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1 Introduction

Unemployment insurance (UI) is a key component of social insurance in modern economies, and

whether to increase or decrease the generosity of UI during recessions is a critical and controversial

public policy question. On the one hand, generous unemployment benefits could discourage job

search during recessions and worsen unemployment.1 On the other hand, high unemployment

during recessions does not seem due to a lack of job-search effort but rather a scarcity of jobs.

To characterize optimal unemployment insurance over the business cycle, our paper uses a

search-and-matching model in which jobs are endogenously rationed in recessions. We extend the

model inMichaillat (2010) to allow for endogenous job-search efforts by unemployed workers. In

this model, the combination of real wage rigidity and diminishing marginal returns to labor gives

rise to job rationing in an economic equilibrium as well as realistic employment fluctuations over

the business cycle. Effectively, unemployment stems from two sources: matching frictions (in

booms) and job rationing (in recessions).

Job rationing introduces two novel effects that have been ignored in previous studies of optimal

unemployment insurance.2 The textbook model of optimal UI focuses on the trade-off between

insurance value of unemployment benefits and cost of unemployment benefits from reduced job-

search effort (Baily 1978; Chetty 2006a). Our first departure from the textbook model is to mea-

sure the cost of UI, not solely from lower search efforts, butfrom higher unemployment that lower

search efforts generate in general equilibrium. In our model, the relation between lower search

efforts and higher unemployment evolve over the business cycle. In good times, unemployment

is due to matching frictions so that higher search effort translates directly into lower unemploy-

ment as in the textbook model. In bad times, however, unemployment is due to job rationing

while matching frictions contribute little to unemployment, and are not relevant to understanding

1For example, the Economist in November 2009 reads: “It may seem heartless to counsel against too much support
for the unemployed but incentives matter even when unemployment is high. Firms in rich countries make hires
equivalent to some 14-15% of all employment in deep recessions, according to the OECD. More generous benefits
will mean vacancies are filled less quickly, pushing up unemployment.”

2A few recent studies (Andersen and Svarer 2010, 2011; Kiley 2003; Kroft and Notowidigdo 2010;
Moyen and Stahler 2009; Sanchez 2008) have started to analyze the issue of optimal UI over the business cycle.
We discuss in detail in Section2 how our model differ from those studies.
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unemployment (Michaillat 2010). Accordingly, aggregate job-search efforts have little influence

on aggregate unemployment. While unemployment benefits do reduce search efforts in recession,

this reduction only increases unemployment negligibly. Our second departure from the textbook

model arises from the presence of a negative externality caused by job rationing, which plays a

large role in recession. Unemployed workers choose their search effort based on the effect of in-

dividual effort on the probability of finding a job, taking the job-finding probability per unit of

search effort as given. Yet, since only a limited number of jobs is available, increasing one’s prob-

ability of finding a job mechanically reduces other jobseekers’ probability of finding one of the

few available jobs. Thus, individuals tend to search too much for jobs. The government corrects

this externality by providing unemployment benefits reducing job-search efforts. Therefore, the

cost of UI from higher unemployment (through reduced searcheffort) decreases in recession, and

the value of UI from correcting the job-rationing externality increases in recession. The insurance

value of UI from consumption smoothing remains constant over the cycle. Hence, optimal UI is

more generous in recessions than in expansions.

We begin the analysis in a one-period, general equilibrium model , whose equilibrium matches

the steady-state of the dynamic model introduced later. We can study the equilibrium of this simple

static model analytically, and represent it diagrammatically in a labor supply-labor demand frame-

work. We characterize the optimal level of unemployment benefits and tax rates across equilibria

parameterized by different levels of technology. Our wage-rigidity assumption implies that when

technology is high, wages are relatively low, which drives unemployment down (“an expansion”).

Conversely, when technology is low, wages are relatively high, which drives unemployment up (“a

recession”). We derive a simple optimal unemployment insurance formula expressed in terms of

sufficient statistics that can be empirically estimated: risk version, as well as micro-elasticity and

macro-elasticity of unemployment with respect to net reward from work. The micro-elasticity is

defined as the elasticity of the probability of unemploymentof a single worker whose individual

benefits are changed. The macro-elasticity is defined as the elasticity of aggregate unemployment

to UI when labor market tightness adjusts. We obtain a formula in terms of these statistics be-

cause the macro-elasticity captures the increase in aggregate unemployment caused by UI through
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lower search effort, while the correction needed for the job-rationing externality is measured by the

wedge between micro-elasticity and macro-elasticity. Ourformula is very general as it is expressed

with sufficient statistics, and is therefore robust to changes in the primitives of the model.3

In low-unemployment periods, the macro- and micro-elasticity are (almost) equal, and the

formula coincides with the classical Baily-Chetty formula. In high-unemployment periods, the

macro-elasticity decreases sharply while the micro-elasticity remains broadly constant. Our for-

mula implies that the generosity of optimal unemployment insurance is countercyclical and higher

than in the traditional Baily-Chetty formula for two reasons. First, the elasticity that should be

used in the Baily-Chetty formula is the macro-elasticity instead of the micro-elasticity, as only

the macro-elasticity of unemployment matters for the government budget. Therefore, during re-

cessions when the macro elasticity is smaller, the optimal replacement rate is higher. Second, the

correction for the job-rationing externality depends positively upon the wedge between micro- and

macro-elasticity. In recessions, the wedge is large and theoptimal replacement rate is even higher.

With no concern for insurance (linear utility), the government should still provide UI in recessions.

Next, we use numerical methods to quantify optimal unemployment insurance in a dynamic

stochastic environment that accounts fully for rational expectations of firms and workers, as well

as the law of motion of unemployment. We calibrate a DSGE model with US data. Technology

shocks drive business cycle fluctuations. We simulate the time path of optimal unemployment

benefits and labor taxes in response to a technology shock. A 1% decrease in technology requires

an increase in the replacement rate of about 1.5%. Thus, the countercyclical pattern of optimal UI

is quantitatively large.

The paper is organized as follows. Section2 reviews the related literature. Section3 presents a

one-period model that transparently illustrates the key economic mechanisms, obtains optimal UI

formulas expressed in terms of sufficient statistics, and proposes a numerical illustration. Section4

uses a DGSE model to obtain more realistic dynamic simulations. Section5 concludes.

3As shown byChetty(2006a, 2008) in the Baily model, our optimal replacement rate formula expressed in terms
of “sufficient statistics” is quite general and carries overto models in which individuals can partially self-insure.
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2 Related Literature

Our paper is related to a large literature that analyzes optimal UI theoretically and numerically.

Following the work ofBaily (1978), a theoretical literature in public economics and macroeco-

nomics has studied optimal UI in search models in which thereis a trade-off between insurance

and incentives to search.4

Papers have analyzed the optimal sequencing of benefits (andtaxes to finance them) over time

(for example,Hopenhayn and Nicolini 1997; Kocherlakota 2004; Mortensen 1977; Shavell and Weiss

1979; Shimer and Werning 2008). Studies have simulated optimal UI in calibrated models consid-

ering various unemployment benefit tools (Fredriksson and Holmlund 2001; Hansen and Imrohoroglu

1992; Lentz 2009; Wang and Williamson 2002). Other papers have characterized optimal UI when

unemployment benefits distort wages (Cahuc and Lehmann 2000; Coles and Masters 2006). How-

ever, none of those take business cycle fluctuations into account.

Moreover, many papers have considered models with externalities and their consequences for

optimal unemployment benefits. General efficiency conditions have been established for search

models inHosios(1990) and Moen (1997). Diamond(1981) shows that, if the distribution of

job offerings becomes more attractive when there are more vacancies and more unemployment,

then the steady-state equilibrium is not efficient and UI canrestore efficiency by making workers

more selective in the jobs they accept.Acemoglu(2001) develops a model of noncompetitive

labor markets in which good and bad jobs coexist, and in whichUI can shift employment toward

good jobs and improve efficiency.Marimon and Zilibotti(1999) develop a model in which UI

reduces employment but also helps workers to get a suitable job. These three papers assume risk

neutrality so UI is just a subsidy for searching longer and improving the quality of job-worker

matches.Acemoglu and Shimer(1999) show that, with risk aversion, UI induces workers to seek

high-wage jobs with high unemployment risk, and hence improves both risk sharing and output.

Spinnewijn(2010) extends the Baily model to the case where unemployed workers have biased

beliefs regarding future employment, which calls for corrective unemployment insurance over and

above the traditional Baily formula.Kroft (2008) considers a model of optimal UI with endogenous

4Fredriksson and Holmlund(2006) offer a recent survey.

4



take-up driven in part by social interactions that create anexternality. He extends the Baily-Chetty

formula and shows that the macro-elasticity is the relevantone and that the externality requires an

additional correction to the formula. In contrast to these studies, our paper zooms on an externality

due to endogenous job rationing that is inherently tied to the business cycle.

A few recent studies have started to study optimal UI over thebusiness cycle.Kiley (2003)

andSanchez(2008) use partial equilibrium models in which benefits are posited to have less dis-

tortionary effects in downturns than in booms. In contrast,we construct a model in which such a

pattern arises in general equilibrium.

Using general equilibrium models with matching frictions in the labor market,Andersen and Svarer

(2010, 2011) andMoyen and Stahler(2009) find countercyclical optimal benefits when the gov-

ernment is not constrained to balance its budget each period, but faces an intertemporal budget

constraint instead. In these models, optimal UI is countercyclical because the government uses

UI to smooth consumption over the cycle.5 In contrast, we impose a period-by-period budget bal-

ance so that the government cannot use UI as a vehicle for intertemporal consumption smoothing

through deficit spending. In spite of this restriction, we find that optimal unemployment benefits

are countercyclical.

