Market Externalities of Large Unemployment Insurance Extensions

Rafael Lalive, Camille Landais & Josef Zweimuller

CREST December 24, 2012

Motivation:

What is the effect of increasing generosity of UI on labor market outcomes?

- We pprox know what micro effect is
 - In *theory*, increase in UI unambiguously increase U duration
 - Empirically, large number of well-identified micro estimates
- What about macro effect?
 - In theory, large literature on equilibrium search & matching, but anything goes regarding externalities
 - Empirically, difficulty of estimating G-E effects of UI and to analyze how micro and macro estimates differ

UI and labor market externalities:

Market externality:

Whenever (UI induced) variations in the search effort of some unemployed affect job finding probability of other unemployed in the same labor market

 Market externality ≠ incidence: In market with frictions, efficiency is usually not achieved, so that (UI induced) variations in behaviors have first order welfare effects

This paper:

Regional Extended Benefit Progam (REBP): Large extensions of UI in Austria

- Unique quasi-experimental setting to identify market externalities
- Strong evidence of positive effects of REBP on untreated workers in treated labor markets
- Discuss how evidence relates to different search & matching models:
 - Evidence refutes predictions of Nash bargaining / flexible wage models
 - Evidence in line with job-rationing models

Related literature:

Theoretical literature on pecuniary externalities:

- Geanakoplos & Polemarchakis (1986), etc.
- Literature on optimal UI:
 - Direct continuity of LMS (2012)
- Empirical literature on identification of spillovers of policy interventions
 - ► General literature on spillovers: Duflo & Saez (2003)
 - Spillovers of active labor market policies: Crepon & al. (2012), Ferracci & al. (2010), Blundell, & al. (2004).
 - Spillovers of UI: Levine (1993)

Introduction

- Onceptual framework
- Institutional background
- Empirical strategy
- 6 Results
- 6 Calibrations

Labor Market with Matching Frictions

- *u* unemployed workers:
 - Exert search effort *e*
 - *e* function of wedge in consumption $\Delta c = c^e c^u$
- v vacancies.
- Number of matches: $m(e \cdot u, v) = \omega_m \cdot (e \cdot u)^{\eta} \cdot v^{1-\eta}$
- Labor market tightness: $\theta \equiv v/(e \cdot u)$
- Job-finding proba: $e \cdot f(\theta) = e \cdot m(1, \theta)$.
- Vacancy-filling proba: $q(\theta) = m(1/\theta, 1)$.

Labor Market with Matching Frictions

- *u* unemployed workers:
 - Exert search effort e
 - *e* function of wedge in consumption $\Delta c = c^e c^u$
- v vacancies.
- Number of matches: $m(e \cdot u, v) = \omega_m \cdot (e \cdot u)^{\eta} \cdot v^{1-\eta}$
- Labor market tightness: $\theta \equiv v/(e \cdot u)$
- Job-finding proba: $e \cdot f(\theta) = e \cdot m(1, \theta)$. $\Rightarrow \frac{\partial e \cdot f(\theta)}{\partial \theta} > 0$
- Vacancy-filling proba: $q(\theta) = m(1/\theta, 1)$.

Labor Market with Matching Frictions

- *u* unemployed workers:
 - Exert search effort e
 - *e* function of wedge in consumption $\Delta c = c^e c^u$
- v vacancies.
- Number of matches: $m(e \cdot u, v) = \omega_m \cdot (e \cdot u)^{\eta} \cdot v^{1-\eta}$
- Labor market tightness: $\theta \equiv v/(e \cdot u)$
- Job-finding proba: $e \cdot f(\theta) = e \cdot m(1, \theta)$.

