(ea

t )−k′(eu
t ). Combining these equations once more yields:

k′(eu
t )

f (θt)
+(1− s) ·δ ·Et

[
κ · k(eu

t+1)−
k′(eu

t+1)

f (θt+1)

]
= ∆vu,e

t +λt ·δ ·Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
(A49)

k′(ea
t )

f (θt)
+(1− s) ·δ ·Et

[
κ · k(ea

t+1)−
k′(ea

t+1)

f (θt+1)

]
= ∆va,e

t + s ·δ ·Et

[
∆k′t+1

f (θt+1)
−κ ·∆kt+1

]
(A50)

Also, notice that job-search efforts eu
t and ea

t are related by:

∆k′t
f (θt)

+(1−λt) ·δ ·Et

[
κ ·∆kt+1−

∆k′t+1

f (θt+1)

]
= ∆va,u

t .

Firm’s problem. Even if benefits have finite duration, the firm’s problem is similar to that de-
scribed in Section C.1 in the baseline infinite-horizon model. Hence the optimal hiring behavior of
the firm satisfies (18).

Government’s problem. The generosity of unemployment insurance and social assistance are
parameterized by τ

u,e
t ≡ cu

t /ce
t , τ

a,e
t ≡ ca

t /ce
t , τ

a,u
t ≡ ca

t /cu
t = τ

a,e
t /τ

u,e
t . We assume that the govern-

ment keep the generosity of the system of transfers constant: for all t, τ
u,e
t = τu,e,τa,e

t = τa,e,τa,u
t =

τa,u. Furthermore, we assume that v(·) = ln(·), consistently with our preferred calibration. This
choice allows us to write ∆vu,e

t = − ln(τu,e), ∆va,e
t = − ln(τa,e), ∆va,u

t = − ln(τa,u). Under this
assumption, the incentives to search provided by government transfers remain constant over the
business cycle. The government chooses the arrival rate λt of ineligibility to unemployment insur-
ance to maximize social welfare:

E0

+∞

∑
t=0

δ
t · {−xu

t · k(eu
t )− xa

t · k(ea
t )+ ln(ce

t )+ zu
t · ln(τu,e)+ za

t · ln(τa,e)} ,

subject to a budget constraint for all t:

nt ·w(at) = nt · ce
t + zu

t · cu
t + za

t · ca
t = ce

t · [nt + zu
t · τu,e + za

t · τa,e] ;

subject to the laws of motion (A44)–(A48) for the stocks {xu
t ,x

a
t ,z

u
t ,z

a
t ,nt}+∞

t=0 of employed and un-
employed workers; subject to the optimality condition (A49) for the job search {eu

t }
+∞

t=0 of unem-
ployed workers receiving unemployment benefits, the optimality condition (A50) for the job search
{ea

t }
+∞

t=0 of unemployed workers receiving social assistance, and the optimality condition (18) for
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firm’s employment
{

nd
t
}+∞

t=0; and subject to the equilibrium condition on the labor market that labor
supply equals labor demand for all t: nt = nd

t , which determines labor market tightness {θt}+∞

t=0.

Government’s problem in a static environment. We focus on a static environment, , in which
there are no aggregate shocks (at = a for all t), and the labor market in steady state: xa

t = xa, xu
t =

xu, za
t = za, zu

t = zu, nt = n, . In that case, we can simplify the first-order conditions of workers’
and firm’s problems (3 equations), the laws of motion of the stocks of workers (5 equations), and
the budget constraint of the goverment’s problem (1 equation). These 9 constraints describe a
collection of 9 variables {xu,xa,zu,za,n,eu,ea,θ,ce}, which constitute an equilibrium with unem-
ployment insurance. All other variables of interest can be constructed from these 9 variables (for
instance, h,u,cu,ca).

Let us construct this system of 9 equations. We first express {zu,xu,za,xa,n} as a function of
{λ,θ,ea,eu}. Outflows from social assistance equal inflows into social assistance:

xaea f (θ) = λxu(1− eu f (θ))

xa = xu ·λ ·
1− eu f (θ)

ea f (θ)

Outflows from employment equal inflows into employment:

s ·n = xaea f (θ)+ xueu f (θ)

n =
1
s
· xu · [eu f (θ)(1−λ)+λ] .