Kroft and Notowidigdo(2010) propose a model, close in spirit to the traditional Baily model,

in which the elasticity of unemployment duration with respect to benefits, and accordingly optimal

unemployment benefits, may vary over the business cycle. Since the cyclicality of elasticity is

theoretically ambiguous (it depends on the parameters of the model), they propose an empirical

estimation. All the variation of optimal UI comes from variation in the micro-elasticity in their

Baily formula. In contrast in our model, the micro-elasticity of unemployment with respect to

net reward from work is roughly constant; the countercyclicality of optimal UI comes from the

procyclicality of the macro-elasticity; this procyclicality arises from the presence of job rationing.

5To reinforce this point:Andersen and Svarer(2010) find that optimal benefits should beprocyclicalwhen they
derive comparative statics in the static version of the model (in which there is no room for risk sharing through
intertemporal substitution of consumption). In the dynamic model, optimal benefits are countercyclical to allow risk
sharing over the business cycle.
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3 Static Model

This section presents a one-period model of the labor marketand derives a simple optimal un-

employment insurance formula that can be expressed in termsof estimable elasticities. The key

economic mechanisms are transparent in this model, and its equilibrium can be represented dia-

grammatically. Furthermore, its equilibrium correspondsto the equilibrium of the dynamic model

of Section4 in which there would be no aggregate shocks and no discounting.

3.1 Description of the economy and equilibrium with UI

3.1.1 Labor market

At the beginning of the period, a fraction 1−U of all workers are allocated to a job without having

to search. One can think of these 1−U workers as incumbent, who were already on the job in the

past. A fractionU of all workers have to search for a job. One can think of theseU workers as

unemployed workers, who did not have a job in the past. Unemployed workers exert an average

search effortE per worker. Firms openV vacancies to recruit these jobseekers. The number of

matches is given by a constant-returns matching functionm(E ·U,V) of aggregate effortE ·U and

vacanciesV, differentiable and increasing in both arguments. Conditions on the labor market are

summarized by the labor market tightness

θ ≡
V

E ·U
.

The matching technology is such that not all unemployed workers can find a job, and not all

vacancies can be filled. An unemployed worker searching withindividual efforte finds a job with

probability

e· f (θ)≡ e·
m(E ·U,V)

E ·U
= e·m(1,θ), (1)

and a vacancy is filled with probability

q(θ)≡
m(E ·U,V)

V
= m(1/θ,1) =

f (θ)
θ

.
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In a tight market, it is easy for jobseekers to find jobs—the job-finding probability per unit of

search effortf (θ) is high—and difficult for firms to hire workers—the job-filling probabilityq(θ)

is low. We assume that the matching function is Cobb-Douglas, so that

f (θ) = ωm ·θ1−η, q(θ) = ωm ·θ−η, ωm ∈ (0,+∞), η ∈ (0,1).

3.1.2 Household

The representative household is composed of a mass one of identical workers with utility that

depends on consumptionC and job search effortE of the formu(C)−k(E)whereu(.) is increasing

and concave andk(.) is increasing and convex. To simplify derivations, we assume an isoelastic

cost of effort

k(E) = ωk ·
E1+κ

1+κ
, ωk ∈ (0,+∞), κ ∈ (0,+∞).

Each individual can neither borrow nor save, and consumes all her income each period.6 When

working, an individual earns wageW. The government taxes earnings at ratet to finance unem-

ployment benefitsb ·W when unemployed. We denote byCe = W · (1− t) consumption when

employed and byCu = b ·W consumption when unemployed. We denote byτ = t +b the total

implicit tax on work and by∆C = Ce−Cu = (1− τ) ·W the net reward from work.τ measures

the generosity of the UI system and we refer toτ as the net replacement rate in what follows.7

Our representative household does not provide insurance toits members, unlike in other standard

search-and-matching models (Andolfatto 1996; Merz 1995). Members of the household, however,

decide collectively how much to search for jobs. This collective decision imposes that unemployed

members take into account the effect of their search effort on their probabilityof finding a jobcon-

ditional on being unemployed, and on their probabilityof being unemployedin the first place.

This theoretical construct aims to capture in a one-period model the fact that in a dynamic model,

6We discuss later on how our results extend to the case with endogenous savings or self-insurance paralleling the
analysis ofChetty(2006a).

7The gross replacement rate is traditionally defined asb = Cu/W while the net replacement rate is defined as
Cu/Ce = b/(1− t) ≃ b+ t = τ when the tax ratet is small. As the unemployment rateU is small relative to the
working population,t is also small justifying why we callτ the net replacement rate.
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higher search effort increases the probabilityof finding a jobin the current period, and decreases

the probabilityof being unemployedin the future.

More precisely, the household chooses its labor supplyNs to maximize its aggregate utility.

SupplyingNs units of labor provides consumptionCe to Ns household members. The 1−Ns

unemployed household members consume onlyCu. SupplyingNs units of labor is costly: while

a fraction 1− s of the Ns jobs is filled immediately at no cost, a fractions of the jobs must be

filled through matching on the labor market. The fractionsof jobs that are unfilled aims to capture

simply the effects of job turnover and matching frictions inour one-period model. A highers

means more job turnover, and hence more job search.8 The 1− (1− s) ·Ns household members

unemployed at the beginning of the period must exert search effort E to fill s·Ns vacant jobs.

Given (1), a fractionE f(θ) of these jobseekers will find a job. Therefore, the required effort is

such that

E · f (θ) · [1− (1−s)Ns] = s·Ns, (2)

which imposes a utility costk(E) on the 1− (1−s) ·Ns jobseekers.

Equivalently, the household chooses effortE to maximize its aggregate utility

− [1− (1−s) ·Ns(E,θ)] ·k(E)+ [1−Ns(E,θ)] ·u(Cu)+Ns(E,θ) ·u(Ce),

whereθ, Cu andCe are taken as given and the labor supplyNs(E,θ) is given by

Ns(E,θ) =
1

s
E· f (θ) +(1−s)

. (3)

This labor supply equation comes directly from (2), and determines how search effortE translates

into employment for a given labor market tightnessθ. Ns(E,θ) increases withE andθ.

8In the dynamic setting of Section4, scorresponds to the job destruction rate each period. Hence,s is the fraction
of employed workers who lose their job each period, and 1− s the fraction who retain their job. 1− (1− s)N is the
number of unemployed workers at the beginning of each period.
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Denoting∆u= u(Ce)−u(Cu), we can show that the optimal search effortE satisfies

k′(E) ·
E
Ns = ∆u+(1−s) ·k(E), (4)

This optimality condition can be rewritten as

s
k′(E)
f (θ)

+κ(1−s)k(E) = ∆u, (5)

which determines optimal effort as a functionE(θ,∆u) of the labor market tightnessθ and the UI

program∆u. E(θ,∆u) increases withθ and∆u.

To summarize, labor supplyNs(E(θ,∆u),θ) increases with labor market tightnessθ and incen-

tive to search∆u. Both properties of the labor supply are illustrated in Figure 1, which plots labor

supply curves corresponding to high incentive to search∆u (plain line) and low incentive to search

∆u (dotted line) in a priceθ-quantityN diagram. As we shall see, in our model with rigid wages,

the labor market tightnessθ acts as a price to equalize labor supply and labor demand.

3.1.3 Firm

The representative firm produces a consumption good taking price and wage as given.

ASSUMPTION 1 (Diminishing marginal returns to labor). The production function isF(N,a) =

a·Nα, α ∈ [0,1). a> 0 is the level of technology that proxies for the position in the business cycle.

To capture the effects of job turnover and matching frictions, we assume that while a fraction

1− s of the Nd jobs opened by the firm are filled immediately at no cost, the firm must post

vacancies to advertise the fractions of its Nd jobs that are vacant. Keeping a vacancy open has a

cost ofr ·a units of consumption.9 The recruiting costr ∈ (0,+∞) captures the resources that firms

must spend to recruit workers because of matching frictions. We assume away randomness at the

firm level: a firm fills a job with certainty by opening 1/q(θ) vacancies, and thus spendsr ·a/q(θ)
9As we shall see, normalizing costs by the technology levela simplifies the derivations.
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to fill a job. When the labor market is tighter, a vacancy is less likely to be filled, a firm must post

more vacancies to fill a vacant job, and recruiting is more costly.

A firm chooses employmentNd to maximize real profit (the price is normalized to 1)

π = F(Nd,a)−W ·Nd−
r ·a
q(θ)

·
(

s·Nd
)

.

The wageW is set once a worker and a firm have matched. Since the marginalproduct of labor

always exceeds the flow value of unemployment, and since the vacancy-posting cost and cost of

job-search effort are sunk for firms and workers at the time ofmatching, there are always mutual

gains from trade. There is no compelling theory of wage determination in such an environment

(Hall 2005; Shimer 2005). In fact in our one-period model, any wage∈ (0,+∞) could be an

equilibrium outcome in a labor market with positive employment. That is, the wage would never

result in an inefficient allocation of labor from the joint perspective of the worker-firm pair. This

property arises because firms start without any employees and the production function satisfies

limN→0MPL(N) = +∞. Given the indeterminacy of the wage in our frictional labormarket, we

opt to use theBlanchard and Galı́(2010) wage schedule.