■ Vacancy-filling proba: $q(\theta) = m(1/\theta, 1)$. $\Rightarrow \frac{\partial q(\theta)}{\partial \theta} < 0$

 Aggregate labor supply (from equality of in- and outflows into employment):

$$n^{s}(e(\theta, \Delta c), \theta)$$

Aggregate labor demand (from firm's maximisation program):

 $n^d(heta)$

$$n^{d}(\theta) = n^{s}(e(\theta, \Delta c), \theta)$$

 Aggregate labor supply (from equality of in- and outflows into employment):

 $n^{s}(e(\theta, \Delta c), \theta)$

Aggregate labor demand (from firm's maximisation program):
 n^d(θ)

$$n^{d}(\theta) = n^{s}(e(\theta, \Delta c), \theta)$$

 Aggregate labor supply (from equality of in- and outflows into employment):

$$n^{s}(e(\theta, \Delta c), \theta)$$

Aggregate labor demand (from firm's maximisation program):
 n^d(θ)

$$n^{d}(\theta) = n^{s}(e(\theta, \Delta c), \theta)$$

 Aggregate labor supply (from equality of in- and outflows into employment):

$$n^{s}(e(\theta, \Delta c), \theta)$$

Aggregate labor demand (from firm's maximisation program):
 n^d(θ)

$$n^{d}(\theta) = n^{s}(e(\theta, \Delta c), \theta)$$

Figure 1 : Externalities in a model with Nash bargaining

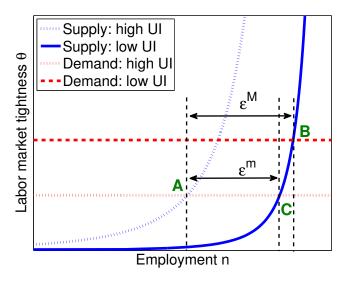
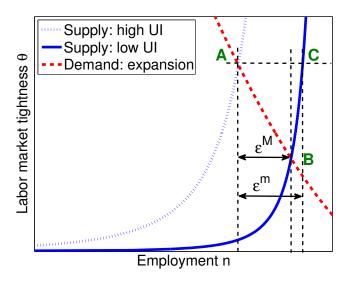



Figure 2 : Labor market equilibrium in a Michaillat model

Externalities in different matching models

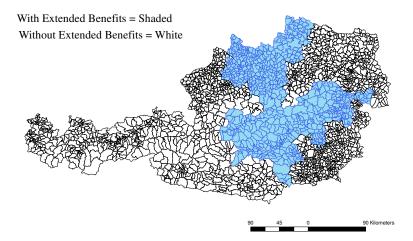
In models with flexible wages:

•
$$\downarrow \Delta c \Rightarrow \uparrow w \Rightarrow \downarrow n^a$$

- Macro effect larger than micro effect
- In models with rigid wages & diminishing returns:

•
$$\downarrow \Delta c \Rightarrow \uparrow (f' - w) \Rightarrow \uparrow n^d$$

Macro effect smaller than micro effect


Introduction

- Onceptual framework
- Institutional background
- Empirical strategy
- **6** Results
- Galibrations

REBP reform in Austria

- Large UI benefit extension program enacted in Austria
 - 209 weeks instead of 52 weeks
- Eligibility requirements:
 - Age: more than 50
 - Reside in selected regions at least 6 months before becoming unemployed
 - At least 15 years of continuous work history in the past 25 years
 - Spell beginning between June 1988 and Dec 1993

Figure 3 : Austrian regions by REBP treatment status

- Universe of UI spells in Austria from 1980 to 2010:
 - Info on age, residence, education, marital status, etc...
- Universe of social security data in Austria from 1949 to 2010:
 - Info on each employment spell
 - Compute experience in past 25 years
 - Merge with UI data to determine REBP eligibility
 - Info on wages, industry, tenure,

Sample selection:

Endogeneity of choice of REBP regions:

- Regions are not selected at random: restructuring of steel sector
- Remove all steel sector workers (at most 15% of unemployed in treated regions), and all workers in related industries
- Early retirement programs:
 - Women can go directly from REBP to early retirement programs
 - We focus only on men 50 to 54 bc they cannot go directly from REBP to early retirement

- **First stage**: Compare treated workers in treated regions and untreated regions *before/during/after*
- Second stage: Compare untreated workers in treated and untreated regions before/during/after
- Identification assumptions:
 - Treated and untreated regions are somehow isolated
 - Unobserved differences between treated and untreated workers fixed over time
 - Unobserved differences between labor markets are fixed over time