Writing the stock of unemployment at the beginning of the period in two different ways:

1− (1− s) ·n = xa + xu

1− 1− s
s
· xu · [eu f (θ)(1−λ)+λ] = xu

[
1+λ

1− eu f (θ)
ea f (θ)

]
xu =

1

1+λ · 1−eu f (θ)
ea f (θ) + 1−s

s · [eu f (θ)(1−λ)+λ]
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Combining our previous results, we get the first 5 equations:

xu =

{
1+λ · [1− eu · f (θ)]

[
1

ea f (θ)
+

1− s
s

]
+

1− s
s
· eu · f (θ)

}−1

(A51)

xa =

{
1+

1− s
s
· ea · f (θ) ·

{
1+

1
λ
·
[

1
eu · f (θ)

−1
]−1
}}−1

(A52)

zu =

{
1+λ ·

[
1

ea · f (θ)
+

1− s
s

]
+

1
s
·
[

1
eu · f (θ)

−1
]−1
}−1

(A53)

za =

{
1+
[

1
ea · f (θ)

−1
]−1

· 1
s
·

{
1+

1
λ
·
[

1
eu · f (θ)

−1
]−1
}}−1

(A54)

n =

{
1+ s ·

[
1

ea f (θ)
−1
]
+

s
(1−λ) · eu · f (θ)+λ

·
[

1− eu

ea

]}−1

. (A55)

We can also derive ce from the resource constraint:

ce = [w(a) ·n] · [n+ zu · τu,e + za · τa,e]−1 . (A56)

From the worker’s problem, we write {eu,ea} as functions of {θ,λ}:

[1− (1− s) ·δ] · k
′(ea)

f (θ)
+(1− s) ·δ ·κ · k(ea) =− ln(τa,e)+ s ·δ ·

[
∆k′

f (θ)
−κ ·∆k

]
(A57)

[1− (1−λ) ·δ] · ∆k′

f (θ)
+(1−λ) ·δ ·κ ·∆k =− ln(τa,u). (A58)

θ is then determined by the firm’s optimality condition:

g′(n) = w(a)/a+[1−δ · (1− s)] · r
q(θ)

. (A59)

In this static environment in which the replacement rates τu,e and τa,e are fixed, given technology
a, the government’s problem is to pick the arrival rate λ (or equivalently the expected unemploy-
ment benefit duration 1/λ) to maximize per-period social welfare:

−xu · k(eu)− xa · k(ea)+ ln(ce)+ zu · ln(τu,e)+ za · ln(τa,e), (A60)

where {zu,za,xu,xa,eu,ea,ce}, together with {n,θ}, solve the system of equations (A51)–(A59).
To find the optimal equilibrium in a static environment for a given a j, we compute a sequence

of equilibria with unemployment insurance for a sequence of arrival rates {λi}i. To solve for
an equilibrium with unemployment insurance under technology a j and arrival rate λi, we per-
form a grid search over θ. For a sequence {θk}k, we solve the system of equations (A57)–(A58)
to find a collection of sequences

{
eu

k ,e
a
k

}
k. Using equations eq:sys1–(A55), we then compute
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a collection of sequences
{

zu
k ,z

a
k ,x

u
k ,x

a
k ,nk

}
k. We also use equation (A56) to compute the se-

quence
{

ce
k

}
k. Next, we pick the indice k∗ such that equation (A59) be satisfied. An equilibrium

with unemployment insurance under technology a j and arrival rate λi in a static environment is{
zu

k∗,z
a
k∗,x

u
k∗,x

a
k∗,e

u
k∗,e

a
k∗,c

e
k∗,nk∗,θk∗

}
. We repeat this computation for the sequence of arrival rate

{λi}i, and we pick the equilibrium with the highest per-period welfare (A60). This gives us the
optimal equilibrium and optimal arrival rate under technology a j. We repeat this computation for
a sequence of technology

{
a j
}

j to plot the graphs in Figure 5.

Calibration. We calibrate this model similarly as the baseline model calibrated in Section C.7.
We only need to adjust the calibration of the matching efficiency ωh and the disutility of effort
ωk. To do so, we set unemployment benefits at 78% of the pre-tax wage, social assistance at
1/2 · 78% = 39% of the pre-tax wage, such that an expected duration of 26 weeks be optimal
when the unemployment rate is at its average level of 5.9%.28 We normalize êu · x̂u + êa · x̂a = û
to determine ωh = 0.19 using (A42). Keeping κ = 2.1, we solve a system of three unknowns:
êa, êu,ωk, and three equations: (A57), (A58), and û = êu · x̂u + êa · x̂a, to find ωk = 0.43. In this
system of three equations, we substituted x̂a, x̂u by the functions of êa, êu given by (A51) and (A52).
As a byproduct, we find êa = 1.40 and êu = 0.94.