ASSUMPTION 2 (Wage rigidity). The wage isW(a) = w0 ·aγ, w0 ∈ (0,+∞), γ ∈ [0,1).

The parameterγ captures wage rigidity. Ifγ = 0, wages are independent of technology and there

is complete wage rigidity. Ifγ = 1, wages are proportional to technology and there is no wage

rigidity. If γ ∈ [0,1), when technology is high, wages are relatively low, drivingunemployment

down as in expansions. Conversely, when technology is low, wages are relatively high, driving

unemployment up as in recessions.

From now on, we always denote byF ′ the marginal product of labor∂F/∂N. The first-order

condition of the firm problem defines implicitly the labor demandNd(a,θ) with

F ′(Nd,a) =W(a)+
s· r ·a
q(θ)

. (6)
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Using the functional-form assumptions1 and2, and dividing bya, we can rewrite (6) as

Nd(θ,a) =
{

1
α

(

w0 ·a
γ−1+

s· r
q(θ)

)}1/(α−1)

. (7)

Sinceq(θ) decreases inθ andF ′(N,a) decreases inN, the labor demand scheduleNd(θ,a) de-

creases withθ when there are diminishing returns to labor (α < 1). Moreover,Nd(θ,a) increases

with a when wages are rigid (γ < 1). Both properties of the labor demand are illustrated in Fig-

ure1, which plots labor demand curves for high (top panel) and lowtechnology (bottom panel) in

a priceθ-quantityN diagram.

3.1.4 Equilibrium

Given a UI program∆u and technologya, labor market tightness equalizes labor demand to labor

supply in equilibrium:

N(∆u,a) = Ns(E(θ,∆u),θ) = Nd(θ,a), (8)

whereN(∆u,a) is equilibrium employment. The equilibrium is illustratedin Figure1. Equilibrium

employmentN(∆u,a) is given by the intersection of the downward-sloping labor demand curve

with the upward-sloping labor supply curve. Labor market tightness acts as a price that equalizes

supply and demand in this frictional model. If labor supply is above labor demand, supply and

demand can be equalized through a reduction in labor market tightness that both reduces the hiring

costs to increase labor demand (equation (7) in which 1/q(θ) increases withθ), and reduces the

job-finding probability as well as optimal search effort to reduce labor supply (equations (3) and (5)

in which f (θ) increases withθ).

As showed byMichaillat (2010), job rationing results from the combination of diminishing re-

turns to labor (α < 1) and wage rigidity (γ < 1).10 In our one-period model, these two assumptions

translate into a downward-sloping labor demand curve that shifts down after a negative technol-

ogy shock as depicted on Figure1 when moving from the top to bottom panel. As discussed at

10Michaillat (2010) defines job rationing as the property of a frictional labor market that does not clear even at the
limit when matching frictions disappear.
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length inMichaillat (2010), there is ample historical and empirical evidence in favorof these two

assumptions. Furthermore, these two assumptions are necessary to provide a realistic description

of business cycle fluctuations in the labor market. The rigid-wage assumption (γ < 1) is critical

for labor market tightnessθ to depend (positively) on the technology levela, the key ingredient to

obtain sufficient unemployment fluctuations in the search model (Hall 2005; Shimer 2005). Our

model aims to describe cyclical fluctuations, and the assumption of diminishing returns to labor

(α < 1) captures the fact that production inputs (especially capital) do not adjust fully to changes

in employment at business cycle frequency. If capital and labor are the only production inputs and

capital is assumed to be constant in the short run, the production function has diminishing marginal

returns to labor as in Assumption1.

3.2 Optimal unemployment insurance

3.2.1 Government problem

The government chooses the net reward from work∆C=Ce−Cu to maximize expected utility

Ns(E,θ) ·u(Cu+∆C)+ [1−Ns(E,θ)] ·u(Cu)− [1− (1−s) ·Ns(E,θ)] ·k(E) (9)

whereNs(E,θ) is given by labor supply (3), E(θ,∆u) is given by the household’s optimal choice

of effort (5), θ clears the labor market (8), and the government budget constraint is satisfied. For a

given∆C, the government budget constraint pins downCu:

Cu = N · (W−∆C).

Note that we assume here that benefits are financed entirely out of wages and that the government

cannot tax profits to fund benefits.11 Using the envelope theorem asE is optimized by the house-

hold, and denoting by ¯u′ = Nu′(Ce)+ (1−N)u′(Cu) the average marginal utility, the first order

11If profits can be fully taxed, then total wagesN ·W in equation (3.2.1) should be replaced by the sum of wages
and profits which is equal toF(N,a)− (s·N) · r ·a/q(θ). This alternative assumption would generate almost identical
results and we consider it the general-equilibrium model ofSection4.
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condition for the government choice of∆C is

N ·u′(Ce)+ ū′ ·
dCu

d∆C
+

∂Ns

∂θ
·

dθ
d∆C

· [∆u+(1−s) ·k(E)] = 0. (10)

As we shall see, the first two terms are the classical terms of the Baily-Chetty model. The last term

is the correction for the job-rationing externality.

3.2.2 Micro- and macro-elasticity

Introducing elasticities, we can use (10) to express optimal unemployment insurance in terms

of estimable parameters. Intuitively, suppose thatd∆C > 0 (unemployment benefits cut). This

change create variations in all variablesdN, dθ, d∆u, dCu, anddE so that all equilibrium condi-

tions continue to be satisfied. The change in effort can be decomposed asdE= dE∆u+dEθ, where

dE∆u = (∂E/∂∆u)d∆u is a partial-equilibrium change in effort in response to thechange in UI, and

dEθ is a general-equilibrium adjustment in effort following the changedθ in tightness. It is useful

to represent labor supply (3) and labor demand (6) in a priceθ-quantityN diagram as in Figure1.

Using the labor supply equation (3), we havedN= dNE +dNθ wheredNE = (∂Ns/∂E)dE∆u and

dNθ = (∂Ns/∂θ+(∂Ns/∂E)(∂E/∂θ))dθ. dNE > 0 is the increase in aggregate employment due to

a positive shift in labor supply, keeping labor market tightnessθ constant. The labor supply shifts

because the household now exerts more job-search effort, inresponse to the cut in unemployment

benefits.dNE is represented by the shift A–C in Figure1. dNθ < 0 is the reduction in employ-

ment that occurs in general equilibrium through a decrease in labor market tightnessdθ < 0. dNθ

is represented by the shift C–B in Figure1. As a combination of these two effects, the general

equilibrium increase in employmentdN is smaller than the partial equilibrium supply increase in

employmentdNE. dN is represented by the shift A–B in Figure1. The difference between the

micro-effectdNE and the macro-effectdN is dNθ which arises from job rationing. This decom-

position motivates the following definition of the macro andmicro elasticities of unemployment

1−N with respect to∆C.

DEFINITION 1 (Micro-elasticity and macro-elasticity). Themacro-elasticityof unemployment
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1−N with respect to the net reward from work∆C is defined as:

εM =
∆C

1−N
·

dN
d∆C

,

It measures the percentage increase in unemployment 1−N when the net reward from work de-

creases by 1 percent, assuming all other variables adjust. It is normalized to be positive. The

micro-elasticityof unemployment with respect to the net reward from work is defined as:

εm =
∆C

1−N
·

∂Ns

∂E
·

∂E
∂∆u

·
d∆u
d∆C

.

It measures the percentage increase in unemployment 1−N when the net reward from work de-

creases by 1 percent, ignoring the effect of the general-equilibrium adjustment ofθ on N. It is

normalized to be positive.

PROPOSITION 1 (Cyclical behavior of micro-elasticity and macro-elasticity).

(i)

εm ≃
u′(Ce) ·∆C

∆u
·

1
κ+1

, (11)

where the approximation is valid for1−N << 1 and s<< (1−N)/N. Hence, for given Cu

and Ce, εm does not vary systematically with the business cycle (technology level a).

(ii)

εm = εM ·

[

1+
1−η

η
· (1−α) ·U ·

1
1−W/F ′

·

(

1+
U
κ

)]

> εM

(iii) For a given policy∆u= u(Ce)−u(Cu), εm/εM > 1 varies countercyclically (i.e., decreases

with technology a). When a is large (good times), this ratio is close to one. When a is small

(bad times), this ratio becomes large.

The proof is provided in appendix.12 Three comments should be made. First, our model gener-

ates a micro-elasticity of unemployment with respect to netreward from workεm that is approxi-

mately constant over the business cycle. Thus, the traditional moral-hazard cost of unemployment

12As we shall see in our calibration, the assumptions<< (1−N)/N is reasonable.
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insurance is about constant over the cycle. Second, our model creates a wedge between micro- and

macro-elasticity. The macro-elasticity is smaller because of job rationing, which imposes labor

market tightnessθ and the job-finding probabilityf (θ) to adjust downward after a positive shift of

the labor supply. Therefore the (general equilibrium) increase in aggregate employment following

an increase in aggregate job-search efforts is smaller thanthe (partial equilibrium) increase in the

individual probability to find a job following an increase inindividual job-search efforts. Third, the

gap between micro and macro-elasticity varies with the business cycle and is small in good times

when unemployment is low and largely frictional (as in traditional search models) but large in bad

times when unemployment is high and primarily due to job rationing.

