A Macroeconomic Approach to Optimal Unemployment Insurance:

Theory and Applications

Landais (LSE), Michaillat (LSE), and Saez (Berkeley)

December 2015

Baily-Chetty theory of optimal UI

- insurance-incentive tradeoff: UI provides a safety net but UI reduces job search and raises unemployment
- two aspects of the debate are missing:
 - sometimes jobs are unavailable
 - UI affects job creation
- problem: partial-equilibrium model
 - labor supply
 - fixed labor market tightness

In this paper:

■ general-equilibrium model of optimal UI

- labor supply and labor demand
- equilibrium labor market tightness
- macroeconomic model captures three effects of UI:
 - UI may reduce job-search effort
 - UI may alleviate rat race for jobs in bad times
 - UI may raise wages and deter job creation

■ application: optimal UI over the business cycle

A matching model of UI

UI program

- moral hazard: search effort is unobservable
- \blacksquare employed workers receive c^e
- unemployed workers receive c^u
- **replacement rate** *R* measures generosity of UI:

•
$$R \equiv 1 - (c^e - c^u)/w$$

- *R* = tax rate + benefit rate
- workers keep fraction 1 R of earnings

Labor market

- measure 1 of identical workers, initially unemployed
 - search for jobs with effort e
 - measure 1 of identical firms
 - post v vacancies to hire workers
- CRS matching function: l = m(e, v)
- **a** labor market tightness: $\theta \equiv v/e$

Matching probabilities

■ vacancy-filling probability:

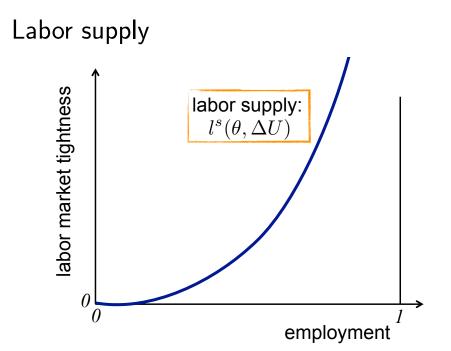
$$q(\underline{\theta}) \equiv \frac{l}{v} = m\left(\frac{1}{\theta}, 1\right)$$

■ job-finding rate per unit of effort:

$$f(\boldsymbol{\theta}_{+}) \equiv \frac{l}{e} = m(1, \boldsymbol{\theta})$$

job-finding probability: $e \cdot f(\theta) + 1$

Matching cost: ρ recruiters per vacancy • employees = $\left| 1 + \tau(\theta) \right| \cdot \text{ producers}$ ■ proof: $\underbrace{l}_{\text{employees}} = \underbrace{n}_{\text{producers}} + \underbrace{\rho \cdot v}_{\text{recruiters}}$ $= n + \rho \cdot \frac{l}{q(\theta)}$ $=\left|1+\frac{\rho}{q(\theta)-\rho}\right|\cdot n$ $\equiv 1 + \tau(\theta)$


Representative worker

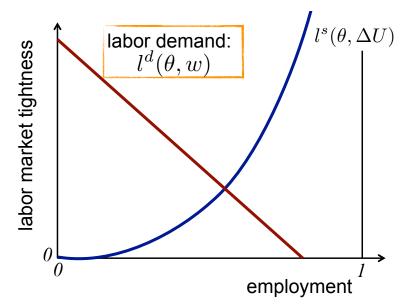
- consumption utility U(c), search disutility $\psi(e)$
- **utility gain from work:** $\Delta U \equiv U(c^e) U(c^u)$
- solves $\max_{e} \left\{ U(c^u) + e \cdot f(\theta) \cdot \Delta U \psi(e) \right\}$
- effort supply $e^{s}(\theta, \Delta U)$ gives optimal effort:

$$\psi'(e^s(\theta,\Delta U)) = f(\theta) \cdot \Delta U$$

■ labor supply $l^s(\theta, \Delta U)$ gives employment rate:

$$l^{s}(\theta, \Delta U) = e^{s}(\theta, \Delta U) \cdot f(\theta)$$

Representative firm

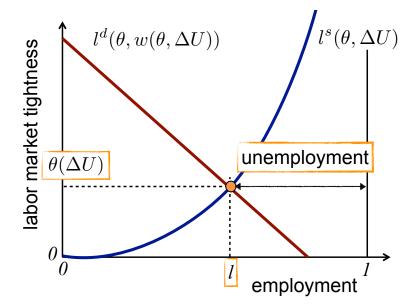

■ hires *l* employees

- $n = l/(1 + \tau(\theta))$ producers
- l-n recruiters
- **production function**: y(n)
- solves $\max_{l} \{ y(l/(1 + \tau(\theta))) w \cdot l \}$

a labor demand $l^d(\theta, w)$ gives optimal employment:

$$y'\left(\frac{l^d}{1+\tau(\theta)}\right) = (1+\tau(\theta)) \cdot w$$

Labor demand


Labor-market equilibrium

- as in any matching model, need a price mechanism
 - general wage schedule: $w = w(\theta, \Delta U)$
- in equilibrium, θ is such that supply = demand:

$$l^{s}(\theta, \Delta U) = l^{d}(\theta, w(\theta, \Delta U))$$

equilibrium tightness: $\theta(\Delta U)$

Labor-market equilibrium

Sufficient-statistics formula

for optimal UI

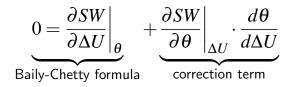
Government's problem

choose ΔU to maximize welfare

$$SW = l \cdot U(c^e) + (1-l) \cdot U(c^u) - \psi(e)$$

subject to the following constraints:

■ budget constraint:


$$y\left(\frac{l}{1+\tau(\theta)}\right) = l \cdot c^e + (1-l) \cdot c^u$$

• workers' response: $e = e^{s}(\theta, \Delta U)$, $l = l^{s}(\theta, \Delta U)$

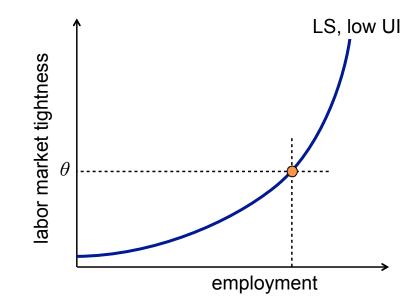
• equilibrium constraint: $\theta = \theta(\Delta U)$

Condition for optimal UI

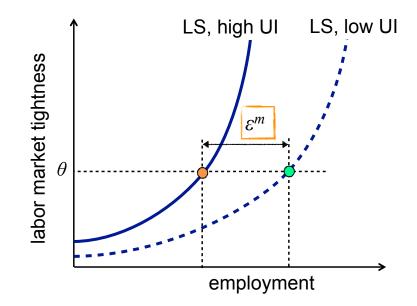
- express all the variables as a function of $(\theta, \Delta U)$
- express social welfare as $SW = SW(\theta, \Delta U)$
- government solves $\max_{\Delta U} SW(\theta(\Delta U), \Delta U)$
- first-order condition:

Optimal UI versus Baily-Chetty

- Baily-Chetty formula is valid if UI has no effect on θ or θ is efficient (that is, $\partial SW/\partial \theta |_{\Delta U} = 0$)
- optimal UI departs from Baily-Chetty if UI affects θ and θ is inefficient (that is, $\partial SW/\partial \theta |_{\Lambda U} \neq 0$)
 - optimal UI > Baily-Chetty iff UI brings θ
 closer to its efficient level
- government UI beneficial when Baily-Chetty invalid


Baily-Chetty formula

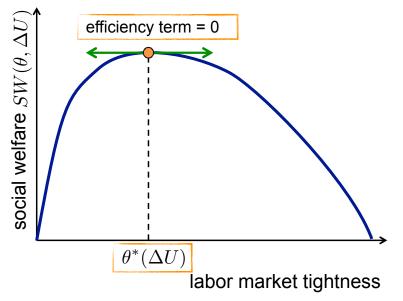
$$R = R^*\left(\varepsilon^m, \frac{U'(c^u)}{U'(c^e)}\right)$$


