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1 Introduction

Unemployment insurance (Ul) is a key component of socialriaisce in modern economies, and
whether to increase or decrease the generosity of Ul dueitggssions is a critical and controversial
public policy question. On the one hand, generous unemmoyimenefits could discourage job
search during recessions and worsen unemploymedn the other hand, high unemployment

during recessions does not seem due to a lack of job-sedorhl®it rather a scarcity of jobs.

To characterize optimal unemployment insurance over ttenbas cycle, our paper uses a
search-and-matching model in which jobs are endogenoasbned in recessions. We extend the
model inMichaillat (2010 to allow for endogenous job-search efforts by unemployetkers. In
this model, the combination of real wage rigidity and diming marginal returns to labor gives
rise to job rationing in an economic equilibrium as well aalistic employment fluctuations over
the business cycle. Effectively, unemployment stems fraim $ources: matching frictions (in

booms) and job rationing (in recessions).

Job rationing introduces two novel effects that have beearigd in previous studies of optimal
unemployment insurance The textbook model of optimal Ul focuses on the trade-offaken
insurance value of unemployment benefits and cost of ungmm@ot benefits from reduced job-
search effortBaily 1978 Chetty 2006 Our first departure from the textbook model is to mea-
sure the cost of Ul, not solely from lower search efforts,fbuin higher unemployment that lower
search efforts generate in general equilibrium. In our rhatie relation between lower search
efforts and higher unemployment evolve over the busineskecyn good times, unemployment
is due to matching frictions so that higher search effomngtates directly into lower unemploy-
ment as in the textbook model. In bad times, however, uneynmat is due to job rationing

while matching frictions contribute little to unemploynteand are not relevant to understanding

LFor example, the Economist in November 2009 reads: “It mayndeeartless to counsel against too much support
for the unemployed but incentives matter even when unempéoy is high. Firms in rich countries make hires
equivalent to some 14-15% of all employment in deep recassiaccording to the OECD. More generous benefits
will mean vacancies are filled less quickly, pushing up unegmpent.”

2A few recent studies Andersenand Svarer 20102011 Kiley 2003 Kroft and Notowidigdo 2010
Moyen and Stahler 200%anchez 2008have started to analyze the issue of optimal Ul over thenessi cycle.
We discuss in detail in Sectichhow our model differ from those studies.



unemploymentNlichaillat 2010Q. Accordingly, aggregate job-search efforts have littilBuence
on aggregate unemployment. While unemployment benefitediace search efforts in recession,
this reduction only increases unemployment negligiblyr €econd departure from the textbook
model arises from the presence of a negative externalitgethby job rationing, which plays a
large role in recession. Unemployed workers choose thaickeeffort based on the effect of in-
dividual effort on the probability of finding a job, takingehob-finding probability per unit of
search effort as given. Yet, since only a limited number b§j available, increasing one’s prob-
ability of finding a job mechanically reduces other jobseskprobability of finding one of the
few available jobs. Thus, individuals tend to search too mfac jobs. The government corrects
this externality by providing unemployment benefits redggob-search efforts. Therefore, the
cost of Ul from higher unemployment (through reduced seaffdrt) decreases in recession, and
the value of Ul from correcting the job-rationing extertalncreases in recession. The insurance
value of Ul from consumption smoothing remains constant tive cycle. Hence, optimal Ul is

more generous in recessions than in expansions.

We begin the analysis in a one-period, general equilibriumdeh, whose equilibrium matches
the steady-state of the dynamic model introduced later. ANestudy the equilibrium of this simple
static model analytically, and represent it diagramméyi¢a a labor supply-labor demand frame-
work. We characterize the optimal level of unemploymentdbigmand tax rates across equilibria
parameterized by different levels of technology. Our wegglity assumption implies that when
technology is high, wages are relatively low, which drivegmployment down (“an expansion”).
Conversely, when technology is low, wages are relativegy hwhich drives unemployment up (“a
recession”). We derive a simple optimal unemployment iasoe formula expressed in terms of
sufficient statistics that can be empirically estimatesk xiersion, as well as micro-elasticity and
macro-elasticity of unemployment with respect to net relfaom work. The micro-elasticity is
defined as the elasticity of the probability of unemploymefra single worker whose individual
benefits are changed. The macro-elasticity is defined addbgogty of aggregate unemployment
to Ul when labor market tightness adjusts. We obtain a foanmilterms of these statistics be-

cause the macro-elasticity captures the increase in agigragemployment caused by Ul through



lower search effort, while the correction needed for thergtiioning externality is measured by the
wedge between micro-elasticity and macro-elasticity. fOtmula is very general as it is expressed

with sufficient statistics, and is therefore robust to chenig the primitives of the modél.

In low-unemployment periods, the macro- and micro-eléagtiare (almost) equal, and the
formula coincides with the classical Baily-Chetty formulm high-unemployment periods, the
macro-elasticity decreases sharply while the micro-eli@gtremains broadly constant. Our for-
mula implies that the generosity of optimal unemploymestiiance is countercyclical and higher
than in the traditional Baily-Chetty formula for two reasonFirst, the elasticity that should be
used in the Baily-Chetty formula is the macro-elasticitgtead of the micro-elasticity, as only
the macro-elasticity of unemployment matters for the gonent budget. Therefore, during re-
cessions when the macro elasticity is smaller, the optispallcement rate is higher. Second, the
correction for the job-rationing externality depends pesly upon the wedge between micro- and
macro-elasticity. In recessions, the wedge is large andghienal replacement rate is even higher.

With no concern for insurance (linear utility), the goveemhshould still provide Ul in recessions.

Next, we use numerical methods to quantify optimal unemmpleyt insurance in a dynamic
stochastic environment that accounts fully for rationgdeotations of firms and workers, as well
as the law of motion of unemployment. We calibrate a DSGE rhatth US data. Technology
shocks drive business cycle fluctuations. We simulate the path of optimal unemployment
benefits and labor taxes in response to a technology shockbs Aetrease in technology requires
an increase in the replacement rate of about 1.5%. Thusptir@ercyclical pattern of optimal Ul
is quantitatively large.

The paper is organized as follows. Sectibreviews the related literature. SectiBpresents a
one-period model that transparently illustrates the kenemic mechanisms, obtains optimal Ul
formulas expressed in terms of sufficient statistics, ang@ses a numerical illustration. Sectibn

uses a DGSE model to obtain more realistic dynamic simulati8ectiord concludes.

3As shown byChetty (20064 2008 in the Baily model, our optimal replacement rate formularessed in terms
of “sufficient statistics” is quite general and carries oieemodels in which individuals can partially self-insure.



2 Related Literature

Our paper is related to a large literature that analyzesrgptU! theoretically and numerically.
Following the work ofBaily (1978, a theoretical literature in public economics and maaveec
nomics has studied optimal Ul in search models in which tieeetrade-off between insurance

and incentives to searéh.

Papers have analyzed the optimal sequencing of benefitdgaesl to finance them) over time
(for exampleHopenhayn and Nicolini 199Kocherlakota 2004Vlortensen 197;/Shavell and Weiss
1979 Shimer and Werning 2008Studies have simulated optimal Ul in calibrated modelssad
ering various unemployment benefit todfs€driksson and Holmlund 20pdansen and Imrohoroglu
1992 Lentz 2009 Wang and Williamson 2002 Other papers have characterized optimal Ul when
unemployment benefits distort wag€safuc and Lehmann 200Coles and Masters 20peHow-

ever, none of those take business cycle fluctuations intoustc

Moreover, many papers have considered models with exteesadnd their consequences for
optimal unemployment benefits. General efficiency cond#ibave been established for search
models inHosios (1990 and Moen (1997). Diamond (1981 shows that, if the distribution of
job offerings becomes more attractive when there are mazangges and more unemployment,
then the steady-state equilibrium is not efficient and Ul istore efficiency by making workers
more selective in the jobs they accepicemoglu(2001) develops a model of honcompetitive
labor markets in which good and bad jobs coexist, and in whbilcban shift employment toward
good jobs and improve efficiencyMarimon and Zilibotti (1999 develop a model in which Ul
reduces employment but also helps workers to get a suitableljhese three papers assume risk
neutrality so Ul is just a subsidy for searching longer angrioning the quality of job-worker
matches Acemoglu and Shimg1999 show that, with risk aversion, Ul induces workers to seek
high-wage jobs with high unemployment risk, and hence imgsdoth risk sharing and output.
Spinnewijn(2010 extends the Baily model to the case where unemployed weitkave biased
beliefs regarding future employment, which calls for cotiree unemployment insurance over and

above the traditional Baily formul&roft (2008 considers a model of optimal Ul with endogenous

4Fredriksson and Holmlung2008§ offer a recent survey.
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take-up driven in part by social interactions that createxdarnality. He extends the Baily-Chetty
formula and shows that the macro-elasticity is the relegaetand that the externality requires an
additional correction to the formula. In contrast to thetselies, our paper zooms on an externality

due to endogenous job rationing that is inherently tied éodinsiness cycle.

A few recent studies have started to study optimal Ul overhilginess cycleKiley (2003
andSancheZ2008 use partial equilibrium models in which benefits are pasitehave less dis-
tortionary effects in downturns than in booms. In contrag,construct a model in which such a

pattern arises in general equilibrium.

Using general equilibrium models with matching frictionghe labor marke#Andersen and Svarer
(201Q 2011 andMoyen and Stahleg2009 find countercyclical optimal benefits when the gov-
ernment is not constrained to balance its budget each pdsddaces an intertemporal budget
constraint instead. In these models, optimal Ul is cougtdical because the government uses
Ul to smooth consumption over the cyélén contrast, we impose a period-by-period budget bal-
ance so that the government cannot use Ul as a vehicle fatentporal consumption smoothing
through deficit spending. In spite of this restriction, wedfthat optimal unemployment benefits

are countercyclical.

Kroft and Notowidigdo(2010 propose a model, close in spirit to the traditional Bailydab
in which the elasticity of unemployment duration with resfge benefits, and accordingly optimal
unemployment benefits, may vary over the business cycleceSime cyclicality of elasticity is
theoretically ambiguous (it depends on the parameterseoirtbdel), they propose an empirical
estimation. All the variation of optimal Ul comes from védran in the micro-elasticity in their
Baily formula. In contrast in our model, the micro-elagijoof unemployment with respect to
net reward from work is roughly constant; the countercyiig of optimal Ul comes from the

procyclicality of the macro-elasticity; this procycligglarises from the presence of job rationing.

5To reinforce this pointAndersen and Svar¢2010 find that optimal benefits should Ipgocyclicalwhen they
derive comparative statics in the static version of the rh¢idewhich there is no room for risk sharing through
intertemporal substitution of consumption). In the dynambdel, optimal benefits are countercyclical to allow risk
sharing over the business cycle.



3 Static Model

This section presents a one-period model of the labor mank@tderives a simple optimal un-
employment insurance formula that can be expressed in tefmestimable elasticities. The key
economic mechanisms are transparent in this model, anduik&ium can be represented dia-
grammatically. Furthermore, its equilibrium correspotalthe equilibrium of the dynamic model

of Sectiond in which there would be no aggregate shocks and no discauntin

3.1 Description of the economy and equilibrium with Ul
3.1.1 Labor market

At the beginning of the period, a fraction-1U of all workers are allocated to a job without having
to search. One can think of these-U workers as incumbent, who were already on the job in the
past. A fractionU of all workers have to search for a job. One can think of thésgorkers as
unemployed workers, who did not have a job in the past. Uneyaol workers exert an average
search efforE per worker. Firms opeR vacancies to recruit these jobseekers. The number of
matches is given by a constant-returns matching funecti@h- U,V ) of aggregate efforE - U and
vacancied/, differentiable and increasing in both arguments. Coodgion the labor market are
summarized by the labor market tightness

v

0 EU

The matching technology is such that not all unemployed erican find a job, and not all

vacancies can be filled. An unemployed worker searching wilvidual efforte finds a job with

probability
e-f(B)=e EU =e-m(1,0), Q)
and a vacancy is filled with probability
m(E-U,V f(0
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In a tight market, it is easy for jobseekers to find jobs—the-fjoding probability per unit of
search effortf (0) is high—and difficult for firms to hire workers—the job-fillinprobabilityq(0)

is low. We assume that the matching function is Cobb-Doyglashat
£(8) = wm- 0", q(6) = w67, wm € (0,4), n € (0,1).

3.1.2 Household

The representative household is composed of a mass onerdicalewvorkers with utility that
depends on consumpti@and job search effol of the formu(C) —k(E) whereu(.) is increasing
and concave ani(.) is increasing and convex. To simplify derivations, we assam isoelastic
cost of effort

E1+K

k(E) = o)|<~m, ux € (0,40), K € (0,+00).

Each individual can neither borrow nor save, and consunégaincome each perioctiWhen
working, an individual earns wag#'. The government taxes earnings at fate finance unem-
ployment benefith-W when unemployed. We denote B} =W - (1 —t) consumption when
employed and byZ" = b-W consumption when unemployed. We denotetby t + b the total
implicit tax on work and byAC = C¢—CY = (1—1) -W the net reward from workt measures
the generosity of the Ul system and we referttas the net replacement rate in what follofvs.
Our representative household does not provide insuranite neembers, unlike in other standard
search-and-matching modebsndolfatto 1996 Merz 1995. Members of the household, however,
decide collectively how much to search for jobs. This cdllecdecision imposes that unemployed
members take into account the effect of their search effotheir probabilityof finding a jobcon-
ditional on being unemployed, and on their probabibtifybeing unemployedh the first place.