Figure1 illustrates the findings from Proposition1. The wedge between micro- and macro-

elasticity is measured by the distance B–C, which would be positive for any downward-sloping

labor demand. The increase in the wedge between micro- and macro-elasticity when technology

falls is measured by the increase of the distance B–C betweenthe top panel (high technology)

and the bottom panel (low technology). In the bottom panel, employment is bounded atN = 0.93

because of job rationing, which makes labor demand intercept the x-axis atN = 0.93. Even a large

positive shift of labor supply would only have a modest positive effect on aggregate employment.

Results from the empirical literature on the effects of unemployment benefits on unemploy-

ment provide support for the three key positive predictionsof our theoretical model: (a) posi-

tive wedge between micro- and macro-elasticity, (b) acyclical micro-elasticity, (c) countercyclical

macro-elasticity. The labor economic literature focuses primarily on the elasticity of unemploy-

ment duration with respect to benefits estimated with micro-data (seeKrueger and Meyer(2002)

for a survey).13 Although this literature does not distinguish between micro and macro-elasticity,

studies comparing individuals with different benefits in the same labor market estimate primarily

micro-elasticities while studies comparing individuals with different benefits across labor markets

(for example across US states) estimate macro-elasticities.

First, the classical studies byMoffitt (1985) andMeyer(1990) use the same multi-state multi-

13A macroeconomic literature uses cross-country and times-series variation to estimate the macro-elasticity of un-
employment with respect to benefits. This literature finds a wide range of estimates with no emerging consensus
because of both measurement and identification issues (for example,Holmlund 1998; Layard et al. 1991).
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year US micro-administrative data butMeyer (1990) includes state fixed effects and hence uses

primarily within-state variation in benefits whileMoffitt (1985) does not include state fixed effects

and hence uses both within- and across-state variation. As aresult, Meyer (1990) estimates a

micro-elasticity whileMoffitt (1985) estimates a mixture of macro- and micro-elasticity.Meyer

(1990) finds much higher elasticity estimates (around 0.9) thanMoffitt (1985) (around 0.4).14 This

comparison suggests that the micro-elasticity is larger than the macro-elasticity as in our model.

Second,Schmieder et al.(2010) use sharp variation in unemployment benefits duration by age

in Germany and a regression discontinuity approach with exhaustive administrative data to identify

compellingly the micro-elasticity of duration with respect to benefits. This is the most credible

study to date which is able to estimate the micro-elasticityseparately for many years. It shows that

the micro-elasticity is almost exactly constant over the business cycle in Germany, as in our model.

Third, Moffitt (1985) estimates how the elasticity of duration with respect to benefits varies

with the local state unemployment rate and finds that the disincentive effect of UI declines signifi-

cantly with the unemployment rate in the state. Using surveydata,Kroft and Notowidigdo(2010)

also find that the elasticity of unemployment durations withrespect to benefits is smaller in high-

unemployment than in low-unemployment states. AsMoffitt (1985) andKroft and Notowidigdo

(2010) use variation in benefits both across and within states, their estimate likely captures a mix

of macro- and micro-elasticities. Finally,Arulampalam and Stewart(1995) find much stronger

effects of benefits on durations in Britain in 1978 (low unemployment) than in 1987 (high unem-

ployment).15 Those results therefore suggest that the macro-elasticitymay be countercyclical as

in our model. We leave the precise estimation of macro- and micro-elasticities over the business

cycle, currently lacking from the empirical literature, for future work.

3.2.3 Optimal unemployment insurance formulas

Recall that∆C= (1− τ)W and hence(W−∆C)/∆C= τ/(1− τ).
14SeeKrueger and Meyer(2002), Table 2.5., p. 2349 for a side by side comparison.
15Jurajda and Tannery(2003) also find that UI federal expansions in Pennsylvania in the early 1980s have slightly

smaller effects on labor supply in a depressed region of the state (Pittsburgh) than in a less depressed region of the
state (Philadelphia). The differential response, however, is much smaller than in the studies just mentioned, maybe
because there is substantial mobility across those two cities.
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PROPOSITION 2 (Optimal UI formulas). The optimal replacement rateτ satisfies

τ
1− τ

=
N
εM ·

u′(Cu)−u′(Ce)

ū′
+

(

εm

εM −1

)

·
κ · (κ+1)
(κ+U)2 ·

[

ū′ ·∆C
∆u

]−1

. (12)

With the approximation that1−N << 1 and s<< (1−N)/N, the optimal formula simplifies to

τ
1− τ

≃
1

εM

(

u′(Cu)

u′(Ce)
−1

)

+

(

εm

εM −1

)

·
1

u′(Ce)·∆C
∆u − εm

. (13)

In both(12) and(13), the first term on the right-hand-side is the classical Baily-Chetty term while

the second term on the right-hand-side is the correction of externality due to job rationing.

The proof is obtained by re-arranging terms in (10), and is presented in appendix. To illuminate

the key economic mechanisms behind the optimal formulas, wepresent an intuitive derivation.

Consider a small increased∆C in the net reward for work—equivalent to a cut in unemployment

benefits. The direct mechanical positive welfare effect on workers isdS1 = N ·u′(Ce) ·d∆C (first

term in (10)). But increasing∆C requires cutting benefitsCu =N ·(W−∆C) by dCu =−N ·d∆C+

(W−∆C) ·dN= −N ·d∆C+(1−N) · [(W−∆C)/∆C] · εM ·d∆C, leading to a welfare lossdS2 =

−N · ū′ ·d∆C+(1−N) · [(W−∆C)/∆C] ·εM · ū′ ·d∆C (second term in (10)). In the traditional Baily-

Chetty model, those are the only two effects, the optimal UI formula is such thatdS1+dS2 = 0,

and there is only the first term in the right hand side of formulas (12) and (13).

However, in our model, there is a third effect due to job loss resulting from the labor tightness

adjustment (third term in (10)). Each job lost reduces social welfare byu(Ce)−s·k(E)− [u(Cu)−

k(E)] = ∆u+ (1− s)k(E) as each unemployed person incurs search costsk(E) and a fractions

of the employed had to search and incur costsk(E) as well. The individual optimality condition

(4), and the isoelastic assumption fork(E) can be used to rewrite the welfare loss per job as

∆u+ (1− s)k(E) = ∆u(κ+ 1)/(κ+U). As discussed above, a small increased∆C leads to a

positive shift in labor supply (more search effort), which leads to a reduction in labor market

tightnessdθ in general equilibrium because of job rationing. This reduction dθ destroysdNθ jobs

through two channels: (i)(∂Ns/∂E)(∂E/∂θ)dθ jobs are destroyed through the reduction in search
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effort—this reduction, however, does not have any welfare effects by the envelope theorem; and

(ii) (∂Ns/∂θ)dθ jobs are destroyed through a reduction in the job-finding probability. By definition

εM − εm =
∆C

1−N
·

[

∂Ns

∂θ
+

∂Ns

∂E
∂E
∂θ

]

·
dθ

d∆C
.

But
∂Ns

∂E
∂E
∂θ

=
U
κ
·

∂Ns

∂θ
.

Thus, we can show that

∂Ns

∂θ
dθ =−d∆C ·

1−N
∆C

·
κ

κ+U
·
[

εm− εM]

.

This leads to a welfare loss ofdS3 = −d∆C · (1− N)/∆C · [εm− εM] · ∆u · κ(1+ κ)/(κ+U)2.

This term is negative. It is due to a decrease in job-finding probability (and hence in aggregate

employment) when there is more search, which is not internalized by jobseekers. This decrease in

job-finding probability is a direct consequence of job rationing.

At the optimum, the sum of the three termsdS1+dS2+dS3 is zero leading to formula (12).

When 1−N << 1, thenN ≃ 1 and hence ¯u′ ≃ u′(Ce). Furthermore, using the approximation for

εm≃ (u′(Ce) ·∆C/∆u)/(κ+1) from Proposition1, we can obtain formula (13) from formula (12).

Proposition2 provides a formula for the generosity of unemployment benefits. Four important

points should be noted. First, absent any wedge between macro and micro-elasticity, the second

term in the right-hand-side of the formulas (12) and (13) vanishes, and we obtain the Baily-Chetty

formula. We express the formula in terms of the elasticity ofunemployment with respect to the

net rewards from work, instead of the elasticity of unemployment with respect to UI benefitsCu

because the latter elasticity cannot be constant (it is zerowhen UI benefits are zero). This allows us

also to have a direct formula for the replacement rateτ instead of an implicit formula as in Baily-

Chetty.16 As in Baily-Chetty, the replacement rate decreases with theelasticity (which measures

16Our convention is consistent with optimal income tax theorywhich always expresses optimal tax rates as a func-
tion of the elasticity of earnings with respect to one minus the marginal tax rate, instead of the elasticity of earnings
with respect to the marginal tax rate. The UI problem of Baily-Chetty is effectively isomorphic to an optimal tax
problem with two earnings level (working vs. not working).
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the moral hazard effect) and increases with the curvature ofthe utility function (which measures

the value of insurance). If utility is linear, thenu′(Cu) = u′(Ce) and there should be no insurance.

Second, in the Baily-Chetty term, the relevant elasticity is the macro elasticityεM and not the

micro elasticityεm that has been conventionally use to calibrate optimal benefits in the public eco-

nomics literature (Chetty 2008; Gruber 1997). This is because what matters in the trade-off is

insurance versus aggregate costs in terms of higher unemployment and hence higher unemploy-

ment benefits outlays. Most empirical studies measure the duration of unemployment by compar-

ing unemployed workers in the same economy who face different replacement rates. Therefore,

those studies measure the micro-level elasticity of unemployment duration with respect to benefits.