Table 1 : SUMMARY STATISTICS:

(1) (2) (3) (4)

	A. All workers					
	treated	vs untreated	counties befor	e 1988		
	M=0	M=1	Difference	p-value		
Age	51.9	51.9	0	.366		
U duration	18.7	19.4	7	.12		
Non employment duration	31.7	29.9	1.8	.018		
Fraction spells > 100 wks	.033	.039	006	.023		
Fraction spells >26 wks	.135	.122	.013	.016		
Real wage before spell	52.1	50.5	1.6	0		
Real wage after spell	51.8	50.8	1.1	0		
White Collar	.063	.035	.028	0		
Fraction not in construction	.38	.369	.011	.148		

B. Treated workers vs untreated workers

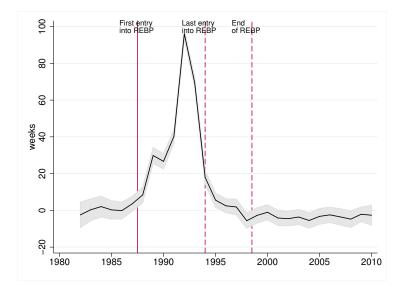
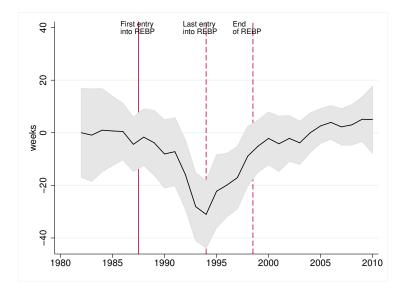

in treated counties before 1988					
T=0	T=1	Difference	p-value		
51.8	51.9	1	.181		
4089.365	8292.634	-4203.269	0		
16.3	19.6	-3.3	.025		
52.5	28	24.5	0		
.018	.041	023	.022		
.091	.124	033	.056		
47.3	50.8	-3.6	0		
47.4	51	-3.6	0		
.01	.037	027	.006		
.345	.371	026	.307		
	T=0 51.8 4089.365 16.3 52.5 .018 .091 47.3 47.4 .01	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} T=0 & T=1 & Difference \\ \hline 51.8 & 51.9 &1 \\ 4089.365 & 8292.634 & -4203.269 \\ 16.3 & 19.6 & -3.3 \\ 52.5 & 28 & 24.5 \\ .018 & .041 &023 \\ .091 & .124 &033 \\ 47.3 & 50.8 & -3.6 \\ 47.4 & 51 & -3.6 \\ .01 & .037 &027 \\ \end{array}$		

Figure 4 : Local labor markets integration: Fraction of new hires from REBP regions in total number of new hires by county



Sample: male age 50 to 54 in non steel-related industries, 1980-1987.

Figure 5 : Difference in U duration between REBP and non REBP regions: male 50-54 with <u>more</u> than 15 years of experience

Figure 6 : Difference in U duration between REBP and non REBP regions: male 50-54 with less than 15 years of experience

Baseline specifications:

$$Y_{irt} = \alpha + \overbrace{\beta_0 \cdot Z_{irt} \cdot R_r \cdot T_t}^{\text{Effect of REBP on treated}} + \overbrace{\gamma_0 \cdot (1 - Z_{irt}) \cdot R_r \cdot T_t}^{\text{Effect of REBP on non-treated}} + \eta_0 R_r + \eta_1 B_{irt} + \eta_2 B_{irt} \cdot R_r + \sum \nu_t + \sum \eta_3 B_{irt} \cdot \iota_t + X'_{it} \rho + \varepsilon_{irt}$$

- R_r : indicator for residing in REBP region
- *T_t*: indicator for spell starting btw June 1988 and Dec 1997
- $B_{irt} = \mathbb{1}[exp > 15]$: indicator for more than 15 yrs of exp
- $Z_{irt} = B_{irt} \cdot \tilde{T}_t$: indicator for being eligible to REBP extensions