This theoretical construct aims to capture in a one-periodehthe fact that in a dynamic model,

SWe discuss later on how our results extend to the case witbgambus savings or self-insurance paralleling the
analysis ofChetty(20063.

"The gross replacement rate is traditionally definedasCY/W while the net replacement rate is defined as
CY/C®=Db/(1—-t) ~ b+t =1 when the tax raté¢ is small. As the unemployment rate is small relative to the
working populationt is also small justifying why we catl the net replacement rate.



higher search effort increases the probabiityfinding a jobin the current period, and decreases

the probabilityof being unemployeith the future.

More precisely, the household chooses its labor supi§lyo maximize its aggregate utility.
SupplyingN® units of labor provides consumptid@f to NS household members. The-1N®
unemployed household members consume @4lySupplyingN® units of labor is costly: while
a fraction 1— s of the NS jobs is filled immediately at no cost, a fractisrof the jobs must be
filled through matching on the labor market. The fractaf jobs that are unfilled aims to capture
simply the effects of job turnover and matching frictionsomr one-period model. A highex
means more job turnover, and hence more job séarthe 1— (1—s) - NS household members
unemployed at the beginning of the period must exert sedfolt & to fill s- N° vacant jobs.
Given (1), a fractionE f(0) of these jobseekers will find a job. Therefore, the requiréalteis
such that

E-f(0)-[1—(1-s)N° =s-N° 2

which imposes a utility co¥(E) on the 1— (1 —s) - N® jobseekers.

Equivalently, the household chooses eftério maximize its aggregate utility
—[1—(1-9)-N%(E,8)] - K(E) +[1— NS(E. 8)] -u(C") + N*(E, 8) -u(C®),

wheref, C" andCE€ are taken as given and the labor supfE, 0) is given by

1

NS(E,B) = .
( ) E.S(9)+(1_s)

3)

—h

This labor supply equation comes directly froR),(and determines how search eff&rtranslates

into employment for a given labor market tightn@$NS(E, 8) increases witle and®.

8In the dynamic setting of Sectiah s corresponds to the job destruction rate each period. Herigéhe fraction
of employed workers who lose their job each period, ardslthe fraction who retain their job. 4 (1— )N is the
number of unemployed workers at the beginning of each period



DenotingAu = u(C®) — u(C"), we can show that the optimal search effersatisfies

k’(E)-NES:Au—i—(l—s)-k(E), (4)

This optimality condition can be rewritten as

K'(E)

10

+K(1—9)K(E) = Au, (5)

which determines optimal effort as a functii®, Au) of the labor market tightne€sand the Ul

programAu. E(8,Au) increases wit® andAu.

To summarize, labor suppN°(E(8,Au), 8) increases with labor market tightneésand incen-
tive to searchiu. Both properties of the labor supply are illustrated in FFegly which plots labor
supply curves corresponding to high incentive to seacfplain line) and low incentive to search
Au (dotted line) in a pricé-quantityN diagram. As we shall see, in our model with rigid wages,

the labor market tightne$kacts as a price to equalize labor supply and labor demand.

3.1.3 Firm

The representative firm produces a consumption good taking and wage as given.

ASSUMPTION 1 (Diminishing marginal returns to laborYhe production function i& (N, a) =

a-N% a €10,1). a> Ois the level of technology that proxies for the positiontia business cycle.

To capture the effects of job turnover and matching frictiowe assume that while a fraction
1 — s of the N9 jobs opened by the firm are filled immediately at no cost, tha finust post
vacancies to advertise the fractiswof its N9 jobs that are vacant. Keeping a vacancy open has a
cost ofr - a units of consumptiod. The recruiting cost € (0, +o) captures the resources that firms
must spend to recruit workers because of matching frictivvis assume away randomness at the

firm level: a firm fills a job with certainty by opening/(6) vacancies, and thus spends/q(0)

9As we shall see, normalizing costs by the technology lexgénplifies the derivations.



to fill a job. When the labor market is tighter, a vacancy is ldsely to be filled, a firm must post

more vacancies to fill a vacant job, and recruiting is morelgos

A firm chooses employmemt® to maximize real profit (the price is normalized to 1)

r-a
n= F(Nd,a)—W-Nd—@- (s-Nd>.

The wageW is set once a worker and a firm have matched. Since the mamio@lict of labor
always exceeds the flow value of unemployment, and sinceabanecy-posting cost and cost of
job-search effort are sunk for firms and workers at the timmafching, there are always mutual
gains from trade. There is no compelling theory of wage deitextion in such an environment
(Hall 2005 Shimer 200%. In fact in our one-period model, any wage(0,+) could be an
equilibrium outcome in a labor market with positive emplaymh That is, the wage would never
result in an inefficient allocation of labor from the jointrppective of the worker-firm pair. This
property arises because firms start without any employegghenproduction function satisfies
limnyoMPL(N) = +. Given the indeterminacy of the wage in our frictional lalbearket, we

opt to use thélanchard and Gal2010 wage schedule.
ASSUMPTION 2 (Wage rigidity) The wage i8V(a) = wp- aY¥, wp € (0,+), y€ [0,1).

The parametey captures wage rigidity. ¥ = 0, wages are independent of technology and there
is complete wage rigidity. Iy = 1, wages are proportional to technology and there is no wage
rigidity. If y € [0,1), when technology is high, wages are relatively low, drivimgemployment
down as in expansions. Conversely, when technology is lages are relatively high, driving

unemployment up as in recessions.

From now on, we always denote By the marginal product of labai /ON. The first-order

condition of the firm problem defines implicitly the labor dandN¢(a, 8) with

(6)
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Using the functional-form assumptiofignd2, and dividing bya, we can rewrite) as

N9 (B, a) = {% (WO.av—lJr%) }WH). )

Sinceq(®) decreases i® andF’(N,a) decreases ilN, the labor demand scheduh¢(8,a) de-
creases witl® when there are diminishing returns to labar< 1). MoreoverNY(8, a) increases
with a when wages are rigidy(< 1). Both properties of the labor demand are illustrated gt Fi
urel, which plots labor demand curves for high (top panel) andtewihnology (bottom panel) in

a priced-quantityN diagram.

3.1.4 Equilibrium

Given a Ul programiu and technologw, labor market tightness equalizes labor demand to labor
supply in equilibrium:
N(Au,a) = N*(E(8,4u),6) = N‘(8,a), (8)

whereN(Au, a) is equilibrium employment. The equilibrium is illustratedrigurel. Equilibrium
employmentN(Au, a) is given by the intersection of the downward-sloping labemdnd curve
with the upward-sloping labor supply curve. Labor markghtness acts as a price that equalizes
supply and demand in this frictional model. If labor sup@yabove labor demand, supply and
demand can be equalized through a reduction in labor magkeness that both reduces the hiring
costs to increase labor demand (equatinirf which 1/q(8) increases witt®), and reduces the
job-finding probability as well as optimal search effortéoluce labor supply (equatiory @nd 6)

in which f(8) increases witl®).

As showed byMichaillat (2010, job rationing results from the combination of diminisgire-
turns to labor ¢ < 1) and wage rigidity < 1).1° In our one-period model, these two assumptions
translate into a downward-sloping labor demand curve thiitssdown after a negative technol-

ogy shock as depicted on Figutevhen moving from the top to bottom panel. As discussed at

OMichaillat (2010 defines job rationing as the property of a frictional labarket that does not clear even at the
limit when matching frictions disappear.

11



length inMichaillat (2010, there is ample historical and empirical evidence in fasfahese two
assumptions. Furthermore, these two assumptions aresagegés provide a realistic description
of business cycle fluctuations in the labor market. The rigatje assumptiony(< 1) is critical
for labor market tightnes3 to depend (positively) on the technology legethe key ingredient to
obtain sufficient unemployment fluctuations in the searcll@h@all 2005 Shimer 200% Our
model aims to describe cyclical fluctuations, and the assiompf diminishing returns to labor
(o < 1) captures the fact that production inputs (especiallytaBmlo not adjust fully to changes
in employment at business cycle frequency. If capital abddare the only production inputs and
capital is assumed to be constant in the short run, the ptiotifanction has diminishing marginal

returns to labor as in Assumptidn

3.2 Optimal unemployment insurance
3.2.1 Government problem

The government chooses the net reward from wiZk= C® — C" to maximize expected utility
N3(E,0) - u(C"+AC) + [1—N°(E,0)] - u(C") — [1— (1—s)-N3E,0)] - k(E) 9

whereNS(E, 0) is given by labor supplyd), E(6,Au) is given by the household’s optimal choice
of effort (5), O clears the labor marke8), and the government budget constraint is satisfied. For a

givenAC, the government budget constraint pins d@Vn
CY=N-(W-AC).

Note that we assume here that benefits are financed entiretf mages and that the government
cannot tax profits to fund benefits.Using the envelope theorem BEsis optimized by the house-

hold, and denoting by’ = NU(C®) + (1 — N)U'(C") the average marginal utility, the first order

f profits can be fully taxed, then total waghis W in equation 8.2.1) should be replaced by the sum of wages
and profits which is equal t6(N,a) — (s-N) -r-a/q(8). This alternative assumption would generate almost idehti
results and we consider it the general-equilibrium mod&edtiond.

12



condition for the government choice A€ is

.dC”_i_aNS. doé N
dAC = 00 dAC

N-U(C®%+U Au+(1—s)-k(E)]=0. (10)
As we shall see, the first two terms are the classical termtsedBaily-Chetty model. The last term

is the correction for the job-rationing externality.

3.2.2 Micro- and macro-elasticity

Introducing elasticities, we can us&Qf to express optimal unemployment insurance in terms
of estimable parameters. Intuitively, suppose #ha€ > 0 (unemployment benefits cut). This
change create variations in all variabti, d6, dAu, dCY, anddE so that all equilibrium condi-
tions continue to be satisfied. The change in effort can berdposed adE = dEp, + dEg, Where
dEa, = (0E/0Au)dAuis a partial-equilibrium change in effort in response tochange in Ul, and
dEg is a general-equilibrium adjustment in effort followingetbhangel0 in tightness. It is useful

to represent labor supplg)and labor demandsj in a priceB-quantityN diagram as in Figuré.
Using the labor supply equatioB)( we havedN = dNg + dNg wheredNe = (ON®/0E)dEp, and

dNg = (ON®/06+ (ON®/0E)(0E /06))dB. dNe > O is the increase in aggregate employment due to
a positive shift in labor supply, keeping labor market tighgsB constant. The labor supply shifts
because the household now exerts more job-search effogsponse to the cut in unemployment
benefits.dNe is represented by the shift A—C in Figute dNg < O is the reduction in employ-
ment that occurs in general equilibrium through a decreassbior market tightnesif < 0. dNg

is represented by the shift C—B in Figute As a combination of these two effects, the general
equilibrium increase in employmedt is smaller than the partial equilibrium supply increase in
employmentdNe. dN is represented by the shift A-B in Figute The difference between the
micro-effectdNe and the macro-effeddN is dNg which arises from job rationing. This decom-
position motivates the following definition of the macro amétro elasticities of unemployment

1 — N with respect taAC.

DEFINITION 1 (Micro-elasticity and macro-elasticity)rhe macro-elasticityof unemployment

13



1 — N with respect to the net reward from wollC is defined as:

w_ AC dN
~ 1-N dAC’

It measures the percentage increase in unemploymem When the net reward from work de-
creases by 1 percent, assuming all other variables adjts$. nbrmalized to be positive. The

micro-elasticityof unemployment with respect to the net reward from work isngel as:

m_ AC ONS OE dAu
" 1-N 0E oAu dAC

€

It measures the percentage increase in unemploymem When the net reward from work de-
creases by 1 percent, ignoring the effect of the generaltequm adjustment of® on N. It is

normalized to be positive.

PROPOSITION 1 (Cyclical behavior of micro-elasticity and macro-elasit

()
g, U(CH-AC 1
- Au K+1

(11)

where the approximation is valid fdr— N << 1 and s<< (1—N)/N. Hence, for given €
and C, €™ does not vary systematically with the business cycle (tdogw level a).
(ii)

gM=¢M. 1+1_Tn-(

1 U M
(iii) For a given policyAu = u(C®) — u(CY), em/eM > 1 varies countercyclically (i.e., decreases
with technology a). When a is large (good times), this ragiclose to one. When a is small

(bad times), this ratio becomes large.

The proof is provided in appendiX. Three comments should be made. First, our model gener-
ates a micro-elasticity of unemployment with respect toraetard from worke™ that is approxi-

mately constant over the business cycle. Thus, the traditimoral-hazard cost of unemployment

12As we shall see in our calibration, the assumpsen< (1— N)/N is reasonable.
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insurance is about constant over the cycle. Second, ourlroiges a wedge between micro- and
macro-elasticity. The macro-elasticity is smaller beeaofjob rationing, which imposes labor
market tightnes8 and the job-finding probability (8) to adjust downward after a positive shift of
the labor supply. Therefore the (general equilibrium) éase in aggregate employment following
an increase in aggregate job-search efforts is smallertttea(partial equilibrium) increase in the
individual probability to find a job following an increaseiirdividual job-search efforts. Third, the
gap between micro and macro-elasticity varies with thertass cycle and is small in good times
when unemployment is low and largely frictional (as in ttexhial search models) but large in bad

times when unemployment is high and primarily due to joloratg.

Figure 1 illustrates the findings from Propositidn The wedge between micro- and macro-
elasticity is measured by the distance B—C, which would stpe for any downward-sloping
labor demand. The increase in the wedge between micro- ancbretasticity when technology
falls is measured by the increase of the distance B—C bettyeetop panel (high technology)
and the bottom panel (low technology). In the bottom pamapleyment is bounded & = 0.93
because of job rationing, which makes labor demand intétbepk-axis alN = 0.93. Even a large

positive shift of labor supply would only have a modest pesieffect on aggregate employment.