Hence, when there is a wedge between the micro and macro elasticity, it is no longer appropriate

to use the micro-elasticity estimated from those duration studies.

Third, when there is wedge between micro and macro-elasticity, a second term, directly pro-

portional to the difference between the two elasticities, appears in the optimal UI formula. This

term is the correction for the externality imposed by job search in the presence of job rationing.

Thus, optimal unemployment insurance is higher than in the Baily-Chetty formula to correct for

the negative externality. Even in the absence of any concernfor insurance (with linear utility and

u′(Cu) = u′(Ce)), some unemployment insurance should be provided to correct the externality.

Finally, formula (12) does not depend on functional form assumptions for the utility function,

the production function, or the matching function. It is robust to changes in the primitives of

the model. The optimal replacement rate can hence be obtained from a few sufficient statistics—

micro- and macro-elasticity, curvature of the utility function—that can be empirically estimated.

As always, optimal policy formulas can also be used to assessthe current UI system. If the current

τ/(1− τ) is higher than the right-hand-side of formula (12), then increasing the replacement rate

is desirable (and conversely).

Propositions1 and2 imply that the optimal replacement rate is countercyclical, both through

the Baily term and the through the externality term. The Baily term is higher in recessions because

the macro-elasticity is smaller. The externality term is higher in recessions because the wedge

between micro- and macro-elasticity grows during recessions. Formally, we can state the following
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proposition (the proof is presented in appendix).

PROPOSITION 3 (Cyclical behavior of optimal replacement rateτ). Assume log-utility u(C) =

ln(C). Assume that the approximated formulas(11) for εm and (13) for τ are valid at the equi-

librium (i.e., technology a is high enough such that1−N << 1 and s<< (1−N)/N). Then the

optimal net replacement rateτ is countercyclical (i.e., decreases with technology a).

3.3 Extensions and special cases

3.3.1 Savings and self-insurance

Chetty(2006a,b) shows that the simple Baily formula carries over to models with savings, borrow-

ing constraints, private insurance arrangements, or search and leisure benefits of unemployment.

To a large extent, the same generalizations apply to our model and formulas (12) and (13) carry

over with minor modifications.

As an illustration, suppose that unemployed workers can increase their consumption with home

production. We assume that home production generates additional consumptionh−g(h) where

g(h) is a convex and increasing function representing costs of home producingh. Let C̃u =Cu+

h−g(h) be the total consumption of unemployed workers. Individuals chooseE andh to maximize

− [1− (1−s)Ns(E,θ)]k(E)+(1−Ns(E,θ)) ·u(Cu+h−g(h))+Ns(E,θ) ·u(Ce),

and the government chooses the net rewards from work∆C=Ce−Cu to maximize expected utility

Ns(E,θ)u(Cu+∆C)+(1−Ns(E,θ))u(Cu+h−g(h))− [1− (1−s)Ns(E,θ)] ·k(E)

where bothE and h is chosen optimally by individuals, and subject to the same constraints as

in our original problem. Hence, the first order condition forthe government problem is exactly

identical and formulas (12) and (13) carry over simply by replacingCu by C̃u in each of the utility

and marginal utility expressionsu(Cu) andu′(Cu).

Although the structure of the formula does not change, the consumption smoothing benefit term
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u′(C̃u)/u′(Ce)−1 in the first term of formulas (12) and (13) is smaller if individuals can partly

self insure, using for example home production. In the extreme case where individuals can fully

self-insure and smooth consumption absent a UI program,u′(C̃u)/u′(Ce)= 1 and there is no reason

to have a UI program for insurance purposes. This point was first noted inBaily (1978) and then

generalized byChetty(2006a). It was also used in the calibration of the Baily formula byGruber

(1997) who estimated empirically that each dollar of UI benefits increase consumption by $0.30

when unemployed (instead of dollar for dollar as in our basicmodel). To keep our numerical

illustrations simple, we rule out partial insurance. Thus,our optimal replacement rate is on the

high side. We leave more elaborate simulations with partialself-insurance for future work.

3.3.2 Wage responses to UI Benefits

An implicit assumption in our model is that wages are not affected by UI. In particular, wages do

not rise if unemployment benefits become more generous. Thisassumption is supported by empiri-

cal evidence (for example,Holmlund 1998; Layard et al. 1991). Nonetheless, it is conceivable that

wages respond positively to benefits as more generous benefits strengthen the bargaining power

of workers. In the model we have laid out, if we assume thatW(∆C), an additional term would

arise in the first order condition (10) of the government as a change in∆C affects the government

budget constraint through its effect onW. However, this effect is artificial as we have assumed that

the government cannot tax profits and affecting wages through benefits in an indirect way to tax

profits. If we assume, as we will do in the fully dynamic model of Section4, that the government

can fully tax profits, this effect disappears and the fact that wages depend onW does not affect the

optimal formulas (12) and (13). Effectively,W disappears from the government problem when the

government controlsCu andCe and total resources in the economy. The fact thatW depends on∆C,

however, affects the macro-elasticityεM as changes in wages affect labor demand. Nevertheless,

the formulas (12) and (13), expressed in terms of sufficient statistics, remain valid(with a small

adjustment to account for the wage change in the government budget constraint). This illustrates

the power of the sufficient-statistics approach.
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3.3.3 Special cases

To illustrate the economic mechanisms behind our model and situate our work in the existing

literature, it is fruitful to consider the three following special cases.

No diminishing returns to labor with α = 1: This model was popularized byHall (2005).

While this model can generate large employment fluctuations, it does not exhibit job rationing.

With α = 1, labor demand (7) implies that labor market tightnessθ is independent of employment

N. In Figure1, the labor demand curve would be horizontal. Proposition1 shows thatεm= εM, and

that these elasticities are broadly constant over the cycle. In that case, the traditional Baily-Chetty

formula applies, and Proposition2 shows that the optimal replacement rate satisfies approximately

τ
1− τ

≃
1

εm

(

u′(Cu)

u′(Ce)
−1

)

. (14)

Thus, the optimal replacement rateτ is constant over the business cycle.

A matching function with η = 1: In that case,f (θ) =ωm is independent ofθ which implies that

labor market tightnessθ does not enter labor supply (3), and does not affect the optimal provision

of search effort (5). Hence, there is no job-rationing externality. In Figure1, the labor supply

curve would be vertical. Once more, Proposition1 shows thatεm = εM, and that these elasticities

are broadly constant over the cycle. The traditional Baily-Chetty formula (14) applies, and the

optimal replacement rateτ is constant over the business cycle.

No wage rigidity with γ = 1: If there is no wage rigidity (γ = 1), technologya drops out of the

labor demand equation (7) andθ andN are independent ofa. All labor market variables, and the

problem of the government, are therefore independent of technology. While this model generates

a wedge between micro- and macro-elasticity, and the externality term is present in the optimal

UI formula, the optimal replacement rate is constant over the “business cycle” because this model

fails to capture unemployment fluctuations.
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3.4 Numerical illustration

In this section, we illustrate our theoretical results numerically. Table1 summarizes the calibrated

parameters. Since we calibrate the parameters in our dynamic model, we defer the presentation

of the calibration strategy to Section4.2, after we have formally introduced the dynamic model.

Although these numerical results are obtained in a one-period model abstracting from any dynam-

ics, they are broadly consistent with those obtained in Section 4.3when we simulate our dynamic

stochastic general equilibrium model.

Figure2 displays in six panels, as a function of technologya (which proxies for the position

in the business cycle), (a) the replacement rateb=Cu/W, (b) the labor taxt = 1−Ce/W, (c) the

net replacement rate (or total implicit tax on work)τ = t +b= 1−∆C/W, (d) the unemployment

rate, (e) effort, (f) labor market tightness. Panel (c) confirms that, as our theory predicts, that

the net replacement rate is countercyclical, i.e., decreases with a. Quantitatively, the effect is

quite significant as the net replacement rate falls from 88% to 65% over the range of technology

we consider (which corresponds to variations in the unemployment rate from 11.5% to 3.5% as

shown in panel (d)). Panels (a) and (b) show that both components of the net replacement rate—

replacement rateb and particularly tax ratet—are countercyclical. Hence, in bad times, it is

desirable to increase taxes substantially to finance not only benefits to a larger fraction of the

population that is unemployed but also benefits that are moregenerous per person (relative to

prevailing wages). The replacement rate flattens out at almost 80% once unemployment reaches

about 10%. Panels (e) and (f) show that both effort and labor market tightness increase sharply

with technologya.

Figure3 displays micro- and macro-elasticitiesεm andεM of unemployment with respect to net

reward from work as a function of technologya for a constant UI program∆u = ∆u∗(a = 1). It

confirms our three theoretical results from Proposition1. First, the micro elasticityεm is close

to constant over the business cycle–it varies on a narrow range from 0.33 to 0.39. Second and

in contrast, the macro elasticity varies substantially over the business cycle–it varies from 0.04 in

very bad times to 0.33 in very good times, an eight-fold increase. Third, macro-elasticity is always

smaller than micro-elasticity although the gap is quite small in very good times. Those results carry
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over (slightly attenuated) if the elasticities are evaluated when the replacement rate is optimal.