In steady state, when technology a = 1, we find that: the optimal arrival rate λ = 3.9%,
corresponding to an expected duration of 26 weeks for unemployment benefits; unemployment
u = 5.9%; 15% of unemployed workers are ineligible and 85% are eligible.

D Empirical Evidence from the CWBH

The data we use is from the Continuous Wage and Benefit History (CWBH). The dataset records
all employment and unemployment history for workers in 8 States from 1976 to 1983.29 The
advantage of CWBH data is that it is administrative data with accurate information on weeks of
UI receipt, pre-unemployment earnings, the level of UI benefits, and the potential duration of
benefits over time. Since we do not observe individuals after their benefits lapse, we censor their
unemployment spells at the time they exhaust their benefits. Our duration outcome of interest is
the total number of weeks for which UI was claimed. Since a lot of claims exhibit interruptions, we
restrict our sample to individuals for which there is no more than 2 weeks of interruption between

28These rates are much higher than what is observed in the US. We saw in Section C.7 that benefits replace 60%
of pre-tax earnings, well below 78%. Furthermore, Pavoni and Violante [2007] compute that in 1996, the median
monthly allotment of food stamps for a family of four was $397 per month. Using CPS data, they find that the median
monthly post-tax wage for a worker with at most a high-school diploma, eligible to be on welfare rolls, is $1,540.
Hence, if food stamps are the only social assistance available when unemployment benefits are exhausted, the rate of
social assistance is roughly 397/1,540 = 26%, well below 39%.

29We use the exhaustive CWBH files and therefore our data is different from the limited sample used in Moffitt
[1985] or Meyer [1990] which contains only 3,365 observations. Our estimation sample contains 39,852 unemploy-
ment spells. We thank Patricia Anderson and Bruce Meyer for giving us access to the CWBH data.
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each week of benefits.30 We also eliminate observations with recalls and partial UI claims (i.e.
people getting UI while still partially at work).

D.1 Graphical Evidence

In order to identify the micro-elasticity, we investigate the effect of UI benefits using only within
state×period variations in individual benefits. We begin with some graphical evidence. To make
sure that individual variation in Weekly Benefits Amounts (WBA) is not correlated with other char-
acteristics such as previous wage or tenure that might affect unemployment duration, we regress
benefits on a series of non parametric controls for previous wage, number of quarters worked in the
year prior to unemployment, education, gender, and quarter and state fixed effects interacted. The
residual variation in benefit is likely to be exogenous, and comes primarily from non-linearities in
the WBA schedule as well as from special state rules regarding total benefit amounts in a given
benefit year. We then classify unemployment spells in high and low WBA regimes using the resid-
uals from the previous regression. A spell is in a low WBA regime if the residual WBA is below
the 25th percentile of the distribution of residuals in the state for the quarter during which the spell
started. A spell is in a high WBA regime if the residual WBA is over the 75th percentile of the
distribution of residuals in the state for the quarter during which the spell started.

As in Kroft and Notowidigdo [2011], Figure A1 shows the survival estimates for the duration
of unemployment spells in the CWBH dataset for spells broken down by low versus high unem-
ployment regimes as well as by low versus high WBA regimes.31 We retrieve the non-parametric
baseline hazard from a Cox proportional hazard model with State and year fixed effects interacted,
also controlling for observable characteristics of the unemployed (previous wage level, age, edu-
cation, marital status, ethnicity, number of dependents) and stratified in low (dark lines) vs. high
(gray lines) individual WBA regimes. Most importantly, we estimate this model separately for low
vs high unemployment regimes. To break down spells by low vs high unemployment regimes we
use variation in unemployment rate across states as proxies for business cycle conditions. A spell
is in a low unemployment regime if at the beginning of the spell, the quarterly unemployment rate
of the state is below the median unemployment rate of all the states in the US.32

The figure confirms that the baseline survival rate is higher when individual benefits are higher.
The effect seems to be very similar in high and low unemployment regimes when we control for
local labor market tightness. To investigate the cyclicality of the micro-elasticity, we now turn to
semi-parametric estimation methods.