Results from the empirical literature on the effects of upEryment benefits on unemploy-
ment provide support for the three key positive predictioh®ur theoretical model: (a) posi-
tive wedge between micro- and macro-elasticity, (b) acatimicro-elasticity, (c) countercyclical
macro-elasticity. The labor economic literature focusesharily on the elasticity of unemploy-
ment duration with respect to benefits estimated with mdata (seekrueger and Meye(2002
for a survey)'® Although this literature does not distinguish between mand macro-elasticity,
studies comparing individuals with different benefits ie 8ame labor market estimate primarily
micro-elasticities while studies comparing individualshndifferent benefits across labor markets

(for example across US states) estimate macro-elassicitie

First, the classical studies yoffitt (1985 andMeyer (1990 use the same multi-state multi-

13A macroeconomic literature uses cross-country and tiregigssvariation to estimate the macro-elasticity of un-
employment with respect to benefits. This literature findsidewange of estimates with no emerging consensus
because of both measurement and identification issuesx@onge,Holmlund 1998 Layard et al. 199)L
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year US micro-administrative data bMteyer (1990 includes state fixed effects and hence uses
primarily within-state variation in benefits whiMoffitt (1985 does not include state fixed effects
and hence uses both within- and across-state variation. vksudt, Meyer (1990 estimates a
micro-elasticity whileMoffitt (1985 estimates a mixture of macro- and micro-elasticitjeyer
(1990 finds much higher elasticity estimates (around 0.9) taffitt (1985 (around 0.4):* This

comparison suggests that the micro-elasticity is largan the macro-elasticity as in our model.

SecondSchmieder et al2010 use sharp variation in unemployment benefits duration ley ag
in Germany and a regression discontinuity approach witlaegtive administrative data to identify
compellingly the micro-elasticity of duration with respeo benefits. This is the most credible
study to date which is able to estimate the micro-elasts®fyarately for many years. It shows that

the micro-elasticity is almost exactly constant over theibess cycle in Germany, as in our model.

Third, Moffitt (1985 estimates how the elasticity of duration with respect todbgs varies
with the local state unemployment rate and finds that thecksitive effect of Ul declines signifi-
cantly with the unemployment rate in the state. Using sudagg,Kroft and Notowidigda(2010
also find that the elasticity of unemployment durations wé$pect to benefits is smaller in high-
unemployment than in low-unemployment states. Mdfitt (1985 andKroft and Notowidigdo
(2010 use variation in benefits both across and within states, éisémate likely captures a mix
of macro- and micro-elasticities. Finalbprulampalam and Stewa(fL995 find much stronger
effects of benefits on durations in Britain in 1978 (low unéoyment) than in 1987 (high unem-
ployment)!® Those results therefore suggest that the macro-elastizitybe countercyclical as
in our model. We leave the precise estimation of macro- arwtayelasticities over the business

cycle, currently lacking from the empirical literaturer fature work.

3.2.3 Optimal unemployment insurance formulas

Recall thatAC = (1—-1)W and hencéW — AC) /AC=1/(1—T1).

14seeKrueger and Meyef2002), Table 2.5., p. 2349 for a side by side comparison.

15jurajda and Tanner2003 also find that Ul federal expansions in Pennsylvania in tirtyel 980s have slightly
smaller effects on labor supply in a depressed region ofttdite $Pittsburgh) than in a less depressed region of the
state (Philadelphia). The differential response, howasenuch smaller than in the studies just mentioned, maybe
because there is substantial mobility across those twesciti
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PROPOSITION 2 (Optimal Ul formulas) The optimal replacement ratesatisfies

(12)

eM

e O () R ]

1-T €M 0 (k+U)2 | Au

With the approximation that — N << 1and s<< (1—N)/N, the optimal formula simplifies to

T 1 /u(CY em 1
= (e 1) (1) s "
u

In both(12) and(13), the first term on the right-hand-side is the classical B&lyetty term while

the second term on the right-hand-side is the correctiorxtdraality due to job rationing.

The proof is obtained by re-arranging terms1ig)( and is presented in appendix. To illuminate
the key economic mechanisms behind the optimal formulaspmesent an intuitive derivation.
Consider a small increasi\C in the net reward for work—equivalent to a cut in unemployimen
benefits. The direct mechanical positive welfare effect onkers isdS = N - u'(C®) - dAC (first
term in (L0)). But increasind\C requires cutting benefiS" =N - (W —AC) by dC" = —N-dAC+
(W—AC)-dN= —N-dAC+ (1—N)-[(W—AC)/AC] -eM. dAC, leading to a welfare lossS =
—N-U-dAC+(1—N)-[(W—AC)/AC]-eM. - dAC (second term inX0)). In the traditional Baily-
Chetty model, those are the only two effects, the optimalddinfula is such thadS, +dS = 0,
and there is only the first term in the right hand side of formsul2) and (L3).

However, in our model, there is a third effect due to job lesutting from the labor tightness
adjustment (third term in1(Q)). Each job lost reduces social welfare i{C®) — s-k(E) — [u(C") —
K(E)] = Au+ (1—s)k(E) as each unemployed person incurs search dg&tsand a fractiors
of the employed had to search and incur césEs) as well. The individual optimality condition
(4), and the isoelastic assumption ffE) can be used to rewrite the welfare loss per job as
Au+ (1—s)k(E) =Au(k+1)/(k+U). As discussed above, a small increa¥ leads to a
positive shift in labor supply (more search effort), whigadls to a reduction in labor market
tightnesd6 in general equilibrium because of job rationing. This reotucdd destroysdNg jobs
through two channels: (()9N°/0E)(dE/d8)de jobs are destroyed through the reduction in search
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effort—this reduction, however, does not have any welfdiects by the envelope theorem; and
(il) (ON®/00)d6 jobs are destroyed through a reduction in the job-findingpabdlity. By definition

M AC ONS ONSOE| df
el —egM= : + === :
1-N | 06 OE 06| dAC
But
ONOE U oN®
OE 06 Kk 00°
Thus, we can show that
ONS 1—N K
Zd9=—-dACc-————. Jem_eM7 |
5g 0= —dAC- ey €M

This leads to a welfare loss @ = —dAC- (1 —N)/AC- [e™ —eM]. Au-k(1+K) /(K +U)>2.
This term is negative. It is due to a decrease in job-findirapgability (and hence in aggregate
employment) when there is more search, which is not intemedby jobseekers. This decrease in

job-finding probability is a direct consequence of job raii.

At the optimum, the sum of the three term$; + dS + dSs is zero leading to formulal@).
When 1- N << 1, thenN ~ 1 and hence/ ~ U (C®). Furthermore, using the approximation for
eM~ (U(C®)-AC/Au)/(k + 1) from Propositiorl, we can obtain formulal@) from formula (2).

Proposition2 provides a formula for the generosity of unemployment bé&nefiour important
points should be noted. First, absent any wedge betweeroraadrmicro-elasticity, the second
term in the right-hand-side of the formula<?f and (L3) vanishes, and we obtain the Baily-Chetty
formula. We express the formula in terms of the elasticityoémployment with respect to the
net rewards from work, instead of the elasticity of unempient with respect to Ul benefit
because the latter elasticity cannot be constant (it iswaem Ul benefits are zero). This allows us
also to have a direct formula for the replacement ratestead of an implicit formula as in Baily-

Chettyl® As in Baily-Chetty, the replacement rate decreases witrethsticity (which measures

160ur convention is consistent with optimal income tax theshjch always expresses optimal tax rates as a func-
tion of the elasticity of earnings with respect to one mirhesinarginal tax rate, instead of the elasticity of earnings
with respect to the marginal tax rate. The Ul problem of B&ilyetty is effectively isomorphic to an optimal tax
problem with two earnings level (working vs. not working).
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the moral hazard effect) and increases with the curvatutbeofitility function (which measures

the value of insurance). If utility is linear, then(C") = u'(C®) and there should be no insurance.

Second, in the Baily-Chetty term, the relevant elasticityhie macro elasticitg™ and not the
micro elasticitye™ that has been conventionally use to calibrate optimal btsriafthe public eco-
nomics literature Chetty 2008 Gruber 199). This is because what matters in the trade-off is
insurance versus aggregate costs in terms of higher ungmphd and hence higher unemploy-
ment benefits outlays. Most empirical studies measure thatidn of unemployment by compar-
ing unemployed workers in the same economy who face diffegglacement rates. Therefore,
those studies measure the micro-level elasticity of uneympént duration with respect to benefits.
Hence, when there is a wedge between the micro and macragyastis no longer appropriate

to use the micro-elasticity estimated from those durattadiss.

Third, when there is wedge between micro and macro-elgstecisecond term, directly pro-
portional to the difference between the two elasticitiggyears in the optimal Ul formula. This
term is the correction for the externality imposed by jobrekan the presence of job rationing.
Thus, optimal unemployment insurance is higher than in tadyBChetty formula to correct for
the negative externality. Even in the absence of any corfoeiinsurance (with linear utility and

U (CY) = U'(C®)), some unemployment insurance should be provided to ddire@xternality.

Finally, formula (L2) does not depend on functional form assumptions for thayutinction,
the production function, or the matching function. It isusbto changes in the primitives of
the model. The optimal replacement rate can hence be obthiora a few sufficient statistics—
micro- and macro-elasticity, curvature of the utility fiilom—that can be empirically estimated.
As always, optimal policy formulas can also be used to agkessurrent Ul system. If the current
1/(1—1) is higher than the right-hand-side of formule2), then increasing the replacement rate

is desirable (and conversely).

Propositionsl and 2 imply that the optimal replacement rate is countercyclibalth through
the Baily term and the through the externality term. TheB&tm is higher in recessions because
the macro-elasticity is smaller. The externality term ighar in recessions because the wedge

between micro- and macro-elasticity grows during recessibormally, we can state the following
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proposition (the proof is presented in appendix).

PROPOSITION 3 (Cyclical behavior of optimal replacement rafe Assume log-utility (C) =
In(C). Assume that the approximated formu(ag) for €™ and (13) for t are valid at the equi-
librium (i.e., technology a is high enough such that N << 1 and s<< (1—N)/N). Then the

optimal net replacement rateis countercyclical (i.e., decreases with technology a).

3.3 Extensions and special cases
3.3.1 Savings and self-insurance

Chetty(2006ab) shows that the simple Baily formula carries over to modeth savings, borrow-
ing constraints, private insurance arrangements, or lseard leisure benefits of unemployment.
To a large extent, the same generalizations apply to our hasdeformulas 12) and (3) carry

over with minor modifications.

As an illustration, suppose that unemployed workers carease their consumption with home
production. We assume that home production generates@udiconsumptiorh — g(h) where
g(h) is a convex and increasing function representing costs wiehproducindh. Let Cu=CcU+

h—g(h) be the total consumption of unemployed workers. Individehloos& andh to maximize
—[1—(1—s)N3(E,0)]k(E) + (1 —N5(E,0)) - u(C"+h—g(h)) + N%(E, 0) - u(C®),

and the government chooses the net rewards from WGrk C® — C" to maximize expected utility
NS(E,B)u(C"+ AC) + (1 —N3(E, 0))u(C"+h—g(h)) — [1— (1 —s)N3(E, 8)] - k(E)

where bothE andh is chosen optimally by individuals, and subject to the sawmstraints as
in our original problem. Hence, the first order condition foe government problem is exactly
identical and formulasl) and (L3) carry over simply by replacing" by C! in each of the utility
and marginal utility expressiongC") andu’(CY).

Although the structure of the formula does not change, tins@mption smoothing benefit term
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u'(CY)/U/(C®) — 1 in the first term of formulasl@) and (13) is smaller if individuals can partly
self insure, using for example home production. In the exérease where individuals can fully
self-insure and smooth consumption absent a Ul progu&@) /u’(C®) = 1 and there is no reason
to have a Ul program for insurance purposes. This point waisrfated inBaily (1978 and then
generalized byChetty(20063. It was also used in the calibration of the Baily formula®guber
(1997 who estimated empirically that each dollar of Ul benefitsréase consumption by $0.30
when unemployed (instead of dollar for dollar as in our basadel). To keep our numerical
illustrations simple, we rule out partial insurance. Thogt optimal replacement rate is on the

high side. We leave more elaborate simulations with pasa#tinsurance for future work.

3.3.2 Wage responses to Ul Benefits

An implicit assumption in our model is that wages are notaéd by Ul. In particular, wages do
not rise if unemployment benefits become more generous.abismption is supported by empiri-
cal evidence (for exampléjolmlund 1998 Layard et al. 199)L Nonetheless, it is conceivable that
wages respond positively to benefits as more generous lseséngthen the bargaining power
of workers. In the model we have laid out, if we assume W&AC), an additional term would
arise in the first order conditiori() of the government as a changeA@ affects the government
budget constraint through its effect @h However, this effect is artificial as we have assumed that
the government cannot tax profits and affecting wages tlirdgmefits in an indirect way to tax
profits. If we assume, as we will do in the fully dynamic modiSection4, that the government
can fully tax profits, this effect disappears and the fact Weges depend oV does not affect the
optimal formulas 12) and (3). Effectively,W disappears from the government problem when the
government control§Y andC® and total resources in the economy. The fact\atepends oAC,
however, affects the macro-elastic#yl as changes in wages affect labor demand. Nevertheless,
the formulas 12) and (3), expressed in terms of sufficient statistics, remain v@idh a small
adjustment to account for the wage change in the governmuelyeb constraint). This illustrates

the power of the sufficient-statistics approach.
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3.3.3 Special cases

To illustrate the economic mechanisms behind our model &ndte our work in the existing

literature, it is fruitful to consider the three followingeacial cases.