Figure4displays the optimal net replacement rateτ as a function of technologya that is obtained

from three alternative formulas. The first graph is the full optimum from our model (as in Figure2),

the second graph is the replacement rate that is obtained by not including the externality term in our

optimum formula (12). As expected, this second replacement rate is lower than the full optimum,

and the discrepancy is highest in bad times as the externality term depends on the wedge between

micro- and macro-elasticity, which is highest in bad times.The third graph is the replacement rate

obtained by not including the externality term and further replacing macro-elasticity by micro-

elasticity in the Baily-Chetty term. Note that the replacement rate is almost flat over the business

cycle in that case—it varies within a very narrow range from 62% to 64%. This was expected as

the micro-elasticity is almost constant over the business cycle. This later case is the standard type

of simulations presented in the public economics literature (for example,Gruber 1997). Figure4

shows that job rationing in recession changes the picture substantially.

Figure5 further explores this issue and displays the welfare gain (in percent) from using the fully

optimal replacement rate vis-a-vis various alternatives as a function of technology. The welfare

gains are measured as the percentage-increase in certainty-equivalent consumptionCeq, which

we define asU(Ceq) ≡ SW. The welfare gain is plotted relative to the two alternativescenarios

analyzed in Figure4–using the Baily term only with the macro-elasticity, and using the Baily term

only with the micro-elasticity. As expected, the welfare gains are minimal in good times when the

two elasticities are close and the externality term is hencesmall. However, the gains are substantial

in bad times, especially when using the Baily formula with the micro-elasticity.

Figure6 compares our main calibration to an alternative calibration with α = 1, i.e., a situation

with constant returns to scale and no job rationing. This comparison is useful as the influential

study of Hall (2005) proposed such a model withα = 1. Four points are worth noting. First,

panel (a) confirms that, whenα = 1, micro and macro-elasticity are identical and vary relatively

little over the business cycle. Therefore, a powerful test for distinguishing our model from the

Hall (2005) model is to assess whether there is a countercyclical and positive gap between the two

elasticities. Second, panel (b) confirms that the optimal net replacement rate is almost constant
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over the business cycle inHall (2005) while it varies substantially in our model. Third, panel

(c) shows that unemployment fluctuates substantially more in Hall (2005) than in our model.17

Indeed, with constant returns, the fluctuations in unemployment are very large, perhaps even too

large relative to plausible technology shocks.18 Fourth and related, panel (d) shows that theHall

(2005) model also generates much larger variations in labor market tightness than our model that

may be implausibly high for plausible technology shocks.

4 Dynamic Model

In this section, we present a dynamic stochastic extension of our one-period model. We calibrate

the model using micro- and macro-data for the US labor market. We move beyond the comparative-

static results of Proposition3 by computing impulse response functions of labor market variables

and of the optimal unemployment insurance in the fully dynamic model. A byproduct of the

quantitative analysis is to verify that the calibrated model describes well the US labor market.

4.1 Description of the economy and equilibrium with UI

The stochastic process for technology{at}
+∞
t=0 drives economic fluctuations. The history of tech-

nology realizations isat = (a0,a1, . . . ,at).

4.1.1 Labor market flows

At the end of periodt −1, a fractions of the Nt−1 existing worker-job matches are exogenously

destroyed. At the beginning of periodt, Ut unemployed workers are looking for a job:

Ut = 1− (1−s) ·Nt−1. (15)

17Accordingly, we have reduced the range of technology changes in Figure6.
18Hall (2005) study was pathbreaking because it was able to generate sufficient unemployment fluctuations while

earlier search models could not. Therefore, generating excessive fluctuations was a virtue in that case.
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4.1.2 Individuals

DEFINITION 2 (Individual problem). Given the government policy{Ce
t ,C

u
t }

+∞
t=0, and labor mar-

ket tightness{θt}
+∞
t=0, the individual problem is to choose a collection of stochastic processes

{Et ,Ns
t }

+∞
t=0 to maximize the expected utility

E0

[

+∞

∑
t=0

δt ·
(

−
[

1− (1−s)Ns
t−1

]

·k(Et)+(1−Ns
t ) ·u(C

u
t )+Ns

t ·u(C
e
t

)

]

, (16)

subject to the law of motion for the probability to be employed in the next period

Ns
t =

[

1− (1−s) ·Ns
t−1

]

·Et f (θt)+(1−s) ·Ns
t−1 (17)

The timet element of household’s choice must be measurable with respect to (at ,N−1).

The optimal effort function therefore satisfies the following Euler equation

{

k′(Et)

f (θt)
−δ(1−s)E

[

k′(Et+1)

f (θt+1)

]}

+κδ(1−s)E [k(Et+1)] = [u(Ce
t )−u(Cu

t )] . (18)

4.1.3 Firms

DEFINITION 3 (Firm problem). Given wage, labor market tightness, and technology processes

{Wt ,θt ,at}
+∞
t=0, the firm problem is to choose a stochastic process for employment and hiring

{

Nd
t ,Ht

}+∞
t=0 to maximize

E0

[

+∞

∑
t=0

δt ·

(

F(Nd
t ,at)−Wt ·N

d
t −

r ·at

q(θt)
·Ht

)

]

, (19)

The firm faces a constraint on the number of workers employed each period:

Nd
t ≤ (1−s) ·Nd

t−1+Ht . (20)

The timet element of a firm’s choice must be measurable with respect to(at ,N−1).
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We assume that the firm maximization problem is concave. The unique solution to the firm

problem is characterized by two equations. First, employment Nd
t and number of hiresHt are

related by

Ht = Nd
t − (1−s) ·Nd

t−1 (21)

because endogenous layoffs never occur in equilibrium. Second, employmentNd
t is determined by

the following first-order condition (as in equilibriumNd
t < 1):

F ′(Nd
t ,at) =Wt +

r ·at

q(θt)
−δ(1−s)Et

[

r ·at+1

q(θt+1)

]

(22)

This Euler equation implies that the representative firm hires labor until marginal revenue from hir-

ing equals marginal cost. The marginal revenue is the marginal product of laborF ′. The marginal

cost is the sum of the wageWt , the cost of hiring a workerr ·at/q(θt), minus the discounted cost

of hiring next periodδ · (1−s) ·Et [r ·at+1/q(θt+1)].

4.1.4 Equilibrium with unemployment insurance

DEFINITION 4 (Government policy). A government policy is a collection of stochastic processes

{Ce
t ,C

u
t }

+∞
t=0 that satisfy the government budget constraint for allt and allat :

F(Nt ,at) = NtC
e
t +(1−Nt)C

u
t +

r ·at

q(θt)
[Nt − (1−s) ·Nt−1] . (23)

Thet element of the government policy must be measurable with respect to(at ,N−1).

Importantly, we impose period-by-period budget balance, and hence rule out the possibility for

the government to smooth welfare by shifting resources inter-temporally from good times to bad

times. This is a natural assumption as we have also ruled out that individuals can save and smooth

consumption over time. This also allows us to zoom in on within period insurance-efficiency

trade-off.

DEFINITION 5 (Wage process). A wage process is a stochastic process{Wt}
+∞
t=0 defined for allt
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and allat by

Wt = w0 ·a
γ
t , γ ∈ [0,1). (24)

DEFINITION 6 (Labor market tightness process). A labor market process is a stochastic process

{θt}
+∞
t=0 such that the demand for labor

{

Nd
t

}+∞
t=0 by firms equals the “supply of labor”{Ns

t }
+∞
t=0 by

the household for allt and allat

Nt = Nd
t = Ns

t . (25)

Thet element of the labor market tightness must be measurable with respect to(at ,N−1).

DEFINITION 7 (Decentralized allocation with unemployment insurance). Given initial employ-

mentN−1 a stochastic process{at}
+∞
t=0 for technology, a decentralized allocation with UI program

is a collection of stochastic processes{Et ,Nt}
+∞
t=0, a government policy, a wage process, and a labor

market tightness process that solve the household and firm problems. Moreover, the wage process

satisfies the condition that no worker-employer pair has an unexploited opportunity for mutual im-

provement. The wage should neither interfere with the formation of an employment match that

generates a positive bilateral surplus, nor cause the destruction of such a match .

Therefore, a decentralized allocation with unemployment insurance is a collection of stochastic

processes{Ce
t ,C

u
t ,Wt ,Et ,Nt ,θt}

+∞
t=0 that satisfies equations (18), (22), (23), (24), (25). We can

also derive a sufficient condition for the wage process to always respect the (private) efficiency

of all worker-employer matches. This condition would be exactly the same as the one derived by

Michaillat (2010): it imposes a lower bound on wage rigidityγ (which depends onα ands) such

that inefficient layoffs do not occur with a high enough probability.19

4.1.5 Government problem

The unemployment insurance program is history contingent—it is fully contingent on the history

of realizations of shocks— and it is taken as given by firms andhousehold. Moreover, we follow

19We find that ifγ ≥ 0.5, wages are flexible enough to avoid inefficient separationswith probability below 1 percent.
In other words, inefficient layoffs cannot occur with a negative technology shock of amplitude below 2.3 standard
deviations. This sufficient condition is independent from government policy.
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Chari et al.(1991) andAiyagari et al.(2002) and assume that an institutional arrangement exists

through which the government can bind itself to the policy plan.

DEFINITION 8 (Government (Ramsey) problem). The government problem is to choose a gov-

ernment policy to maximize

E0

[

+∞

∑
t=0

δt · (− [1− (1−s)Nt−1] ·k(Et)+(1−Nt) ·u(C
u
t )+Nt ·u(C

e
t )

]

, (26)

over all decentralized allocations with unemployment insurance. ARamsey allocationis a decen-

tralized allocation that attains the maximum of (26).