• $\varepsilon^m > 0$: microelasticity of unemployment wrt UI

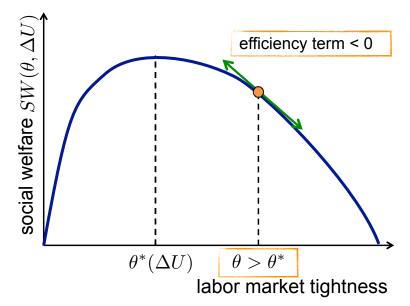
- measures disincentive from search
- $U'(c^u)/U'(c^e) > 1$: ratio of marginal utilities
 - measures need for insurance
- R^* is decreasing in \mathcal{E}^m
- **\blacksquare** R^* is increasing in $U'(c^u)/U'(c^e)$

Microelasticity of unemployment

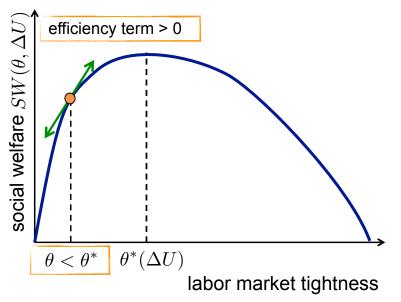
Microelasticity of unemployment

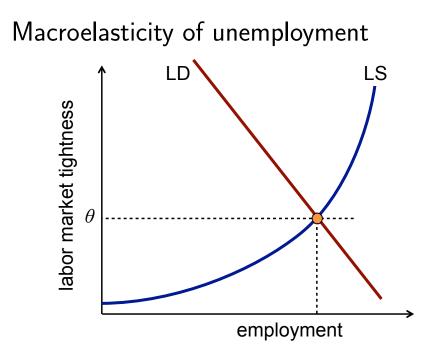


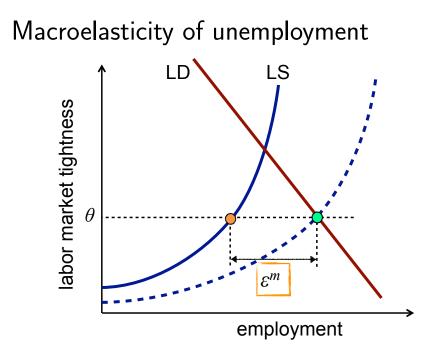
Efficiency term $\partial SW/\partial \theta \Big|_{\Delta U}$

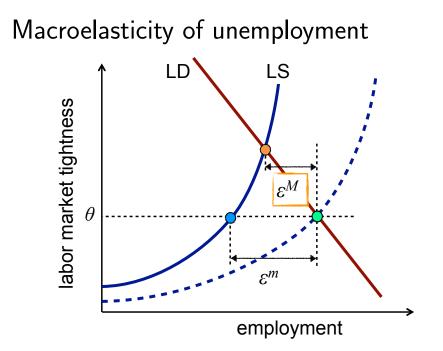

depends on several estimable statistics

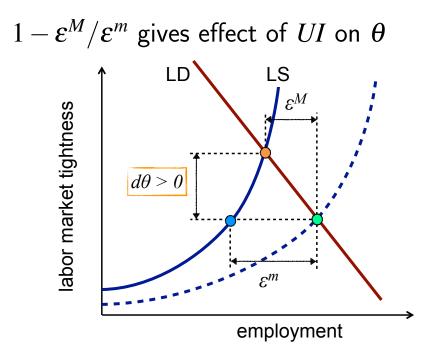
- $\tau(\theta)$: recruiter-producer ratio
- *u*: unemployment rate
- 1η : elasticity of the job-finding rate $f(\theta)$
- ΔU : the utility gain from work
- indicates the state of the labor market