No diminishing returns to labor with a = 1: This model was popularized bylall (2005.
While this model can generate large employment fluctuatigrdoes not exhibit job rationing.
With a = 1, labor demand?) implies that labor market tightne8ds independent of employment
N. In Figurel, the labor demand curve would be horizontal. Propositishows that™ = €M, and
that these elasticities are broadly constant over the clclhat case, the traditional Baily-Chetty
formula applies, and Propositi@shows that the optimal replacement rate satisfies approeiyna

T 1/J(cCY
-1 " m (u’(Ce) - 1) : (14)

Thus, the optimal replacement rates constant over the business cycle.

A matching function with n =1: Inthat casef(8) = wn, is independent d which implies that
labor market tightnes3 does not enter labor suppl$)( and does not affect the optimal provision
of search effort§). Hence, there is no job-rationing externality. In Figdrethe labor supply
curve would be vertical. Once more, Propositibshows that™ = eM, and that these elasticities
are broadly constant over the cycle. The traditional B@ihetty formula {4) applies, and the

optimal replacement rateis constant over the business cycle.

No wage rigidity with y=1: If there is no wage rigidity\(= 1), technologya drops out of the
labor demand equatiom(and6 andN are independent &. All labor market variables, and the
problem of the government, are therefore independent bhtdogy. While this model generates
a wedge between micro- and macro-elasticity, and the eafigrrierm is present in the optimal
Ul formula, the optimal replacement rate is constant over‘tusiness cycle” because this model

fails to capture unemployment fluctuations.
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3.4 Numerical illustration

In this section, we illustrate our theoretical results ntoadly. Tablel summarizes the calibrated
parameters. Since we calibrate the parameters in our dgnaimiel, we defer the presentation
of the calibration strategy to Secti@gn2, after we have formally introduced the dynamic model.
Although these numerical results are obtained in a one@eniodel abstracting from any dynam-
ics, they are broadly consistent with those obtained ini&@edt3when we simulate our dynamic

stochastic general equilibrium model.

Figure 2 displays in six panels, as a function of technol@gfwhich proxies for the position
in the business cycle), (a) the replacement bateC"/W, (b) the labor taxt = 1 —C®¢/W, (c) the
net replacement rate (or total implicit tax on work)-t + b =1—AC/W, (d) the unemployment
rate, (e) effort, (f) labor market tightness. Panel (c) aomdi that, as our theory predicts, that
the net replacement rate is countercyclical, i.e., deeeastha. Quantitatively, the effect is
quite significant as the net replacement rate falls from 88%526 over the range of technology
we consider (which corresponds to variations in the uneympént rate from 11.5% to 3.5% as
shown in panel (d)). Panels (a) and (b) show that both conmierté the net replacement rate—
replacement raté and particularly tax raté—are countercyclical. Hence, in bad times, it is
desirable to increase taxes substantially to finance not lo@hefits to a larger fraction of the
population that is unemployed but also benefits that are rgenerous per person (relative to
prevailing wages). The replacement rate flattens out at 8@ once unemployment reaches
about 10%. Panels (e) and (f) show that both effort and lakarket tightness increase sharply
with technologya.

Figure3 displays micro- and macro-elasticitie andeM of unemployment with respect to net
reward from work as a function of technologyfor a constant Ul programdu = Au*(a=1). It
confirms our three theoretical results from PropositlonFirst, the micro elasticitg™ is close
to constant over the business cycle—it varies on a narrogerémom 0.33 to 0.39. Second and
in contrast, the macro elasticity varies substantiallyrdkie business cycle—it varies from 0.04 in
very bad times to 0.33 in very good times, an eight-fold iase2 Third, macro-elasticity is always

smaller than micro-elasticity although the gap is quitelsimaery good times. Those results carry
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over (slightly attenuated) if the elasticities are evaddatvhen the replacement rate is optimal.

Figure4 displays the optimal net replacement rages a function of technologythat is obtained

from three alternative formulas. The first graph is the fplimum from our model (as in Figugy,

the second graph is the replacement rate that is obtainedtlyahuding the externality term in our
optimum formula {2). As expected, this second replacement rate is lower tr@futhoptimum,
and the discrepancy is highest in bad times as the extegrialih depends on the wedge between
micro- and macro-elasticity, which is highest in bad timEse third graph is the replacement rate
obtained by not including the externality term and furthegplacing macro-elasticity by micro-
elasticity in the Baily-Chetty term. Note that the replaegrrate is almost flat over the business
cycle in that case—it varies within a very narrow range fra28@to 64%. This was expected as
the micro-elasticity is almost constant over the busingskec This later case is the standard type
of simulations presented in the public economics liteea{fwr exampleGruber 199Y). Figure4

shows that job rationing in recession changes the picturstantially.

Figure5 further explores this issue and displays the welfare gaipgrcent) from using the fully
optimal replacement rate vis-a-vis various alternatives &unction of technology. The welfare
gains are measured as the percentage-increase in ceggintsalent consumptio€©9, which
we define adJ (C®9) = SW. The welfare gain is plotted relative to the two alternaseenarios
analyzed in Figurd—using the Baily term only with the macro-elasticity, anthgshe Baily term
only with the micro-elasticity. As expected, the welfaréngaare minimal in good times when the
two elasticities are close and the externality term is heneall. However, the gains are substantial

in bad times, especially when using the Baily formula wité thicro-elasticity.

Figure6 compares our main calibration to an alternative calibratitth a = 1, i.e., a situation
with constant returns to scale and no job rationing. Thisganson is useful as the influential
study ofHall (2005 proposed such a model witlh= 1. Four points are worth noting. First,
panel (a) confirms that, whem= 1, micro and macro-elasticity are identical and vary reéi
little over the business cycle. Therefore, a powerful testdistinguishing our model from the
Hall (2005 model is to assess whether there is a countercyclical asithygap between the two

elasticities. Second, panel (b) confirms that the optimareglacement rate is almost constant
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over the business cycle idall (20095 while it varies substantially in our model. Third, panel
(c) shows that unemployment fluctuates substantially motdaill (2005 than in our modet./
Indeed, with constant returns, the fluctuations in unemplayt are very large, perhaps even too
large relative to plausible technology shoéRsFourth and related, panel (d) shows that ithal
(2005 model also generates much larger variations in labor nhaéike@tness than our model that

may be implausibly high for plausible technology shocks.

4 Dynamic Model

In this section, we present a dynamic stochastic extendionrone-period model. We calibrate
the model using micro- and macro-data for the US labor makketmove beyond the comparative-
static results of Propositio® by computing impulse response functions of labor markatiées
and of the optimal unemployment insurance in the fully dyitamodel. A byproduct of the

guantitative analysis is to verify that the calibrated matbscribes well the US labor market.

4.1 Description of the economy and equilibrium with Ul

The stochastic process for technolo@,(}t*:% drives economic fluctuations. The history of tech-

nology realizations ig! = (ag, ay, ..., &).

4.1.1 Labor market flows

At the end of period — 1, a fractions of the N;_1 existing worker-job matches are exogenously

destroyed. At the beginning of peribdJ; unemployed workers are looking for a job:

U=1-(1-95) N_1. (15)

I’Accordingly, we have reduced the range of technology chairgEigures.
18Hall (2009 study was pathbreaking because it was able to generateisntfunemployment fluctuations while
earlier search models could not. Therefore, generatingssiee fluctuations was a virtue in that case.
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4.1.2 Individuals

DEFINITION 2 (Individual problem) Given the government polic§Cg, C'},"3, and labor mar-
ket tightness{6; ;;% the individual problem is to choose a collection of stoticagrocesses
{E, N},% to maximize the expected utility

+0o0
Fo| 8 (= [1- (1= 9INL] K(E) + (1) ulG) + NP u(E) (16)

subject to the law of motion for the probability to be empldye the next period
NS =[1-(1-9) N2 4] - Ef(B)+(1-9) Ny (17)

The timet element of household’s choice must be measurable with cepéal, N_1).

The optimal effort function therefore satisfies the follagiEuler equation

(o) -80-98 1o ] |+ ke 9B k(E] = C) -u@. (e

41.3 Firms

DEFINITION 3 (Firm problem) Given wage, labor market tightness, and technology presess
{V\A,Gt,at}t*:%, the firm problem is to choose a stochastic process for empmay and hiring

N9, H}, to maximize

&

< st d a I
Eo t;?S ~ (F(Nt ,a) —WE- N _W'Ht)] , (19)

The firm faces a constraint on the number of workers emploget period:
NE < (1) Ny o+ He. (20)
The timet element of a firm’s choice must be measurable with respe@ tbl_1).

26



We assume that the firm maximization problem is concave. Thgue solution to the firm
problem is characterized by two equations. First, emplcr)trméi and number of hiresl; are

related by
Ho=N— (1-9)-NL, (21)

because endogenous layoffs never occur in equilibriumor@kemploymenid is determined by

the following first-order condition (as in equilibriunf < 1):

r-a

N3~ A
08 W g |

q(6t+1) (22)

—98(1—9)E; {

This Euler equation implies that the representative firrmsiabor until marginal revenue from hir-
ing equals marginal cost. The marginal revenue is the malrghoduct of laboF’. The marginal
cost is the sum of the wad@, the cost of hiring a worker- & /q(6;), minus the discounted cost

of hiring next perio®- (1—s) - Et [r - a+1/9(8t+1)].

4.1.4 Equilibrium with unemployment insurance

DEFINITION 4 (Government policy)A government policy is a collection of stochastic processes
{CE,Ct t*: % that satisfy the government budget constraint fot alhd alla':
r-a

F(Na) = NGE+ (1 NG+ —= [N — (1—5) - Neq]. (23)
e[(Cy

Thet element of the government policy must be measurable withecgo(al, N_1).

Importantly, we impose period-by-period budget balanod,l@nce rule out the possibility for
the government to smooth welfare by shifting resources-tei@porally from good times to bad
times. This is a natural assumption as we have also ruledhatirtdividuals can save and smooth
consumption over time. This also allows us to zoom in on withériod insurance-efficiency

trade-off.

DEFINITION 5 (Wage process)A wage process is a stochastic procfae}, % defined for alt
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and alla' by
W =wo-a), ye[0,1). (24)

DEFINITION 6 (Labor market tightness proces#) labor market process is a stochastic process
{6¢}{~3 such that the demand for lab$NZ };02) by firms equals the “supply of labofN$},”3 by
the household for atl and alla

Ne = N = N, (25)
Thet element of the labor market tightness must be measurathe@gpect tga',N_1).

DEFINITION 7 (Decentralized allocation with unemployment insurané&yen initial employ-
mentN_; a stochastic procegs },_ for technology, a decentralized allocation with Ul program
is a collection of stochastic procesgé&s, N[}t*:%, a government policy, a wage process, and a labor
market tightness process that solve the household and fobigms. Moreover, the wage process
satisfies the condition that no worker-employer pair hasrexploited opportunity for mutual im-
provement. The wage should neither interfere with the foionaof an employment match that

generates a positive bilateral surplus, nor cause theudgisin of such a match .

Therefore, a decentralized allocation with unemploymesiifance is a collection of stochastic
processegCE,CH, W, E, Ny, 8}, that satisfies equationd §), (22), (23), (24), (25). We can
also derive a sufficient condition for the wage process tagswespect the (private) efficiency
of all worker-employer matches. This condition would beatlyethe same as the one derived by
Michaillat (2010: it imposes a lower bound on wage rigidigfwhich depends oa ands) such

that inefficient layoffs do not occur with a high enough prioitity. 1°

4.1.5 Government problem

The unemployment insurance program is history contingénis—fully contingent on the history

of realizations of shocks— and it is taken as given by firms lamasehold. Moreover, we follow

e find that ify > 0.5, wages are flexible enough to avoid inefficient separatiotisprobability below 1 percent.
In other words, inefficient layoffs cannot occur with a négatechnology shock of amplitude below 2.3 standard
deviations. This sufficient condition is independent froovgrnment policy.
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Chari et al.(199] andAiyagari et al.(2002 and assume that an institutional arrangement exists

through which the government can bind itself to the poliagmpl

DEFINITION 8 (Government (Ramsey) problenihe government problem is to choose a gov-

ernment policy to maximize

Eo

zat (= 1= (1= 9)Ne_1] - K(Ee) + (1= No) - u(C) +Ne - u(CP) | (26)
t=

over all decentralized allocations with unemployment rasge. ARamsey allocatiors a decen-

tralized allocation that attains the maximum 26).

The Ramsey allocation is fully described in Propositidnin appendix.

4.1.6 Ramsey allocation in the absence of aggregate shocks

We can describe the first-order conditions and constraintssoRamsey problem in the absence
of aggregate shocks. In that case, the Ramsey allocatiorem®to a constant allocation that is

characterized by Propositigh

PROPOSITION 4 (Equivalence with one-period modellThe steady state solution of the Ramsey
problem in the dynamic model in the absence of aggregatekshmanverges to the solution of
the Ramsey problem in the one-period model when the dis€actor & converges towards. In
particular, the optimal approximated formuld3) continues to apply in the steady-state of the

dynamic model wheh—N << 1,s<<1—N,andl-d<< 1.

The proof is presented in appendix. This proposition ingptleat the static model presented
Section3 is the limiting case of the steady-state of the fully dynamicdel when there is no
discount. This implies that the same economic mechanisims tire steady-state of the dynamic
model. Therefore, in the remaining of this section, we zoanon the dynamics of the model

which could not be analyzed with the static model of SecBion
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4.2 Calibration

We calibrate all parameters at a weekly frequeficyablel summarizes the calibrated parameters.