The Ramsey allocation is fully described in PropositionA1 in appendix.

4.1.6 Ramsey allocation in the absence of aggregate shocks

We can describe the first-order conditions and constraints of the Ramsey problem in the absence

of aggregate shocks. In that case, the Ramsey allocation converge to a constant allocation that is

characterized by Proposition4.

PROPOSITION 4 (Equivalence with one-period model). The steady state solution of the Ramsey

problem in the dynamic model in the absence of aggregate shocks converges to the solution of

the Ramsey problem in the one-period model when the discountfactor δ converges towards1. In

particular, the optimal approximated formula(13) continues to apply in the steady-state of the

dynamic model when1−N << 1, s<< 1−N, and1−δ << 1.

The proof is presented in appendix. This proposition implies that the static model presented

Section3 is the limiting case of the steady-state of the fully dynamicmodel when there is no

discount. This implies that the same economic mechanisms drive the steady-state of the dynamic

model. Therefore, in the remaining of this section, we zoom in on the dynamics of the model

which could not be analyzed with the static model of Section3.
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4.2 Calibration

We calibrate all parameters at a weekly frequency.20 Table1 summarizes the calibrated parameters.

Separation rate: We estimate the job destruction rate from the seasonally-adjusted monthly se-

ries for total separation rate in all nonfarm industries constructed by the BLS from the Job Open-

ings and Labor Turnover Survey (JOLTS) for the for the December 2000–June 2010 period.21 The

average separation rate is 0.037, sos= 0.0093 at weekly frequency.

Recruiting costs: We estimate the recruiting cost from microdata gathered byBarron et al.(1997)

who find that on average, the flow cost of opening a vacancy amounts to 0.098 of a worker’s wage.

This number accounts only for the labor cost of recruiting.Silva and Toledo(2005) account for

other recruiting expenses such as advertising costs, agency fees, and travel costs, to find that 0.42

of a worker’s monthly wage is spent on each hire. Unfortunately, they do not report recruiting

times. Using the average monthly job-filling rate of 1.3 in JOLTS, 2000–2010, the flow cost of

recruiting could be as high as 0.54 of a worker’s wage. We calibrate recruiting cost as 0.32 of a

worker’s wage, the midpoint between the two previous estimates.22

Matching function: We picked a Cobb-Douglas matching function. We now setη = 0.7. Both

assumptions are reasonable in light of empirical results surveyed byPetrongolo and Pissarides

(2001). To estimate the matching efficiencyωm, we use steady-state relationships and the normal-

ization normalizee= 1 to find

ωm =
s

1−s
·
1−U

U
·θη−1

20A week is 1/4 of a month and 1/12 of a quarter.
21December 2000–June 2010 is the longest period for which JOLTS is available. Comparable data are not available

before this date.
22Using the average unemployment rate and labor market tightness in JOLTS, we find that 0.89 percent of the total

wage bill is spent on recruiting.
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We use the seasonally-adjusted, monthly series for the number of vacancies from JOLTS, 2000–

2010, and the seasonally-adjusted, monthly unemployment level computed by the BLS from the

Current Population Survey (CPS) over the same period, to compute labor market tightness and

unemployment. We findθ = 0.47 andU = 5.9%. The resulting estimate of the matching efficiency

at weekly frequency isωm = 0.19.

Wage rigidity: Next we calibrate the elasticityγ of wages with respect to technology based on

estimates obtained from panel data recording wages of individual workers. These microdata are

more adequate because they are less prone to composition effects than aggregate data. The survey

of the literature byPissarides(2009) places the productivity-elasticity of wages of existing jobs

in the 0.2–0.5 range in US data. A recent study byHaefke et al.(2008) estimates the elasticity of

wages of job movers with respect to productivity using paneldata for US workers. For a sample

of production and supervisory workers over the period 1984–2006, they obtain a productivity-

elasticity of total earnings of 0.7. Their estimate, however, is an upper bound on the elasticity of

wages as they do not control for the cyclical composition of jobs.23,24 Therefore, we setγ = 0.5, a

reasonable mid-point in the range of available evidence.

Diminishing marginal returns to labor: So far, we have estimated parameters from microdata

or aggregate data, independently of the model. We now calibrate the remaining parameters to

match key moments estimated in the data. We calibrate the production function parameterα such

that the steady state of the model matches average labor market tightnessθ = 0.47 and average

labor sharels= 0.66 in US data. We find thatα = 0.67.25

23Workers may accept lower-paid, stop-gap jobs in recessions, and move to better jobs during expansions, biasing
the estimated elasticity upwards.

240.7 is an estimate of the elasticity of wages with respect to labor productivityY/N, whereasγ is the elasticity of
wages with respect to technologya=Y/Nα. While technology and productivity are highly correlated,productivity is
less volatile than technology and therefore an estimate of the elasticity of wages with respect to technology would be
below 0.7.

25We can show that the labor sharels ≡ (w·n)/y is related toα through the firm’s optimality condition by

ls
(

s· 0.32
q(θ) +1

)

= α. Soα is slightly larger than the labor share because of the recruiting costs.
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Wage level: We target a steady-state unemployment rate ofU = 5.9%, so we calibrate the wage

w0 to obtain a steady-state employmentn= 0.95, and a steady-state labor share ofls= 0.66, which

imposesls= w0 ·n1−α. We findw0 = 0.67. Hence, the recruiting cost isr = 0.32·w0 = 0.22.

Utility function: We choose risk aversionσ = 1 such thatu(·) = ln(·), which is on the low side

of the most compelling estimatesChetty(2006b) but is often used in macro-economic calibration.

A lower risk aversion implies a lower value of insurance and hence lower optimal unemployment

benefits. Therefore, our risk aversion parameter is conservative.

We chooseκ = 1.8 to match the micro-elasticity of unemployment with respect to benefits

estimated in the empirical micro-economic literature. This literature consistently finds large elas-

ticities of duration with respect to benefits levels. For example, the widely cited study byMeyer

(1990) estimates an elasticity of 0.9, and this elasticity is usedin optimal UI simulations using

the Baily formula byGruber(1997).26 We normalize the steady-state search efforte to 1. For the

US, we assume unemployment benefitsb= 60% and labor taxt = 15%, in line with the literature

(Chetty 2006b; Gruber 1997).27 With κ = 1.8 andσ = 1, we obtainωk = 0.49. With this calibra-

tion, we findεm ≃ 0.36. The elasticity of unemployment with respect tobenefits(instead of net

reward from work) is Cu

1−N
∂(1−N)

∂Cu ≃ 0.9 in line withMeyer(1990).

There remains considerable uncertainty about some of the parameters and our model abstracts

from a number of relevant issues–many of which are explored in the earlier literature. Therefore,

this exercise should be seen as an illustration of the magnitudes one could reasonably expect from

the rationing theory we have proposed, and how such magnitudes vary with a few key parameters.

26This elasticity is conceptually close to a micro-elasticity because it either controls for state unemployment rates
or uses state fixed effects.

27The UI payroll tax itself is on the order of 3% and hence much smaller than 15% but workers pay a much higher
tax rate than unemployed workers because (a) social security taxes do not apply to UI benefits, (b) federal and state
income taxes are progressive and workers have substantially higher incomes than the unemployed.
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4.3 Numerical solution by log-linearization

To determine the equilibrium of the model for a given UI program, and to solve the Ramsey prob-

lem, we log-linearize the model around the steady state witha = 1. The appendix describes the

log-linear model in details. We assume that the log-deviation of technology ˇat ≡ d ln(at) (which

represents the percentage-deviation of technology from steady-state) follows an AR(1) process:

ǎt+1 = ρǎt +zt+1 wherezt is an innovation to technology. We estimate this AR(1) process in US

data. We construct log technology as a residual log(a) = log(Y)−α · log(N). OutputY and em-

ploymentN are seasonally-adjusted quarterly real output and employment in the nonfarm business

sector constructed by the Bureau of Labor Statistics (BLS) Major Sector Productivity and Costs

(MSPC) program. The sample period is 1964:Q1–2009:Q2. To isolate fluctuations at business

cycle frequency , we followShimer(2005) and take the difference between log technology and a

low frequency trend—a Hodrick-Prescott (HP) filter with smoothing parameter 105. We estimate

detrended log technology as an AR(1) process: log(at+1) = ρ · log(at)+zt+1 with zt+1 ∼ N(0,ν2).

With quarterly data, we obtain an autocorrelation of 0.897 and a conditional standard deviation of

0.0087, which yieldsρ = 0.991 andν = 0.0026 at weekly frequency.

4.3.1 Validity of the model

We verify that the model provides a sensible description of reality by comparing important simu-

lated moments to their empirical counterparts. We simulatea model in which the net replacement

rateτ = 72% is constant over time. This model describes an economy inwhich the UI program

does not respond systematically to the business cycle (tax rate and replacement ratio adjust auto-

matically to ensure budget balance). This net replacement rate allows to keep the same incentives

to search∆u = u(Ce)−u(Cu) as in the US economy, while having a balanced UI budget. Given

the design of our calibration, the steady state of this modelmatches average US data very well:

u= 5.9%,v/u= 0.47,e= 1.