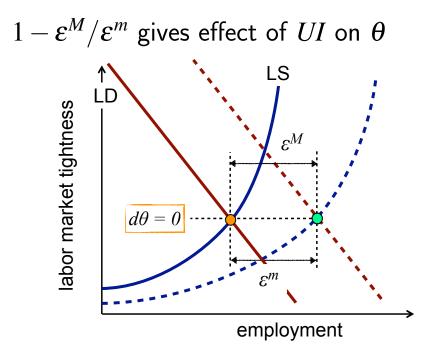

Efficiency term and efficient tightness



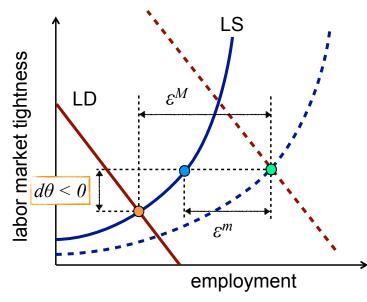

Efficiency term and efficient tightness


Efficiency term and efficient tightness





23 / 55



23 / 55

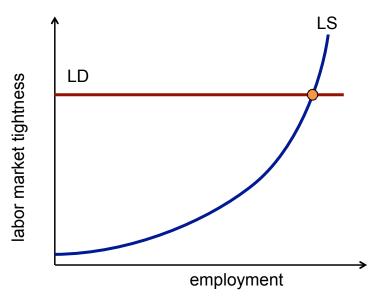
 $1 - \varepsilon^M / \varepsilon^m$ gives effect of UI on θ

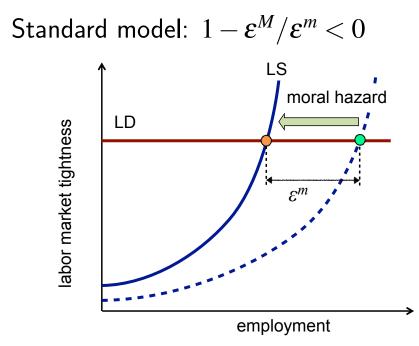
Optimal UI formula in sufficient statistics

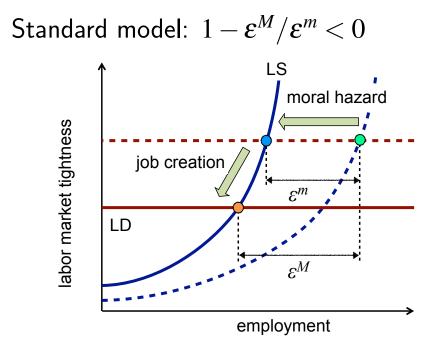
$$R = R^* \left(\varepsilon^m, \frac{U'(c^u)}{U'(c^e)} \right) + \left(1 - \frac{\varepsilon^M}{\varepsilon^m} \right) \cdot \text{efficiency term}$$

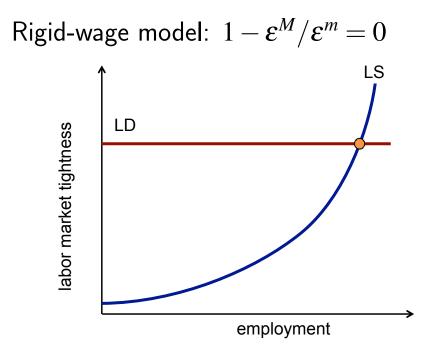
$$\blacksquare R \neq R^* \left(\varepsilon^M, U'(c^u) / U'(c^e) \right)$$

- ε^M alone is not useful for optimal UI
- efficiency term fluctuates with θ
 - optimal UI over the business cycle
 - importance of $1 \varepsilon^M / \varepsilon^m$

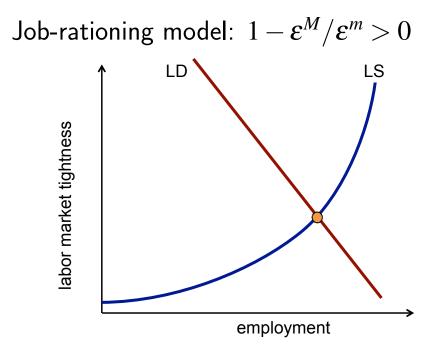

Optimal UI over the business

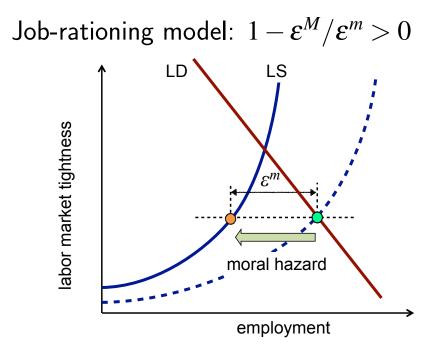

cycle: theory


Three matching models


	model		
	standard	rigid-wage	job-rationing
prod. function	linear	linear	concave
wage	bargaining	rigid	rigid
reference	Pissarides [2000]	Hall [2005]	Michaillat [2012]