Separation rate: We estimate the job destruction rate from the seasonallystatl monthly se-
ries for total separation rate in all nonfarm industriesstorcted by the BLS from the Job Open-
ings and Labor Turnover Survey (JOLTS) for the for the Decen®000—June 2010 periéd.The

average separation rate is 0.037ss90.0093 at weekly frequency.

Recruiting costs: We estimate the recruiting cost from microdata gathere@ldsyon et al(1997)
who find that on average, the flow cost of opening a vacancy atado 0.098 of a worker’s wage.
This number accounts only for the labor cost of recruitiggyva and Toledq2005 account for
other recruiting expenses such as advertising costs, pdees, and travel costs, to find that 0.42
of a worker's monthly wage is spent on each hire. Unfortugatiey do not report recruiting
times. Using the average monthly job-filling rate of 1.3 inLJS, 2000-2010, the flow cost of
recruiting could be as high as 0.54 of a worker's wage. Webcatie recruiting cost as 0.32 of a

worker’s wage, the midpoint between the two previous eststa

Matching function: We picked a Cobb-Douglas matching function. We nowrpet0.7. Both
assumptions are reasonable in light of empirical resultseyed byPetrongolo and Pissarides
(200)). To estimate the matching efficienay,, we use steady-state relationships and the normal-

ization normalizee = 1 to find

S ﬂ.enfl

Om=7175""U

20A week is 1/4 of a month and 1/12 of a quarter.

21December 2000-June 2010 is the longest period for which 304 &vailable. Comparable data are not available
before this date.

22Using the average unemployment rate and labor market tghtim JOLTS, we find that 0.89 percent of the total
wage bill is spent on recruiting.
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We use the seasonally-adjusted, monthly series for the auonfbvacancies from JOLTS, 2000—
2010, and the seasonally-adjusted, monthly unemploynegat tomputed by the BLS from the
Current Population Survey (CPS) over the same period, tgpateniabor market tightness and
unemployment. We finel = 0.47 andJ = 5.9%. The resulting estimate of the matching efficiency

at weekly frequency isx, = 0.19.

Wage rigidity: Next we calibrate the elasticityof wages with respect to technology based on
estimates obtained from panel data recording wages ofidwav workers. These microdata are
more adequate because they are less prone to composieoisdfian aggregate data. The survey
of the literature byPissarideg2009 places the productivity-elasticity of wages of existindp$

in the 0.2-0.5 range in US data. A recent studyHaefke et al(2008 estimates the elasticity of
wages of job movers with respect to productivity using pateth for US workers. For a sample
of production and supervisory workers over the period 12886, they obtain a productivity-
elasticity of total earnings of 0.7. Their estimate, howgeigan upper bound on the elasticity of
wages as they do not control for the cyclical compositiorob&f>24 Therefore, we set= 0.5, a

reasonable mid-point in the range of available evidence.

Diminishing marginal returns to labor:  So far, we have estimated parameters from microdata
or aggregate data, independently of the model. We now eadilthe remaining parameters to
match key moments estimated in the data. We calibrate thouption function parameter such

that the steady state of the model matches average laboentayktnes® = 0.47 and average
labor shards = 0.66 in US data. We find that = 0.67 2°

Z3Workers may accept lower-paid, stop-gap jobs in recessamsmove to better jobs during expansions, biasing
the estimated elasticity upwards.

240.7 is an estimate of the elasticity of wages with respecaoi productivityy /N, whereag is the elasticity of
wages with respect to technology= Y /N®. While technology and productivity are highly correlatpchductivity is
less volatile than technology and therefore an estimatheélasticity of wages with respect to technology would be
below 0.7.

25\We can show that the labor shaie= (W-n)/y is related toa through the firm’s optimality condition by

Is (s- 032 4 1) = a. Soa is slightly larger than the labor share because of the récgucosts.

a(®)
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Wage level: We target a steady-state unemployment ratd ef 5.9%, so we calibrate the wage
W to obtain a steady-state employmant 0.95, and a steady-state labor sharésef 0.66, which

imposeds = wg - N9, We findwp = 0.67. Hence, the recruiting costris= 0.32-wg = 0.22.

Utility function: ~ We choose risk aversiom= 1 such thau(-) = In(-), which is on the low side
of the most compelling estimat&hetty (20068 but is often used in macro-economic calibration.
A lower risk aversion implies a lower value of insurance ardde lower optimal unemployment

benefits. Therefore, our risk aversion parameter is contieev

We choosex = 1.8 to match the micro-elasticity of unemployment with regpecbenefits
estimated in the empirical micro-economic literature. sTliterature consistently finds large elas-
ticities of duration with respect to benefits levels. Forrapée, the widely cited study byleyer
(1990 estimates an elasticity of 0.9, and this elasticity is usedptimal Ul simulations using
the Baily formula byGruber(1997.26 We normalize the steady-state search efdd 1. For the
US, we assume unemployment bendfits 60% and labor tak = 15%, in line with the literature
(Chetty 2006bGruber 1997.2” With k = 1.8 ando = 1, we obtainuwy = 0.49. With this calibra-
tion, we finde™ ~ 0.36. The elasticity of unemployment with respectoenefitsinstead of net

9(1-N)

reward from work) is%w ~ 0.9 in line with Meyer(1990.

There remains considerable uncertainty about some of ttaen@ders and our model abstracts
from a number of relevant issues—many of which are explarete earlier literature. Therefore,
this exercise should be seen as an illustration of the madgstone could reasonably expect from

the rationing theory we have proposed, and how such maggstuary with a few key parameters.

26This elasticity is conceptually close to a micro-elasitiecause it either controls for state unemployment rates
or uses state fixed effects.

2IThe Ul payroll tax itself is on the order of 3% and hence muchl&nthan 15% but workers pay a much higher
tax rate than unemployed workers because (a) social sgtaxiés do not apply to Ul benefits, (b) federal and state
income taxes are progressive and workers have substgitigher incomes than the unemployed.
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4.3 Numerical solution by log-linearization

To determine the equilibrium of the model for a given Ul pragr; and to solve the Ramsey prob-
lem, we log-linearize the model around the steady state avithl. The appendix describes the
log-linear model in details. We assume that the log-dewmatif technologye;'= dIn(a;) (which
represents the percentage-deviation of technology freadststate) follows an AR(1) process:
&.1 = P& +z1 Wherez is an innovation to technology. We estimate this AR(1) pssde US
data. We construct log technology as a residualdpg- log(Y) — a -log(N). OutputY and em-
ploymentN are seasonally-adjusted quarterly real output and emmayim the nonfarm business
sector constructed by the Bureau of Labor Statistics (BL&)a¥iSector Productivity and Costs
(MSPC) program. The sample period is 1964:Q1-2009:Q2. dlatis fluctuations at business
cycle frequency , we follovshimer(2005 and take the difference between log technology and a
low frequency trend—a Hodrick-Prescott (HP) filter with sstiing parameter 0 We estimate
detrended log technology as an AR(1) processtdag) = p-log(a;) + z 1 With z ;1 ~ N(0,v?).
With quarterly data, we obtain an autocorrelation of 0.88d a conditional standard deviation of

0.0087, which yieldp = 0.991 andv = 0.0026 at weekly frequency.

4.3.1 Validity of the model

We verify that the model provides a sensible descriptioreafity by comparing important simu-
lated moments to their empirical counterparts. We simwdateodel in which the net replacement
ratet = 72% is constant over time. This model describes an economsich the Ul program
does not respond systematically to the business cycle dtaxand replacement ratio adjust auto-
matically to ensure budget balance). This net replacena¢atallows to keep the same incentives
to searchAu = u(C®) — u(C") as in the US economy, while having a balanced Ul budget. Given
the design of our calibration, the steady state of this motkiches average US data very well:
U=5.9%,v/u=047,e=1.

We focus on second moments of the unemployment Wgtéhe vacancy/unemployment ra-

tio V /U, real wagew, outputY, and technology. Table2 presents empirical moments in US
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data for the 1964:Q1-2009:Q2 period. Unemployment ratggudpand technology are described
above. The real wage is quarterly, average hourly earnioggrbduction and nonsupervisory
workers in the nonfarm business sector constructed by the Burrent Employment Statistics
(CES) program, and deflated by the quarterly average of roftbnsumer Price Index (CPI)
for all urban households, constructed by BLS. To construgicancy series for the 1964—-2009
period, we merge the vacancy data for the nonfarm sector #OT'S for 2001-2010, with the
Conference Board help-wanted advertising index for 1968422 We take the quarterly average
of the monthly vacancy-level series, and divide it by empient to obtain a vacancy-rate series.
We construct labor market tightness as the ratio of vacamaynemployment. All variables are

seasonally-adjusted, expressed in logs, and detrende@\MP filter of smoothing parameter®10

Next, we perturb our log-linear model with i.i.d. technojoshocksz ~ N(0,0.0026). We
obtain weekly series of log-deviations for all the variahléNe record values every 12 weeks
for quarterly seriesY, W, a). We record values every 4 weeks and take quarterly averfages
monthly series, U /V). We discard the first 100 weeks of simulation to remove tlfiecebf
initial conditions. We keep 50 samples of 182 quarters @\8eks), corresponding to quarterly
data from 1964:Q1 to 2009:Q2. Each sample provides estinvhtthe means of model-generated
data. We compute standard deviations of estimated meaossasamples to assess the precision
of model predictions. Tabl® presents the resulting simulated moments. Simulated apitieal
moments for technology are similar because we calibrateetifenology process to match the data.

All other simulated moments are outcomes of the mechanitseafhodel.

The fit of the model is good along several critical dimensidfisst, the model amplifies tech-
nology shocks as much as observed in the data because tHatsidnstandard deviation of unem-
ployment (0.126), output (0.024) and of the vacancy-unegment ratio (0.441) are comparable
to the standard deviations estimated in the data (0.162904nd 0.344, respectively). The re-
sponse of wages to technology shocks in the model and theadatquite close. A 1-percent

decrease in technology decreases wages by 0.7 percentdatiheand 0.5 percent in our model.

28The Conference Board index measures the number of helpedianlvertisements in major newspapers. It is a
standard proxy for vacancies (for exampimer 200% The merger of both datasets is necessary because JOLTS
began only in December 2000 while the Conference Board datarbe less relevant after 2000, owing to the major
role played by the Internet as a source of job advertising.
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Third, simulated and empirical slopes of the Beveridge eane almost identical. The slope, mea-
sured by the correlation of unemployment with vacancy, i880n the model and -0.89 in the data.
Last, autocorrelations of all variables in the model matehdata. As highlighted bilichaillat

(2010, however, labor market variables and wages are too higithekated with technolog$?

4.3.2 Impulse response to unexpected and transitory techiagy shock

We solve the Ramsey problem by log-linearization as welle dg-linear system has three state
variables: employmemnt, as well as the Lagrange multipliers on the household’s andsfiop-

timality conditions. These multipliers impose that the ggument keep track of the promises
made in the previous period to job-searching workers anditény firms. The steady state of the
Ramsey allocation i§ = 6.1%, v/u = 0.49, T = 76%, e = 0.93. To confirm the comovements
of technology with unemployment insurance in a fully dynammiodel, we compute the impulse

response functions (IRFs) in the log-linear model.

Figure7 details the response of policy variables to a negative @olgy shock of one percent.
Both tax ratet and replacement rateincrease slowly after the adverse shock, which drives the
increase in the net replacement rat®©n impact, the net replacement rate increases slightyitan
builds steadily for 80 weeks. At its peak, the net replacemaet increases by about 1.3%. The
impulse response confirms that the optimal Ul replacemésimareases in response to an adverse
technology shock. Consumption of employed worké¥dalls on impact, as a consequence of a
higher tax rate and lower income per employed worket.then recovers over time towards its
steady-state level. Consumption of unemployed workerpsiam impact as a consequence of
lower income per worker and then rise8" becomes higher than its steady-state level after 40
weeks as a consequence of a higher replacement rate. Itehreins above its steady-state level
until the economy converges back to the steady state. Theaxison of the log-deviations 6
andCt implies that the generosity of the Ul program increases éessions sincAC; = Cf —C!'

clearly decreases after an adverse technology shock.

2%Demand shocks, financial disturbances, and nominal rig&itabsent from the model but empirically
important—could explain these discrepancies.
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Figure 8 shows the IRFs to a negative technology shock of one perddabor market vari-
ables in the Ramsey allocation, and in an allocation withstamt replacement rate= 72%3°
The behavior of labor market variables is not surprisingeraployment builds slowly and peaks
after about 30 weeks. The unemployment-vacancy ratio gihdnies$ =V /(U - E) drop imme-
diately, which reflects the reduction in hiring by firms on @ep Aggregate search effort drops on
impact and decreases further over time, in response to ligiehbenefits and lower labor market
tightness. Compared to an economy with constant repladerats the increase in replacement
rate reduces aggregate search effort. Labor market tighth@es not fall as much however. While
a higher replacement rate does not increase the amplitutthes gfeak of unemployment (around
week 50), it delays the recovery and imposes higher unempay than in the economy with

constant replacement rate between week 50 and week 250.