Table 2 : Baseline estimates of the treatment effect of REBP ontreated unemployed and untreated unemployed

	(1)	(2) Unemploym	(3) ent duration	(4)	(5) Non-empl. duration	(6) Spell >100 wks	(7) Spell >26 wks
β ₀	62.41*** (9.565)	54.57*** (8.345)	55.48*** (9.051)	58.14*** (9.159)	26.03*** (5.797)	0.233*** (0.0312)	0.236*** (0.0290)
γ_0	-6.941*** (1.690)	-7.165*** (2.017)	-11.86*** (1.640)	-8.979*** (1.433)	-9.725*** (1.487)	-0.0186*** (0.00509)	-0.0297** (0.0116)
Educ., marital status, industry, citizenship		×	×	×	×	×	×
Preexisting trends by region by region×exp			×	×	×	×	×
Ν	127802	126091	126091	126091	106164	126091	126091

S.e. clustered at the year \times region level in parentheses. * p<0.10, ** p<0.05, *** p<0.010.

Potential confounders:

Confounder 1: selection

- Self-selection into unemployment affected by the reform for non-treated group in treated counties
- If anything, bias likely to attenuate estimate of spillover effect on non-treated

Confounder 2: differential region-specific shocks

- REBP regions experience positive shock on labor market conditions at the time REBP was implemented
- If anything, we expect negative shock if REBP regions endogenously selected

Table 3 : Testing for selection: inflow rate into unemployment and log real wage in previous job

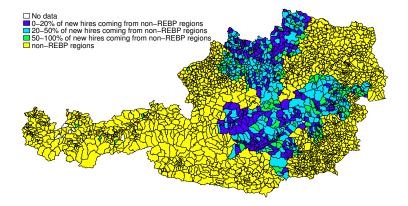
	(1) log separation rate	(2) (3) log real wage in previous job		
eligible	0.287*** (0.0355)			
non-eligible	-0.0346 (0.0306)			
β_0		0.144** (0.0691)	0.132** (0.0614)	
γ_0		-0.0638 (0.0629)	-0.0479 (0.0608)	
Ν	1733	114770	112242	

Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.010

Table 4 :Using regions close to REBP border with high labormarket integration as spillover group

	(1) Unen	(2) nployment du	(3) ration	(4) Non-empl. duration	(5) Spell >100 wks	(6) Spell >26 wks
β ₀	66.20*** (10.13)	58.24*** (8.865)	65.09*** (9.869)	27.68*** (6.298)	0.254*** (0.0339)	0.251*** (0.0316)
γ_0	-1.813 (3.323)	-1.588 (2.954)	-3.110 (3.261)	-3.446 (2.563)	-0.0117 (0.0118)	-0.0602** (0.0257)
Educ., marital status, industry, citizenship		×	×	×	×	×
Preexisting trends by region			×	×	×	×
Ν	160714	157578	159104	135702	159104	159104

S.e. clustered at the year \times region level in parentheses. * p<0.10, ** p<0.05, *** p<0.010


Table 5 : Effects of REBP on subsequent wages and match quality

	(1)	(2)	(3)	(4)	(5)	(6)
		al wage ext job	from next	e drop to previous ob	to ne	ance xt job iin)
β_0	-0.0236 (0.0154)	-0.0381** (0.0152)	-0.157 (0.214)	-0.0904 (0.208)	-0.456 (0.554)	0.223 (0.549)
γ_0	0.00515 (0.0448)	-0.0477 (0.0441)	0.269 (0.591)	0.462 (0.562)	-0.233 (1.138)	2.476* (1.240)
Educ., marital status, industry, citizenship		×		×		×
Ν	90345	88634	94503	92719	103678	101715

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.010

- Identification of positive effects of increasing UI on untreated workers in the same labor market
- Externalities matter in the labor market and must be taken into account for optimal UI
- Next steps: heterogeneity analysis

Figure 7 : Local labor markets integration: Fraction of new hires from non-REBP regions in total number of new hires by county