30We also looked at the total number of weeks for which UI was paid, as well as the duration of initial spells (total
number of weeks claimed without interruption after the initial claim was filed) and found similar results.

31We report for each unemployment regime the baseline survival function estimated at the mean of the covariates.
32We use variations in unemployment rate across states as proxies for business cycle conditions following Kroft and

Notowidigdo [2011]. We find similar results using other measures of labor market conditions. In particular, we find
similar results using unemployment rate variations within state over time and defining high unemployment spells as
spells that started when the state unemployment rate was over its 1976-2010 median.
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D.2 Semi-Parametric Estimation

To identify the micro-elasticity and its cyclical behavior, we estimate the effect of benefits once
again using only within state×year variations in individual WBA. We fit a Cox proportional hazard
model with State and year fixed effects interacted, and controlling for observable characteristics
of the unemployed (age, education, marital status, ethnicity, number of dependents). We control
for time to benefit exhaustion by adding a 6-pieces exhaustion spline as in Meyer [1990]. Most
importantly, we also introduce a series of non parametric controls for previous wage and previous
work experience. In particular, we add 10 dummies for previous wage level, and dummies for the
number of quarters worked in the year prior to unemployment. With this rich set of controls, the
residual variation in UI benefits comes primarily from non-linearities in the benefits schedule and
is more likely to be exogenous. Results are displayed in table A1. Using the approximation that
log(D) = log(1/h), where D stands for duration and h is the hazard rate, the duration elasticity
and other marginal effects of interest are given by the negative of the coefficient in the estimated
hazard model.

Column (1) begins by replicating the specification of Meyer [1990], Table VI, column (7). This
specification controls for previous wages using the log of earnings in the base period, and also
controls for state fixed effects. Not surprisingly, and even if we use a different (much larger) sam-
ple than the one used in Meyer [1990], the results are almost exactly identical, with a duration
elasticity of 0.587 versus 0.599 in Meyer [1990]. In order to control for the fact that the benefit
level depends on previous earnings and experience, column (2) introduces much richer controls
with 10 dummies for previous earnings level and a set of dummy variables for the number of quar-
ters worked in the year preceding unemployment. Interestingly, the duration elasticity is almost
divided by two by the introduction of these controls. This suggests that the magnitude of the es-
timates of Meyer [1990] is actually driven for a large part by the correlation between earnings
and UI benefits. When controlling more flexibly for this correlation, the impact of UI benefits on
duration becomes significantly smaller. To come closer to the estimation of the micro-elasticity,
column (3) uses only within state×year variations in individual benefits by adding state and time
fixed effects interacted. This specification has also the advantage of addressing the potential issue
of the endogeneity of UI benefit variations over time, if the schedule of state UI benefits is endoge-
nously modified when labor market conditions change over time. Results show that the duration
elasticity is actually very similar in magnitude to that in column (2). We now investigate the cycli-
cal behavior of these estimates. To do so, we begin in column (4) by interacting log benefits with
a dummy for being in a high unemployment regime, defined, as above, as beginning an unemploy-
ment spell in a state whose unemployment rate is above the median unemployment rate in the US.
The coefficient on the interaction term is the incremental change in the duration elasticity for spells
in high unemployment regimes compared to low unemployment regimes. Our results show that the
duration elasticity is very similar in low unemployment regimes: .34 (.038), and high unemploy-
ment regimes: .32 (.037). In column (5) we look at an alternate specification where we define state
labor market conditions in absolute terms instead of relative terms. We interact log benefits with
a dummy for spells beginning in states with unemployment rate superior to 8% (8.1% being the
median unemployment rate for all state×quarter cells in our sample). The interaction term in this
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specification is small and not significantly different from 0. In column (6), we allow for a more
flexible interaction between labor market conditions and log benefits. We create four dummies for
spells beginning in states with: (1) unemployment rate below the 25th percentile of unemployment
rates (for all state*quarter cells in our sample), (2) between the 25th percentile and the median,
(3) above the median and below the 75th percentile, and (4) above the 75th percentile. We then
interact log benefits with these four dummies. Results show that the duration elasticity is slightly
decreasing with higher unemployment regimes, but the duration elasticities are not significantly
different from one another.

Overall, this evidence is suggestive that the micro-elasticity of unemployment duration with
respect to benefit level is not significantly different in high and low unemployment regimes, and
confirms the results obtained by Schmieder et al. [2011] for the micro-elasticity with respect to
potential duration.