Comparing Figure to Figure2 suggests that our results in the dynamic and static franeswvor
are broadly consistent. In the dynamic framework, an irggéaunemployment from 6% to 7%—
that is, a 15% increase from steady state, about 3 times¢heaise displayed on FiguBe—should
be accompanied by an increase in the net replacement rfaben 76% to 80%—that is, a 4%
increase from steady state. This increase is consistentietslopes of the replacement rate and

unemployment schedules on Figie

Next, we compare the dynamic behavior of our baseline modelthat of three variants mod-
els: a model without job rationingx(= 1), a model in which effort and labor market tightness
are not linked 1§ = 1), and a model with completely flexible wages= 1). These models are
calibrated following the strategy described in SectibR The steady-state Ramsey allocations
differ across these models, as described in Tdblehe steady state allocation does not depend on
Y, since the wage rigidity only affects the dynamics of the model. Thus, the model withl has
the same steady-state Ramsey allocation as our baselingl.nioca model witha = 1, jobs are
not rationed. Therefore, an unemployed worker searching fob does not impose any negative
externality (as the number of jobs is not limited, but soldliyen by the aggregate search effort).

In addition, the macro-elasticity of employment with resp® net rewards from work is higher

3%We used a model with constant replacement tat€72% to assess the validity of our model in TaBle
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than in our baseline model wiith = 0.67 because the marginal revenue product of labor is inde-
pendent from employment and as a result, an increase in gmpltt does not trigger a reduction

in labor market tightnes®. As a consequence, it is socially optimal in the model witk: 1 to
reduce the net replacement rateTte 56%) which increases aggregate search effore &al.21)

and drives unemployment down (o= 4.9%). In a model withn = 1, jobs may be rationed but
equilibrium employment is directly determined by the labapply equation3), without any in-
teraction from the labor-demand si#fe. Hence, there is no negative search externality, and the
macro- and micro-elasticity are equal. In a model witk- 1, it is therefore socially optimal to
have unemployed workers exert large search efforts. Asslomwabled, it is socially optimal to
reduce the net replacement rateTte 59%) which increases aggregate search effore &0l.18)

and drives unemployment down (@ic= 5.0%).

Figure9 compares the IRFs across these four models. The dynamibe &amsey allocation
differ starkly across these four models. We have describedlynamics of our baseline model
above. We reproduce them in Fig@es a benchmark. In the flexible wage model wjtk 1,
the technology shock has no influence on the Ramsey allochBoause wages and recruiting
costs are fully flexible. In particular, the net replacemetét does not respond to technology
shocks. In the model with = 1, the Ul program does not respond to technology shocks becau
the policy trade-off is independent from technology (weskesearch behavior solely determines
employment independently of firms’ behavior). Thereforfégré and unemployment (which are
solely determined by(C®) — u(C")) do not fluctuate. Only labor market tightne&sesponds to
the technology shock so that the demand for labor matchesughy of labor ¥/u = e- 0 responds
automatically). In the model with constant retuns: 1, as already explained Michaillat (2010,
the vacancy-unemployment ratio and unemployment respamd strongly to a technology shock
than in our model witlx < 1. The optimal net replacement rate jumps on impact befareedsing
rapidly to its steady-state level. On impact, the governmeduces the unemployed workers’
search effort when firms substitute recruiting inter-teraflp from the future to the present in

order to smooth recruiting.

310n Figurel, the labor demand curve is horizontal.
320n Figurel, the labor supply curve is vertical.
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Finally, we evaluate the sensibility of the results to ouibzation. We examine how the the
dynamic behavior of the model changes when we modify thélon of the parameters shaping
the utility function @, k) and of the parameters influencing job rationigy). We first change
the calibration of the utility function and study IRFs witssk risk aversiono(= 0.5), more risk
aversion ¢ = 2), a more elastic effort functiork(= 0.9), and a more inelastic effort function
(k = 3.6). The steady states differ slightly across these scesjaa® described in Table As
shown on Figurd.0, the qualitative behavior of the model with these differeadtbrations remains
unchanged. Quantitatively, the net replacement rate asee more after an adverse shock when
workers are less risk-averse. The steady-state net repéaderateT, however, is lower. The
converse is true when workers are more risk-averse. A chartpe elasticityk of the search cost

k(e) has a small effect on the optimal Ul. A higheslightly reduces the optimal increasetin

Next we change the calibration of parameters determinibggtioning and study IRFs with
more wage rigidity y = 0.25), less wage rigidityy(= 0.75), more diminishing marginal returns to
labor @ = 0.5), and less diminishing marginal returns to labme£ 0.84). The steady states differ
slightly across these scenarios as described in Tablas shown on Figurdl, the qualitative
behavior of the model with these different calibrations a@m unchanged. Quantitatively, the
net replacement rate increases more after an adverse shwk wages are more rigid or the
production function has more diminishing marginal retum$abor . The converse is true when
wages are more flexible or marginal returns to labor do notrdgh as much with employment.
Furthermore, unemployment and vacancy-unemploymentm@gpond much more to atechnology

shock when wages are more rigid (lowgr

5 Conclusion

This paper analyzes optimal unemployment insurance oeebulsiness cycle. We model unem-
ployment as the result from matching frictions (in good t&hand job rationing (in bad times).
Our model captures the intuitive notion that jobs are scduweng a recession, while retaining the

core structure of standard search models. Our centraltrigstiiat the optimal replacement rate
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is higher during recessions. We prove this result thealyicusing a simple optimal unemploy-
ment insurance formula expressed in terms of micro- and eralasticity of unemployment with
respect to net reward from work, and risk aversion. Numeésicaulations of our model calibrated
with US data show that the variation of the optimal replaceimate is quantitatively large over

the business cycle.

There are a variety of models with job rationing. Here, wespret only one possible source of
job rationing: the combination of real wages that only @aitiadjust to productivity shocks with
diminishing marginal returns to labor. We showed that oumo@l Ul formula can be expressed in
terms of sufficient statistics, and that the cyclical bebawf these statistics drove the properties
of optimal Ul. Since the three fundamental properties ofsufficient statistics—€™ is acyclical,
the wedge(e™ — €M) is positive, and the wedge™ — €M) is countercyclical—are robust to the
origin of job rationing, the countercyclicality of the optal replacement rate is a general property,

independent from the specific source of job rationing.

This paper is a first attempt at providing a general-equiliorframework to study optimal
unemployment insurance over the business cycle. Our asalgeuld be extended in various di-
rections in future work. First and most important, our kegremmic mechanism hinged crucially
on a positive and countercyclical gap between micro- androrelasticity. Although there is a
large empirical literature on the effects of unemploymeasurance on unemployment duration,
to our knowledge, no study has estimated separately miagh+@acro-elasticities, as well as the
gap between the two. This is the most urgent step to test thtityaf our normative predictions,
and provide most realistic numerical simulations solidigugnded on those estimated elasticities.
Conceptually, this test is also important to distinguistwaeen models of unemployment fluctua-
tions without job rationingd = 1 as inHall (2005) and models with job rationingi(< 1 as in

Michaillat (2010, which have very different policy implications.

Second, the model is simplistic in that there are only tetdgyshocks. Future work should
explore how other shocks (such as demand shocks or finamstiafttances) influence optimal UL.
We conjecture that our reduced-form formulas expressezting the micro- and macro-elasticities

are likely to carry over in a model with other shocks, and a lgepveen the two elasticities will
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continue to be a symptom of a job rationing.

Finally, we could extend the analysis to allow to a broader more realistic set of unemploy-
ment insurance tools. In most OECD countries, the goverhol@moses both level and duration of
Ul. Indeed, in the United States and other countries, thatgeddoout the generosity of Ul benefits
during recessions focuses primarily on the duration of fineOur analysis could be fruitfully
extended to a setting in which more generous unemploymentance implies both higher and

longer unemployment benefits, asHredriksson and Holmlun@007).
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A Proofs

A.1 Proof of Proposition 1

By definition, we have:

~“1-N |00 " 9E 98] dAC (A1)
The supply equation3], N3(6,E) = Ef(0)/[s+ (1—s)Ef(8)] implies thatU =1— (1—-s)N =

s/[s+ (1—s)Ef(8)], and hence

M _m_ OC laNS GNSGE} doe

NS sf(0) . N

E [sr(A-9Ef@F ° E (A2
NS SE f(8) N

0 [s+(1—s)Ef(e>]2:U'(1_”>'6’ (A3)

where 1-n = 6f/(0)/f(0) is the elasticity off (8) with respect to® which is constant with a
Cobb-Douglas matching function. So we can rewrité) as

AC N

sM—em:—-U-—-{l (A4)

N E%| aac

O0E| d6
1-N 0

Using the labor demand equatiof),(F'(N) =W(a) + %‘ we haveF”-dN = —d8-s-r-aq(8)/q(8)? =
(d6/0) - (F'—W)-n wheren = —6q/(08)/q(8) is minus the elasticity ofi(6). Thereforedd/dN =
[F”/(F'—=wW)](8/n) = —[(1—a)/N][F'/(F'—=W)] (8/n) where 1-a = —NF”/F’ is minus the
elasticity ofF’ and constant in the Cobb-Douglas case. Hence, we have

N do l1-a F

0dN_ n F—W (A5)
d0 _dodN  1-a F 8 1-N
dAC dNdAC n F -W N AC ‘
Finally, the individual first-order conditiorb) for E defines implicitlyE (Au, 8) with
Au OE U 1-U
E ohu Kk KL (A0)
6 0E  (1-n)uU
E' 38 . (A7)

Combining those equations, we obtain

1-n 1 U
M_ m:_—. —_ .  —_— . —_ . M
g’ —¢ 0 (1—a)-U 1-W/F <1+K) ev.
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This proves item (ii) in Propositioh. We define

R(a,Au)Eem/sMzl—l—l;—n-(l—a)-u-ﬁﬂ:,-<1+%). (A8)
We have
dN :ONS dE +0NS de _ N-U dE —1_n(1—0()UF7/d—N
dAC OE dAC 06 dAC E dAC W dAC
and hence,
dN N-U/E dE
dAC 1_|_1H_”(1_q)u - dAC’
d0 1-a F 8 dN  —SUFHO/E)  dE
dAC  n F'—W N dAC_1+1H—n(1_°‘)UF/F—IW dAC’

Therefore usingA7) and A6):

dE _0EdMu OEd® (U 1-U)E dbu_ 1;—”(1—G)UFF/\N% dE
dAC  0AUdAC 98 dAC  \k  K+1/AudAC 14+ 350 (1—0)U 5

which implies

n
dN %(Uﬁﬁ) ddu
D(1-a)Ugfy (1+Y) dac

o
>
@)
=
_|_
;‘J

Now, we have

dAu  d(U(CY+AC)—u'(CH dcu
dac = dAC): <D _ U (C%) +Au 1=
UsingC! = N(W — AC), this implies
dAu , dN
— = AU (W —-AC)—— A
anc Y HAUW=AC) e (A9)
dN N (B +51) (T+AU(W—AC) &)
anc 1+ 50 (- aUeiy (1+5)
dN NU iu(%-;-lljé) |
dAC 14+ 201 —a)Upfy (14 %) — 35 NU- (Y + 1Y)



Therefore,

M _ I N Au
T R a)U (1) - BT NG (25 5
U -AC- 1-N
M _ u-AC- U /( )] (A10)

Finally, using (ii) in Propositiori, we have,

. 7-AC-[U/(1-N) A1)
(K+1)-Au-E-[14+Y] "~ A (W—AC)-U-R(a,Au)-1

Using the approximation, £ N << 1 ands << (1—N)/N, we haveU =1— (1-s)N << 1,
U/k<<1,1-N=~1,andu ~ U (C®). The second term in the factor deliminated by curly brackets
in€Min (A11) is negligible (relative to the first term). Furthermdde,(1—N) =1—sN/(1—N) ~
1 ass<< (1—N)/N, implyinge™ ~ [U'(C®) - AC/Au] /(k + 1) and proving (i).

We show thabR/0da < 0 to prove (iii) in the proposition. We first state a lemma d#sieg the
response of the equilibrium to a change in technology (coatp@ statics) for a given UAu.

Let T =F/(N,a)/(F'(N,a) —W(a)). Using the firm’s optimal recruiting behaviog)( we can
write

F'(N,a) F'(N,a) a

T(N.8) = F(N,a)-W(@) sr-a a(6(a)) = Q'Na_l'q(e)'

LEMMA Al. Fix the Ul programAu > 0. Let a> 0. In equilibrium, we have the following
comparative-static results: dila> 0, dU/da< 0, dE/da> 0, d8/da> 0, and dT/da < O.

Proof. For a given Ul prograru, a worker’s optimal search behavié) {mplicitly defines search
effort as a functiorkE(0) such thatdE /00 > 0. Firm’s optimal recruiting behavioi7) implicitly
defines labor demand as a functidfi(a, 8) such thadN9/da > 0 andoN? /06 < 0. Equation )
defines labor supply as a functidd?(E(6),0) such thatoNS/0E > 0 andoN®/08 > O—that is,
dNS/d8 > 0. The equilibrium conditiolNs(8) = N9(a, 8) implicitly defines labor market tightness
as a functiorf(a). Differentiating this condition with respect toyields

dNSd®  oNd N oNY d

do da oda 00 da
de  oNY [dNs oNd] T
da da ‘[de B ae}

ThusdB/da> 0. In equilibrium /N(a) = N3%(6(a)) sodN/da> 0 anddU /da= —(1—s)(dN/da) <
0. SinceE(a) = E(6(a)), dE/da> 0. SincedT /08 < 0 anddT /ON < 0,dT/da< 0. O

Using LemmaAl, we can immediately conclude théfR/da < 0.
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A.2 Proof of Proposition 2

First, usingC! = N(W — AC),

dct T WM

Second, using the optimality conditiofi)( and the isoelastic assumption fdE ), we can write

K+1
A 1-5s)-k(E)=Au- )
u+(1—s)-k(E)=Au U
Lastly, the combination ofA1), (A3), and QA7) yields
ON® db 1-N «k

2P (Mo emy =Y
6 ac - & &) keu
Reshuffling these terms inQ) and dividing the equation bl — N)eMt yields (12).