Standard model: $1 - \varepsilon^M / \varepsilon^m < 0$





Rigid-wage model: $1 - \varepsilon^M / \varepsilon^m = 0$ LS moral hazard LD labor market tightness \mathcal{E}^m employment

Rigid-wage model: $1 - \varepsilon^M / \varepsilon^m = 0$ LS moral hazard LD labor market tightness $\varepsilon^m = \varepsilon^M$ employment

Job-rationing model: $1 - \varepsilon^M / \varepsilon^m > 0$ LD LS ε^M labor market tightness rat race • E^m moral hazard employment

Cyclicality of optimal UI: theory

■ standard model: procyclical UI

- bargaining shocks \rightarrow inefficient fluctuations
- job-creation mechanism $\rightarrow 1 \varepsilon^M / \varepsilon^m < 0$
- rigid-wage model: acyclical UI
 - no mechanism $ightarrow 1 arepsilon^M/arepsilon^m = 0$

■ job-rationing model: countercyclical UI

- productivity shocks \rightarrow inefficient fluctuations
- rat-race mechanism $ightarrow 1 arepsilon^M/arepsilon^m > 0$

Optimal UI over the business

cycle: empirics

Direct evidence: $1 - \varepsilon^M / \varepsilon^m > 0$

• Levine [1993]: $1 - \varepsilon^M / \varepsilon^m = 1 > 0$

• UI extensions in the US in 1980s

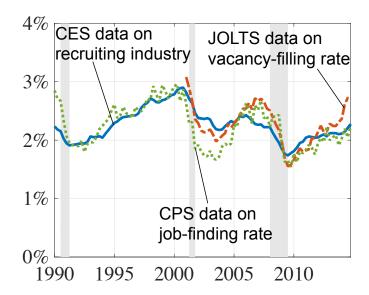
■ Marinescu [2014]: $1 - \epsilon^M / \epsilon^m = 0.3 > 0$

- UI extensions in the US during Great Recession
- Johnston & Mas [2015]: $1 \varepsilon^M / \varepsilon^m = 0$
 - UI reduction in Missouri in 2011

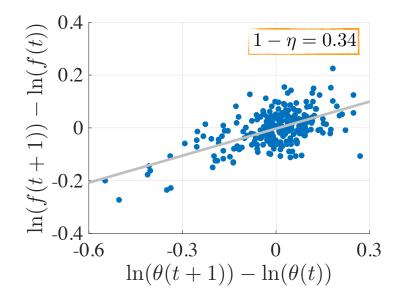
• Lalive et al. [2015]: $1 - \varepsilon^M / \varepsilon^m = 0.2 > 0$

• reform of UI system in Austria in the 1990s

Indirect evidence: $1 - \varepsilon^M / \varepsilon^m > 0$


convincing evidence of rat-race mechanism

- negative spillover of higher job search
- Crepon et al. [2013], Burgess & Profit [2001]


no evidence of job-creation mechanism

- re-employment wages unaffected by UI
- Card et al. [2007], Schmieder et al. [2015]
- only exception is Hagedorn et al. [2013]

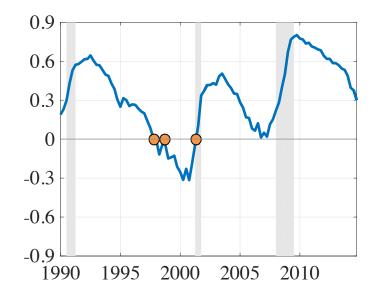
Recruiter-producer ratio au(heta)