Unfortunately the CWBH does not span a long time period and therefore does not exhibit
enough variations in average UI benefits within state over time to investigate the cyclical behav-
ior of the macro-elasticity. The elasticity of unemployment duration with respect to the average
benefit level in each state×quarter that we find when fitting the Cox proportional hazard model de-
scribed above, excluding state fixed effects, is higher for low unemployment regimes than for high
unemployment regimes. But the robustness of such estimates is questionable. They suffer from
a potentially serious omitted variable bias because benefits are higher in states with unobserved
time-invariant characteristics which are correlated with high expected unemployment durations.
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Table A1: Semi-Parametric Estimates of Hazard Rates

(1) (2) (3) (4) (5) (6)
Meyer [1990]

log(UI) -0.587∗∗∗ -0.274∗∗∗ -0.320∗∗∗ -0.341∗∗∗ -0.323∗∗∗

(0.0394) (0.0365) (0.0368) (0.0374) (0.0370)
State unemployment rate -0.0550∗∗∗ -0.0552∗∗∗ -0.0207 -0.0226 -0.0251 -0.105∗∗∗

(0.00518) (0.00519) (0.0142) (0.0143) (0.0153) (0.0209)
log(UI)× (u>median)

0.0248∗∗

(0.00812)
log(UI)×(u> .08) 0.00527

(0.00685)
log(UI)×(u<p25) -0.363∗∗∗

(0.0376)
log(UI)×(p25<u<median) -0.353∗∗∗

(0.0371)
log(UI)×(median<u<p75) -0.292∗∗∗

(0.0371)
log(UI)×(u>p75) -0.274∗∗∗

(0.0378)

Non-param controls for
previous wage & experience NO YES YES YES YES YES

Year×state F-E NO NO YES YES YES YES

# Spells 39852 39852 39852 39852 39852 39852
Log-likelihood -136305.0 -136364.8 -135976.0 -135971.4 -135975.7 -135946.2

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table estimates the effect of UI weekly benefits levels on the hazard rate of leaving UI using the CWBH
complete data for 8 US states from the late 1970s to early 1980s. We fit Cox proportional hazard models. All
specifications include controls for gender, ethnicity, marital status, year of schooling, a 6-pieces exhaustion spline and
state fixed effects. u denotes the state unemployment rate. log(UI) denotes the log-weekly UI benefit amount. p25
and p75 denote the 25th and 75th percentile of unemployment rates (among all state×quarter in our data). Column
(1) replicates the specification of Meyer [1990], Table VI, column (7) (Meyer [1990] was using a much smaller
dataset). Column (2) further adds non-parametric controls for previous earnings and experience. column (3) further
adds year×state fixed effects. Columns (4) and (5) add the interaction of log(UI) and high unemployment dummies
(unemployment rate above the median across all US states in the same quarter in column (4) and unemployment rate
above 8% in column (5)). Column (6) adds the interaction of log(UI) with quartiles for the level of unemployment
(quartiles defined across all state×quarter cells in our sample).
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Figure A1: Survival Estimates With State×Year F.-E.

Source: CWBH

Notes: The Figure displays the baseline survival function estimates for the duration of unemployment spells broken
down by low (plain lines) vs high (dash lines) unemployment regimes. A spell is in a low unemployment regime if
at the beginning of the spell, the monthly unemployment rate of the State is below the median unemployment rate of
all the States in the US. We also break down spells in high and low individual WBA regimes. A spell is in a high
individual WBA regime if the residual WBA in a regression of WBA on a series of non parametric controls for wage,
education, gender plus year and state fixed effects interacted, is below the 25th percentile of the distribution of residuals
in the state for the quarter during which the spell started. A spell is in a high UI benefit regime if the residual WBA
is over the 75th percentile of the distribution of residuals in the state for the quarter during which the spell started.
The baseline survival function estimate is obtained from a Cox proportional hazard model including state and year
fixed effects interacted and controlling for observable characteristics of the unemployed (previous wage level, age,
education, marital status, ethnicity, number of dependents). The model is stratified in low (dark lines) vs high (gray
lines) individual WBA regimes and estimated in high and low unemployment regimes. The model exploits only within
State×year variation in benefits and therefore identifies the micro elasticity. The figure shows that higher individual
benefits increases unemployment duration but that this effect is almost similar in high and low unemployment regimes.
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