A.3 Proof of Proposition 3
Consider optimality condition1@Q). It can be written as
Q1) =Z(a,1) (A12)

with a € (0,+) andt € [0,1]. For anya, we assume tha#\(2) admits a unique solutioti'(a).
Equivalently, we assume th@(t) andZ(a, 1) cross only once for € [0, 1].

LEMMA A2. lim;_,1Q(T) = 4o and for any a> 0, lim1Z(a, 1) =M < 4o

Proof. We consider two cases.

First case: C®/CY" — K >1 ThenAu = In(C®/C") — In(K) > 0. In that case all variables are
€ (0,+). Moreover,AC,Au,Au’” are bounded away from zero. Accordingly, the elastici¢®s
andeM ¢ (0, +). Then lim_.1Z(a,T) € (0, +).

Second caseC®/CY — 1 ThenAu = In(C®/C") — 0, which complicates the analysis. We need
to prove thatQ(a, t) converges to a finite limit. Sincdu — 0,U — 1,E — 0, N — 0,0 — +co.
HenceR(a,Au) - R=1+(1—n)/n(1—a)(k+1)/k. Budget constraint imposé& — N)bW +
N(1—t)W =NW, ort =b(1—N)/N. Sincet =t+b, T =Db/N, so thatC" = INW andC® =
[1—(1—N)T)W. Whent — 1,CY ~ NW andC® ~ NW. We havelU /(1—N) — 1, (k+1)(1+
U/K)™1 =K, N(W—-AC) ~NW, I/ ~ U (CY) = 1/CY, AC ~ AC/CY, Au = In(C®/C") ~ C®/CY —
1=AC/CY, —AU = AC/(C®-CY) so that—Au' - NW ~ AC/CY. Accordingly,eM /N ~ 1/(kR+1).
Moreover,—Au' /U0 — 0 whent — 1, (€™/eM — 1)k (k +1)/(k +U)? = (1—n)/n(1—a), and
UAC/Au ~ 1. Hence, lim_,1Z(a,T) € (0,+). O
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LEMMA A3. Leta> 0and lett*(a) be the unique solution tA12). For all T < t(a), Q(1) <
Z(a,1) and for allt > 1*(a), Q(1) > Z(a,1).

Proof. Using the results from Lemm@&2 and the single-crossing assumption. 0J

As the government budget i1 — N)W = tNW, 1—- N << 1 implies thatt << 1 and hence
CY/C®=b/(1—t) ~ b+t =1. Therefore Au=In(C®/C") = —In(1). We denote agaiR(a,1) =
eM/eM. Using the approximation(l) for €™ from Propositiori, we can write the micro-elasticity
as a function of:

1 1-7
m ~
e 0=~ o
Therefore, the approximated optimal formuls) can be rewritten as:
T 1 1-t 1
s e {RaD- A Ra D).

We write the equilibrium condition &3(1) = Z(a, ). From Propositior, we know thabR(a, 1) /da <
0 for all T € [0,1]. We can use the result from Propositibtbecause the partial derivative vat
takingAu as given is the same as the partial derivativeawdkingt as given, sincédu depends
only ont and not on a ThereforedZ /da < 0 for all 1.

Consider a decrease in technology frano & < a. Q(1*(a)) = Z(a,1*(a)) < Z(a,1*(a)).
LemmaA3 (which applies t& if & close enough ta, when our approximations are valid) implies
thatt*(a) < t*(&). Thus,0t* /0a < 0.

B Derivation of the Ramsey Allocation in the Dynamic Model

B.1 Firm and household problem
The unconditional probability of observing an histafys given by the probability measupg(al).

Representative firm: Endogenous layoffs never occur in equilibrium so the Lagiam of the
firm problem is

+o00
L=Y8Y @ -{F d a)—W-NO— 2 [Ng—(1—5) NG } A13

38 3 ) (FNa) ~WeN = ot [N - (129N (A13)
| assume that the firm maximization problem is concave andta@dm interior solution (which will
always be the case in equilibrium). Immediately, we can stimvemploymenh? is determined
by first-order conditionZ2).
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Representative household: The Lagrangian of the household’s problem is
%6‘ S ) {0 9N ) (1N e+ U

AL (18NS }-Etf<et>+<1—s>-Ms_1—MS}},

whereNS(a') is the probability to be employed in periba@fter periodal and{A(al)} is a collec-
tion of Lagrange multipliers. The first-order condition witespect to effort in the current period
& gives:

K(E) = f(6)-A.

The first-order condition with respect to expected emplayrséatus\? yields

A= [U(CP) — U(CY)] +B(1— S)Ex [k(Eey)] + 8- (1— ) - Ex [Acsa (1 Eqya f (B 11))]

kf,gaEtt)) = [u(CG) —u(G)] +8-(1—9) - E hféeE:ll))} — 8- (1—8)(K+1) By [K(Ety1)] + (1 — S)Ey [K(Et11)]

Thus, the optimal effort function therefore satisfies théeEaquation 18).

B.2 Ramsey Problem

The maximization of the government is over a collection @fusnces
(Ne(a"), Er(a), 6 (al),CE(@"),CH(a"), val}, 5. We can form a Lagrangian:

Z)étZUt { —(1—=9)Ne—1) - K(Et) + (21— N) - u(C) + N - u(CH)

A F(Nea) NG~ (1 NI~ 2ot [N - <1—s>-N111}

B _[u(CF> uE) - igg; 1519, [ EGE:E)) } _KB(1—9)E; [k(EHl)J}
i / I-a 'at+1

e R R Hmﬂ

+Dt[<1—<1—s>-m_1>-Etf<et>+<1—s>-Nt-1—Nd}

where{A(a!),B(a!),Ci(a!), Dy(a"), val };~% are sequences of Lagrange multipliers, and

pera (@)

Et [Xe11] = atgat Wxtﬂ(atﬂ)
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is conditional expectation operator. We rewrite the Lagran as:

%atzut { (1= 9N 1) - K(E) + (1— M) - U(CY) -+ Ny - u(CP)

e_ (1_ u_r'at _(1_<.
A0 (M) - NG~ (L NG E 2 N (19N

(o[ )

N a) ) P
+G _F (N, &) —W q(6y) +G-a(1-9) [Q(Gt)]

1By |u(C®) — ue) -

+Dt[<1—<1—s>-Nt1>-Etf<et>+<1—s>~Nt1—M1}

First order conditions of the Ramsey problem with resped ta') fort > 0:

0=u(Cf) — u(C) +8(1— 9)Ey [K(Ers1)]
—Dt+(1—9)Et [Dt11- (1 —Et1f(6t11)]
+C-F" (N, &)
rag rag1
(M) - (€20 - o b (1 90 A o]

Dt = u(CY) — (&) +0(1 — )t [K(Ets+1)] + (1= )t [Dega - (1— By f(6r11))]

+G-F' (N, &) + AW (a) — (CF - C)} + (1 - 5) 3k [(Am—At) :
d(Bt+1)
With respect tcCF fort > 0:

0=N-U(C)+B-U(C) — AN

Bt
— / e l —*
A=) (14 )
With respect tcC fort > 0:

0=(1-N) U(G) B U(G) — A (1-N)

Bt
A= (——1 .



With respect td; fort > 0:

k//(Et)
f(8r)
)

kf((GE) ((1-9)Bi1~B) —K(1-9)Bi_1K(E) + Dy Ur- f(8y)

0= —(k+1)U;-k(E) +k

0= —Ut-k/(Et)—B[ +(1—S)Bt_]_ —K(l—S)B[_]_k/(Et)-l-Dt-Ut- f(Gt)

0=—Ut-K(E)+

T8y ((1—9)Br_1—B) —K(K+1)(1—8)B_1K(Et) + Dt - -E¢ - Uy - £(8)

% ut+KEf1(e)[a—(1—s)a_1]+x(1—s>&_1
With respect td; fort > 0:
r-a

0=-A-n- (8 - Hy
+(1_”)B‘et (fE(t9>t> _(1_n)<1_s)‘8‘1ek.(fE(te>t>

Ctﬂf<)+Ct1( )ﬂ;('::)
+Drt - Ut (1 n)-Eq(6)
0= A gy

1—r]k’(Et)
+T (6 (Bt—(1—s)-Bt_1)

I-at
~ @) G- (1-9-C-1)
+ DUt Etf(Gt)
AL 1-n\ , 1-nkK(E) B ra
=" ( A 0|(9t)+Dt n )+ n f(e) (Bi=(1=9)Bi-1) OI(GO(C‘ -9 G-
0=t (~Acr-atDaey ™)+ FTEE B (-9 B ra(G (1-9:Go

The following proposition summarizes the results.

PROPOSITION A1l (Characterization of Ramsey allocatioifhe Ramsey allocatiofCE,C!, 6, N, Et };
and the sequences of Lagrange multipliers from the govemhm@blem{A,B;,C;,D;},~3 are
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characterized by the following constraints:

0=F (N, &) — NCE— (1— Ni)CV— (;<'§t“> H (A14)

0= [u(CF) UG i +8(1- 9t | ‘5 | kB 9mIKE )] (A1

r-a r-ag1
0=F'(N,a)—W(a)— +o6(1—-9E { ] Al6
( ) (@) q(ér) ( )Er q(6t11) (A16)
O0=Ui -Ef(6)—H, (A17)
and the following first-order conditions with respect tg &F, C, E;, 6; (respectively):

Dt = u(CY) —u(C) +8(1 — 9)Ex [K(Et41)] + (1~ S)Et [Drya - (1 Eeya f(Byn)]

G (N ) A (W (a) — (CF— C¥)) + (1 )3y {(Am—m o
(A18)
A=) (14 )
Dt - Hy 1
wrDkE) U RETEy B (9Bl k(-8B (A19)
0=t (~Acr-a+ D)) + LR (B (1-9) By ra (G- (1-9:Co
(A20)
Equivalently:
~1
= {u,( : u, @ } (A21)
=08 (7~ ) & (22

COROLLARY Al (Ramsey allocation in the absence of aggregate shotk&€ Ramsey alloca-
tion in the absence of aggregate shocks is constg®};CY,N,6,E, A, B,C,D} is characterized by
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the following equations:

[1-3(1—9)] kflég)) +8(1— )k -k(E) = [u(C®) — u(CY)]

N =

1
(1—s)+s/-E-f(0)
S

NC® 4 (1— N)CY =F(N,a) — d(ré)a‘N

0=F'(N,a) ~W(a) — [1— 5 (1—9)]

D(1—(1—s)- (1—E - f(8))) = (u(C®) — u(C")) +8(1 — S)k(E) +C-F"(N,a) + A{W(a) — (C®— C")}

e A
) e uen

Proof. The first-order condition with respect ® becomes (when the labor market is in steady
state,E f(8)U = H):

D-U-f(8)

S
K(E) ®

Ef(0)
D= k/E )){1+K(1—S)§+K-§}
b= fEe)){l N U}

The first-order condition with respect Bdbecomes

. —_ —_ / .
O:s-N-<—A-r a—i—Dl n)—i-l r]k(E)s-B—r a-s-C

=U+Kk(1-s)B+k

q(6) n n f(8) q(6)
(:(Ga; (A-N+C) = 1;—n<N-D+kf/E§))-B)
(:("’; (A-N+C) = 1;—”‘;’8 (N+B-(S+1))
cz%”r'ffg(NjuB(gﬂ))—A-N
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0

COROLLARY A2 (Equivalence with one-period modelfhe Ramsey allocation in the dynamic
model in the absence of aggregate shocks converges to thgosabf the Ramsey problem in the
one-period model when the discount facdbaronverges towards.

Proof. The incentive-compatibility constraint in the one-perinddel is given by4). Notice that,
usinge f(B)U =s-N,

— K(1-S)k(E _(1_5)‘;'((';)) EfE
= K(1—9s)k(E) _Skflig; (lLSW
k/(E>§ —(1-9)K(E) = skf’g)) [Ui - (1IJS>N] 4 K(1—S)K(E) = Skf’gg)) k(1—9K(E)

So the incentive-compatibility constraint in the one-pdrmodel can be rewritten aS)( We can
form a Lagrangian:

L=—(1—(1=8N)-k(E)+ (1—N)-u(C!) +N-u(C®

i u_ra.
-l-A:F(N,a)—NCe—(l—N)C Ch N}
+8 |[u(C) ~uie)] - s‘;é;’; k(1 s)k(e)}

[, s-r-a
+C|F (N,a)—W(a)—W}

+D[(1—(1—5)-N)-Ef(8)—s-N]

By inspection, it appears that the allocation solving thetesy of equations described in corol-
lary Al for & = 1 also solves constraints and first-order conditions aatetiwith the maximiza-
tion of the Lagrangian in the one-period model.If both ofitimtion problems are convex, then they
admit the same unique solution. O

B.3 Impulse response to unexpected, transitory, technolgghock

We first characterize the steady state of the model, and #sarite the log-linearized equilibrium
conditions around this steady statedenotes the steady-state value of variafjle The steady-
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Moreoverh = snandt = 1— (1— s)fi. X = dlog(X) denotes the logarithmic deviation of variable
X:. The equilibrium is described by the following system of-logearized equations:

Definition of labor market tightness:

~

U +&+(1-n)-6 —h =0
* Definition of unemployment:

whereZ = =Y.