Elasticity of matching function η

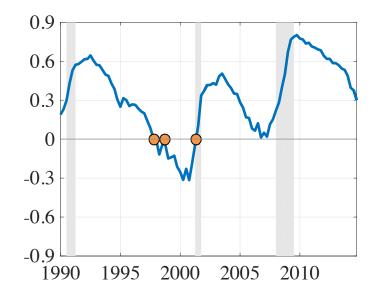
Utility gain from work ΔU

• extended empirical model: $\Delta U = \log(c^e/c^h) + Z$

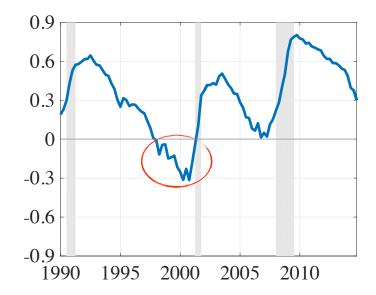
consumption drop upon unemployment: 19%

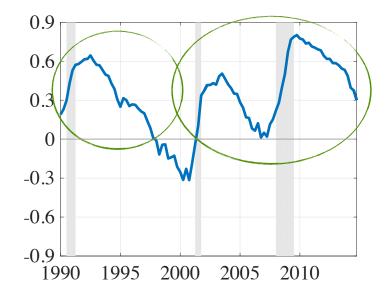

• consumption drop for food: 7%

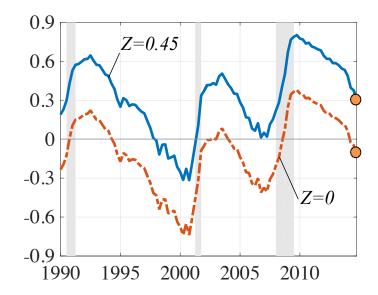
• income elasticity of food consumption: 0.36


• nonpecuniary cost of unemployment: Z = 45%

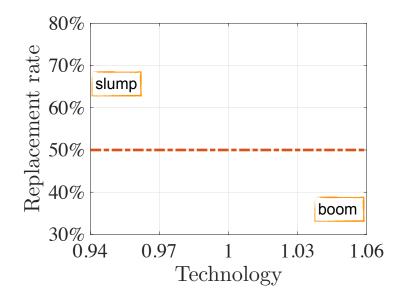
- well-being surveys: 45% of yearly income
- career choices [Borgschulte & Martorell 2015]
- standard macro assumption: Z < 0


Efficiency term = 0: UI = Baily-Chetty

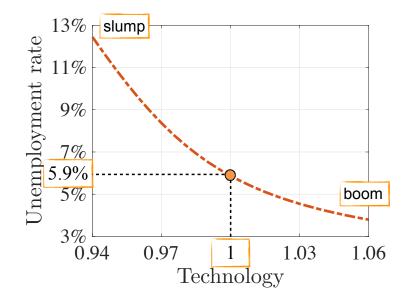

Efficiency term = 0: UI = Baily-Chetty


Efficiency term < 0: UI < Baily-Chetty

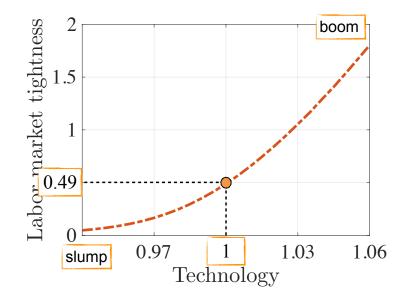
Efficiency term > 0: UI > Baily-Chetty

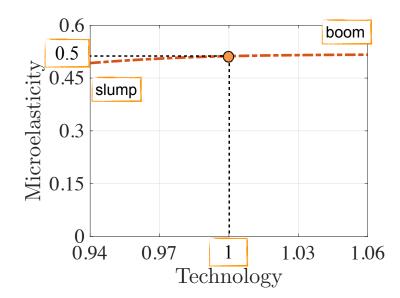


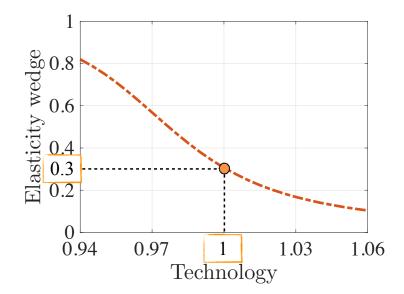
Nonpecuniary cost of unemployment Z is critical



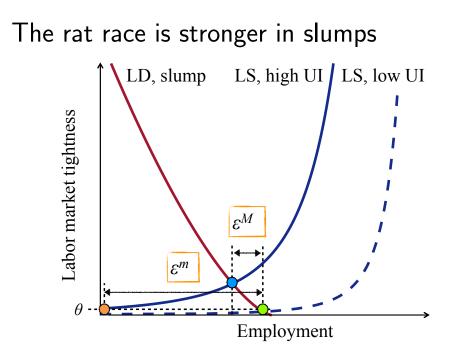
Optimal UI over the business cycle: simulations of the job-rationing model


First simulation: constant UI, R = 50%

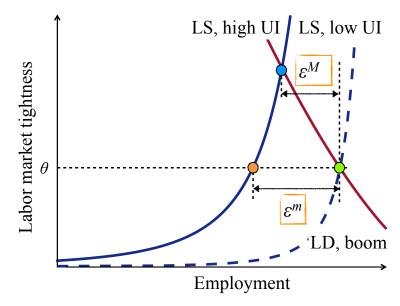

Large fluctuations in unemployment


Large fluctuations in tightness

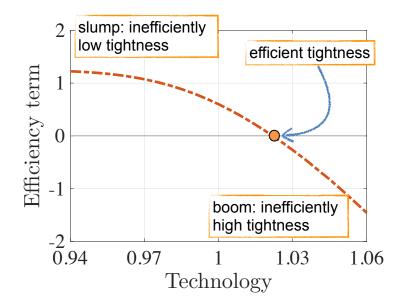

The microelasticity \mathcal{E}^m is stable

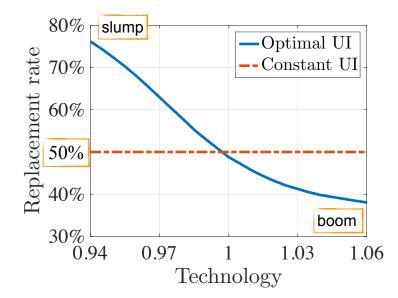


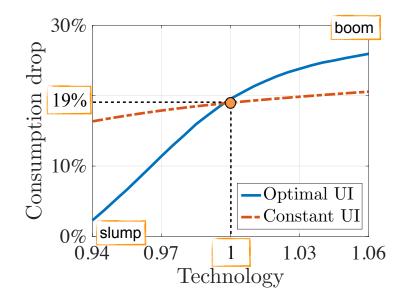
The elasticity wedge $1 - \varepsilon^M / \varepsilon^m$ is positive

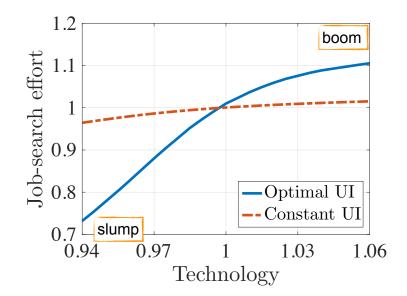


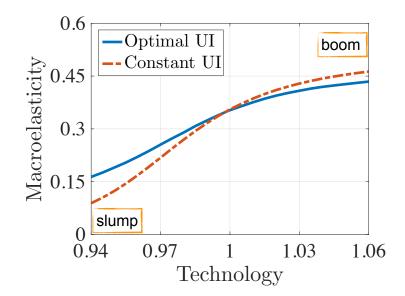
The rat race is stronger in slumps

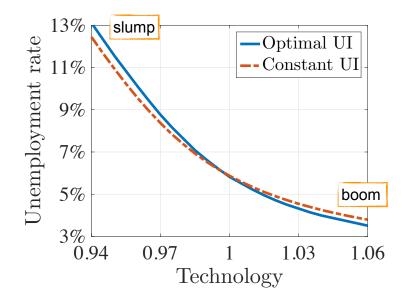



The rat race is stronger in slumps


The efficiency term changes sign


The optimal UI is countercyclical


The optimal UI is countercyclical


Despite large disincentive to search

Higher UI \rightarrow slightly higher unemployment

Higher UI \rightarrow slightly higher unemployment

Conclusion

Theoretical approach is broadly applicable

 \blacksquare formula for optimal policy τ is

 $0 = \text{public-finance term} + \frac{d\theta}{d\tau} \cdot \text{efficiency term}$

- public-finance term = $\partial SW / \partial \tau |_{\theta}$
- efficiency term = $\partial SW / \partial \theta |_{\tau}$
- Michaillat & Saez [2014]: monetary and debt policy
- Michaillat & Saez [2015]: government purchases

Empirical applications would benefit from better estimates of many statistics

- determinants of the efficiency term, and thus of the natural rate of unemployment
 - nonpecuniary cost of unemployment (z)
 - recruiter-producer ratio (τ)
 - matching elasticity with endogenous search (η)

• elasticity wedge $(1 - \varepsilon^M / \varepsilon^m)$