» Law of motion of employment:
(1-9) F1+sh—Ff=0
» Resource constraint:
&+ark — {dr- (h+n-6+&) + a2 {pr(fh +ca) + p2 (—Vik +cu)}} =0,
with ¢ = ﬁ s % pp = e V= 15 2 =1—du, andpz =1-py.

» Firm’s Euler equation:

&+ (L—a) T+ry-y-&+r2- (-6 +&) +raf -1 +&1] =0
: 1wl 1. Al _
withry =wp- 55 - %, 12 = T%)-a-h 9 andrg=1—-rq1—rp.
* Productivity shock:
d=p -1tz
» Household’s Euler equation:

1
1-3(1-5)

o(1—5s)

mE (K& 11— (1— n)ét+l}

£eS1CR + £4S2CLk — {tz [ K& — (1—n)6] -

+t1(1+K)E[é+1]}:0

where we define the elasticity af-) around steady-state

~dIn(u(x))

din(x)

X=Cj

ands; = u(ce)/Au, S, = 1—5;,tp = 1—t3, andty = K&lﬁ)k(é) .
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* LagrangianA;:
A+ uy (M — €6€8) + Up (—VI —€Cy) =0

where we define the elasticity af-) around steady-state

o din(u'(x))
! din(¥) |y_g
and wherai; = /v (Ce) ,andup, = 1—uy.

n/u'(Ce)+(1-)/u'(cu)
» LagrangiarB:

By — [(1—v)fk + A — (eCer) — (€Cut) + {€pvaca +€VvaCy }| =0

u'(Te)

wherev; = ARG andvo = 1—vi.

» LagrangiarD; defined by equationX19):
v . v . . v v L « l—s.
Dt + 0+ (1—n)6 —ké& — {qut +W3Bt 1 —Wy {(l—n)eﬁa—{ Bi—— B 1}” 0

wherew; = %‘;@, andw, =T/wp, Wg =K (1—5)-B/Wy, Wy = 1 — Wy — Ws.

» LagrangiarC; defined by equationA20):

. . “ . “ . 1—s . 1 “
he +Xa (A + &) + X5 (— n9t+Dt)—x6[—9t+Két+ Bt——Bt 1]—)(7[3("‘ Ct——SCt 1}

wherex; = Ar—q(6)-D- 1;—” Xp = 1;—” .s-B- k/éé) X3 =-S-1-C, andxq = A-1 /X1, Xs = 1—Xq,

Xg = X2/ (x1h), X7 = 1 — Xe.

» Optimality condition from first-order condition with resgt toN;
Dy — {Y1 (€e21C& +€uZoCk) + Y2(1+K)E [& 1] +Y3E [5t+1 —Z (é+1 +(1—- ﬂ)ét+1)]
+Ya (Gt + (o = 2)k) +5 (A + {Zaye + 2aC + z5CU }) }

whereg; is defined as above arml =

ef(d Cno—2 ef(®
(1-9) (1-2f(0). 2= iy & =~ Yo = ~0L- 0T~ %= %5
andz=1-2z,z=1-23—2,Y5=1-y1—Y2—Y3—Va.
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Once we have solved the log-linear system, we can recovdptjadeviations of the policy
variables. Le® be the consumption per employed worker

R
_G
bt_Pt
Tt =t +b

These relations gives the steady-state vajuést, T. Then we infer

B = 1% + (awyk + a2 (& +nb) + 1))

fr = —by (Cet — )

B~

Tt=c tt + Czbt (A23)

wherea; =y/(Np), ax =1—a1, b1 = (Te/P) /T, c1 =1/T, co = 1 = ¢1. We can also determine the
log-deviation of the certainty equivalent consumptionmiedi byu(C;) = SW. Then
sSW S &
TU(T) =4

B.3.1 Log-linear model under constant Ul program

In that case is constant, and the government does not pick the Ul proggatimally. In the log-
linear system, we eliminate the 4 Lagrange multlpIIQrsDt,Ct Dt and 4 log-linear equations that
give these multipliers. We also replace the equation gittegoptimal Ul program by an equation

that ensures thatremain constant:
T =0,

wheret; is a linear function of the log-deviations in the system, esatibed by £23).

C Tables and Graphs

57



Table 1: ARRAMETER VALUES IN SIMULATIONS.

Interpretation Value  Source

a  Steady-state technology 1 Normalization

e Steady-state effort 1 Normalization

S  Separation rate 0.95% JOLTS, 2000-2010

0 Discount factor 0.999 Corresponds to 5% annually

wy  Efficiency of matching 0.19 JOLTS, 2000-2010

n  Elasticity of job-filling 0.7  Petrongolo and Pissarid€2001)

y  Real wage rigidity 0.5 Pissaride2009, Haefke et al(2008

¢  Recruiting costs 0.21 .B2x steady-state wage

wo Steady-state real wage 0.67  Matches steady-state unemghbypf 5.9%

o  Returnsto labor 0.67  Matches labor share of 0.66

o Riskaversion 1 Chetty(2006H

K  Search elasticity 1.8 Meyer(1990

wx Searching cost 0.87 Matches- 1 fort = 15% ando = 60%

Table 2: IMMARY STATISTICS, QUARTERLY US DATA, 1964—-2009.

U V/U w Y a

Standard Deviation 0.168 0.344 0.021 0.029 0.019

Autocorrelation 0.914 0.923 0.950 0.892 0.871
1 -0.968 -0.239 -0.826 -0.478
- 1 0.220 0.828 0.479

Correlation B B . 0.512 0.646
- — - 1 0.831
— — — — 1

Notes:All data are seasonally adjusted. The sample period is LB42009:Q2. Unemployment rdteis quarterly
average of monthly series constructed by the BLS from the. @B&ncy rat&/ is quarterly average of monthly series
constructed by merging data constructed by the BLS from@1i&$ and data from the Conference Board, as detailed
in the text. Vacancy-unemployment ralioU is the ratio of vacancy to unemployment. Real wigés quarterly,
average hourly earnings of production and non-supervisorkers in the private sector, constructed by the BLS CES
program, and deflated by the quarterly average of monthlyf@Pall urban households, constructed by BDSis
quarterly real output in the nonfarm business sector coatsd by the BLS MSPC program. I@ is computed as
the residual logY) — a - log(N) whereN is quarterly employment in the nonfarm business sectortoseted by the
BLS MSPC program. All variables are reported in log as désietfrom an HP trend with smoothing paramete?.10
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Table 3: SMULATED MOMENTS WITH TECHNOLOGY SHOCKS AND CONSTANTUI PROGRAM

U

V/U W a
Standard deviation 0.126 0.441 0.009 0.024 0.018
(0.023) (0.076) (0.002) (0.004) (0.003)
Autocorrelation 0.936 0.909 0.877 0.894 0.877
(0.023) (0.031) (0.040) (0.035) (0.040)
1 -0.977 -0.985 -0.991 -0.985
- 1 0.974 0.972 0.974
Correlation - - 1 0.999 1.000
- - — 0.999
- - - 1

Notes:Results from simulating the log-linearized model understant Ul program such that= 72% with stochastic
technology. All variables are reported as logarithmic dgwns from steady state. Simulated standard errors (@tend
deviations across 50 simulations) are reported in parsathe

Table 4: SEADY-STATE RAMSEY ALLOCATION ACROSS CALIBRATIONS

Calibration Parameter values Steady state
Om o c T U e v/u

From Tablel 0.19 0.49 0.22 76% 6.1% 0.93 0.49
y€ [0,1] 0.19 0.49 0.22 76% 6.1% 0.93 0.49
a=1 0.19 0.49 0.32 56% 4.9% 1.21 0.57
n=1 0.15 0.49 0.22 59% 5.0% 1.18 0.40
0=05 0.19 0.74 0.22 76% 6.2% 0.92 0.49
o=2 0.19 0.69 0.22 80% 6.6% 0.81 0.52
K=0.9 0.19 0.65 0.22 76% 6.2% 0.90 0.49
K=236 0.19 0.41 0.22 78% 6.1% 0.94 0.49
a=05 0.19 0.49 0.16 79% 6.2% 0.90 0.50
a=0.84 0.19 0.49 0.27 68% 5.7% 1.05 0.47
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Figure 1. LABOR DEMAND AND LABOR SUPPLY IN ONE-PERIOD MODEL

Notes: These diagrams describe equilibria in the one-period madtél job rationing. The two panels represent
labor supply and labor demand for high technolegy 1.03 (top) and low technologg = 0.97 (bottom). The two
labor supply curves correspond to a net replacementrrat&2% calibrated in US data (dotted line) and to a low
replacement rate= 50% (plain line). Diagrams are obtained by plotting labanded {7) and labor supply, which is

a combination of§) and ), for 8 € [0,1.5]. The one-period model is calibrated in TatileNote that since we use
log-utility, keeping a constantimposes a constatiu = —In(1).
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Figure 2: QPTIMAL Ul PROGRAM AND EQUILIBRIUM OUTCOMES IN ONEPERIOD MODEL AS
A FUNCTION OF TECHNOLOGY
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Figure 3: MCRO- AND MACRO-ELASTICITY OF UNEMPLOYMENT WITH RESPECT TO NET RE
WARD FROM WORK.

Notes: The elasticity of 1- N with respect toAC is represented as a function of technology. Wetfix 76%—

equivalent to fixingAu with log-utility— which is the optimal net replacement ratéth steady-state technology
a=1.
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Figure 4: NET REPLACEMENT RATE DERIVED WITH ALTERNATIVE FORMULAS

Notes: The net replacement ratds obtained in the one-period model, and represented asctidarof technologya.
The green (dashed with circles) line is obtained with thdyEfarmula using the micro-elasticitg™ of unemployment
with respect to net rewards from work. The red (dashed) Bnebtained with the Baily formula using the macro-
elasticityeM of unemployment with respect to net rewards from work. Theekfsolid) line is obtained with our
optimal formula (2).
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Figure 5: WELFARE GAINS FROM ADOPTING AN OPTIMAL UNEMPLOYMENT INSURANCE

Notes:These welfare gains are percentage increase in certajuiysdent consumption—the amount of consumption
C®d such thaty (C®9) = SW—from adopting the optimal level of unemployment benefitd Edbor tax. The welfare
gains are measured in the one-period model, as a functi@tbhblogy. The optimal Ul is compared to Ul obtained
with various Baily formulas.
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Figure 7: DETAIL OF RESPONSE OF OPTIMALUI PROGRAM TO A NEGATIVE TECHNOLOGY
SHOCK

Notes:This figure displays impulse response functions (IRFs)ctvingpresent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing ativeg&chnology shock; = —0.01(about 4 times the
standard deviation.0026) to the log-linear equilibrium describing the Ramshgcation (allocation with optimal
Ul). The time period displayed on the x-axis is 250 weeks.
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Figure 8: RESPONSE OF OPTIMALUlI PROGRAM AND EQUILIBRIUM OUTCOMES TO A NEGA
TIVE TECHNOLOGY SHOCK

Notes:This figure displays impulse response functions (IRFs)ctvingpresent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing ativegachnology shock; = —0.01 to the log-linear model
(about 4 times the standard deviatioB@26). The time period displayed on the x-axis is 250 weeke. Alue (solid)
line IRFs are responses of the Ramsey allocation (allatatith optimal Ul). The red (dashed) line IRFs are a useful
benchmark: the responses of the economy when the net remateate is constant with= 72%.
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Figure 9: @MPARISON OF RESPONSES OF OPTIMAUI PROGRAM TO A NEGATIVE TECHNOL:
OGY SHOCK ACROSS MODELS

Notes:This figure displays impulse response functions (IRFs)ctvingpresent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing ativeg@chnology shoclky = —0.01 to the log-linear
model (about 4 times the standard deviatio®026). The time period displayed on the x-axis is 250 weekeg [Alue
(solid) IRFs are in our base modei & 0.67,n = 0.7,y = 0.5). The red (dashed) IRFs are in a model vaith- 1 (no
diminishing returns to labor). The green (dot-dashed) I&f#esn a model witlh = 1. The magenta (dotted) IRFs are
in a model withy = 1 (no wage rigidities).
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Figure 10: RESPONSES OF OPTIMALUI TO A NEGATIVE TECHNOLOGY SHOCK FOR ALTERNA
TIVE UTILITY CALIBRATIONS

Notes:This figure displays impulse response functions (IRFs)ctvingpresent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing ativegachnology shock; = —0.01 to the log-linear model
(about 4 times the standard deviatio@@26). The time period displayed on the x-axis is 250 week® Qlue IRFs
are in our base modet(= 1,k = 1.8). The red (dot-dashed) IRFs are in a model vaita- 0.5 (less risk aversion).
The green (dotted) IRFs are in a model with= 2 (more risk aversion). The magenta (dashed) IRFs are in &mod
with k = 0.9 (larger micro-elasticity). The black (dashed) are in a eledth kK = 3.6 (smaller micro-elasticity).
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Figure 11: RESPONSES OF OPTIMALUI TO A NEGATIVE TECHNOLOGY SHOCK FOR ALTERNA

TIVE JOB-RATIONING CALIBRATIONS

Notes:This figure displays impulse response functions (IRFs)ctvingpresent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing ativegachnology shock; = —0.01 to the log-linear model
(about 4 times the standard deviatio@@26). The time period displayed on the x-axis is 250 week® Alue IRFs
are in our base modet(= 1,k = 1.8). The red (dot-dashed) IRFs are in a model vaith- 0.5 (more diminishing
returns to labor). The green (dashed) IRFs are in a model avith0.84 (less diminishing returns to labor). The
magenta (dashed) IRFs are in a model with 0.25 (more wage rigidity). The black (dotted) are in a modehwit

y = 0.75 (less wage rigidity).
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