We focus on second moments of the unemployment rateU , the vacancy/unemployment ra-

tio V/U , real wageW, outputY, and technologya. Table2 presents empirical moments in US
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data for the 1964:Q1–2009:Q2 period. Unemployment rate, output, and technology are described

above. The real wage is quarterly, average hourly earnings for production and nonsupervisory

workers in the nonfarm business sector constructed by the BLS Current Employment Statistics

(CES) program, and deflated by the quarterly average of monthly Consumer Price Index (CPI)

for all urban households, constructed by BLS. To construct avacancy series for the 1964–2009

period, we merge the vacancy data for the nonfarm sector fromJOLTS for 2001–2010, with the

Conference Board help-wanted advertising index for 1964–2001.28 We take the quarterly average

of the monthly vacancy-level series, and divide it by employment to obtain a vacancy-rate series.

We construct labor market tightness as the ratio of vacancy to unemployment. All variables are

seasonally-adjusted, expressed in logs, and detrended with a HP filter of smoothing parameter 105.

Next, we perturb our log-linear model with i.i.d. technology shockszt ∼ N(0,0.0026). We

obtain weekly series of log-deviations for all the variables. We record values every 12 weeks

for quarterly series (Y, W, a). We record values every 4 weeks and take quarterly averagesfor

monthly series (U, U/V). We discard the first 100 weeks of simulation to remove the effect of

initial conditions. We keep 50 samples of 182 quarters (2,184 weeks), corresponding to quarterly

data from 1964:Q1 to 2009:Q2. Each sample provides estimates of the means of model-generated

data. We compute standard deviations of estimated means across samples to assess the precision

of model predictions. Table3 presents the resulting simulated moments. Simulated and empirical

moments for technology are similar because we calibrate thetechnology process to match the data.

All other simulated moments are outcomes of the mechanics ofthe model.

The fit of the model is good along several critical dimensions. First, the model amplifies tech-

nology shocks as much as observed in the data because the simulated standard deviation of unem-

ployment (0.126), output (0.024) and of the vacancy-unemployment ratio (0.441) are comparable

to the standard deviations estimated in the data (0.168, 0.029, and 0.344, respectively). The re-

sponse of wages to technology shocks in the model and the dataare quite close. A 1-percent

decrease in technology decreases wages by 0.7 percent in thedata, and 0.5 percent in our model.

28The Conference Board index measures the number of help-wanted advertisements in major newspapers. It is a
standard proxy for vacancies (for example,Shimer 2005). The merger of both datasets is necessary because JOLTS
began only in December 2000 while the Conference Board data become less relevant after 2000, owing to the major
role played by the Internet as a source of job advertising.
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Third, simulated and empirical slopes of the Beveridge curve are almost identical. The slope, mea-

sured by the correlation of unemployment with vacancy, is -0.98 in the model and -0.89 in the data.

Last, autocorrelations of all variables in the model match the data. As highlighted byMichaillat

(2010), however, labor market variables and wages are too highly correlated with technology.29

4.3.2 Impulse response to unexpected and transitory technology shock

We solve the Ramsey problem by log-linearization as well. The log-linear system has three state

variables: employmentN, as well as the Lagrange multipliers on the household’s and firm’s op-

timality conditions. These multipliers impose that the government keep track of the promises

made in the previous period to job-searching workers and recruiting firms. The steady state of the

Ramsey allocation isu = 6.1%, v/u = 0.49, τ = 76%, e= 0.93. To confirm the comovements

of technology with unemployment insurance in a fully dynamic model, we compute the impulse

response functions (IRFs) in the log-linear model.

Figure7 details the response of policy variables to a negative technology shock of one percent.

Both tax ratet and replacement rateb increase slowly after the adverse shock, which drives the

increase in the net replacement rateτ. On impact, the net replacement rate increases slightly, and it

builds steadily for 80 weeks. At its peak, the net replacement rateτ increases by about 1.3%. The

impulse response confirms that the optimal UI replacement rate increases in response to an adverse

technology shock. Consumption of employed workersCe falls on impact, as a consequence of a

higher tax rate and lower income per employed worker.Ce then recovers over time towards its

steady-state level. Consumption of unemployed workers drops on impact as a consequence of

lower income per worker and then rises.Cu becomes higher than its steady-state level after 40

weeks as a consequence of a higher replacement rate. It then remains above its steady-state level

until the economy converges back to the steady state. The comparison of the log-deviations ofCe
t

andCu
t implies that the generosity of the UI program increases in recessions since∆Ct =Ce

t −Cu
t

clearly decreases after an adverse technology shock.

29Demand shocks, financial disturbances, and nominal rigidities—absent from the model but empirically
important—could explain these discrepancies.
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Figure8 shows the IRFs to a negative technology shock of one percent of labor market vari-

ables in the Ramsey allocation, and in an allocation with constant replacement rateτ = 72%.30

The behavior of labor market variables is not surprising: unemployment builds slowly and peaks

after about 30 weeks. The unemployment-vacancy ratio and tightnessθ =V/(U ·E) drop imme-

diately, which reflects the reduction in hiring by firms on impact. Aggregate search effort drops on

impact and decreases further over time, in response to both higher benefits and lower labor market

tightness. Compared to an economy with constant replacement rate, the increase in replacement

rate reduces aggregate search effort. Labor market tightness does not fall as much however. While

a higher replacement rate does not increase the amplitude ofthe peak of unemployment (around

week 50), it delays the recovery and imposes higher unemployment than in the economy with

constant replacement rate between week 50 and week 250.

Comparing Figure8 to Figure2 suggests that our results in the dynamic and static frameworks

are broadly consistent. In the dynamic framework, an increase in unemployment from 6% to 7%—

that is, a 15% increase from steady state, about 3 times the increase displayed on Figure8—should

be accompanied by an increase in the net replacement rateτ from 76% to 80%—that is, a 4%

increase from steady state. This increase is consistent with the slopes of the replacement rate and

unemployment schedules on Figure2.

Next, we compare the dynamic behavior of our baseline model with that of three variants mod-

els: a model without job rationing (α = 1), a model in which effort and labor market tightness

are not linked (η = 1), and a model with completely flexible wages (γ = 1). These models are

calibrated following the strategy described in Section4.2. The steady-state Ramsey allocations

differ across these models, as described in Table4. The steady state allocation does not depend on

γ, since the wage rigidityγ only affects the dynamics of the model. Thus, the model withγ = 1 has

the same steady-state Ramsey allocation as our baseline model. In a model withα = 1, jobs are

not rationed. Therefore, an unemployed worker searching for a job does not impose any negative

externality (as the number of jobs is not limited, but solelydriven by the aggregate search effort).

In addition, the macro-elasticity of employment with respect to net rewards from work is higher

30We used a model with constant replacement rateτ = 72% to assess the validity of our model in Table3.
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than in our baseline model withα = 0.67 because the marginal revenue product of labor is inde-

pendent from employment and as a result, an increase in employment does not trigger a reduction

in labor market tightness.31 As a consequence, it is socially optimal in the model withα = 1 to

reduce the net replacement rate (toτ = 56%) which increases aggregate search effort (toe= 1.21)

and drives unemployment down (tou= 4.9%). In a model withη = 1, jobs may be rationed but

equilibrium employment is directly determined by the laborsupply equation (3), without any in-

teraction from the labor-demand side.32. Hence, there is no negative search externality, and the

macro- and micro-elasticity are equal. In a model withη = 1, it is therefore socially optimal to

have unemployed workers exert large search efforts. As shown on Table4, it is socially optimal to

reduce the net replacement rate (toτ = 59%) which increases aggregate search effort (toe= 1.18)

and drives unemployment down (tou= 5.0%).

Figure9 compares the IRFs across these four models. The dynamics of the Ramsey allocation

differ starkly across these four models. We have described the dynamics of our baseline model

above. We reproduce them in Figure9 as a benchmark. In the flexible wage model withγ = 1,

the technology shock has no influence on the Ramsey allocation because wages and recruiting

costs are fully flexible. In particular, the net replacementrateτ does not respond to technology

shocks. In the model withη = 1, the UI program does not respond to technology shocks because

the policy trade-off is independent from technology (workers’ search behavior solely determines

employment independently of firms’ behavior). Therefore, effort and unemployment (which are

solely determined byu(Ce)−u(Cu)) do not fluctuate. Only labor market tightnessθ responds to

the technology shock so that the demand for labor matches thesupply of labor (v/u= e·θ responds

automatically). In the model with constant returnsα= 1, as already explained inMichaillat (2010),

the vacancy-unemployment ratio and unemployment respond more strongly to a technology shock

than in our model withα < 1. The optimal net replacement rate jumps on impact before decreasing

rapidly to its steady-state level. On impact, the government reduces the unemployed workers’

search effort when firms substitute recruiting inter-temporally from the future to the present in

order to smooth recruiting.

31On Figure1, the labor demand curve is horizontal.
32On Figure1, the labor supply curve is vertical.
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Finally, we evaluate the sensibility of the results to our calibration. We examine how the the

dynamic behavior of the model changes when we modify the calibration of the parameters shaping

the utility function (σ,κ) and of the parameters influencing job rationing (α,γ). We first change

the calibration of the utility function and study IRFs with less risk aversion (σ = 0.5), more risk

aversion (σ = 2), a more elastic effort function (κ = 0.9), and a more inelastic effort function

(κ = 3.6). The steady states differ slightly across these scenarios, as described in Table4. As

shown on Figure10, the qualitative behavior of the model with these differentcalibrations remains

unchanged. Quantitatively, the net replacement rate increases more after an adverse shock when

workers are less risk-averse. The steady-state net replacement rateτ, however, is lower. The

converse is true when workers are more risk-averse. A changein the elasticityκ of the search cost

k(e) has a small effect on the optimal UI. A higherκ slightly reduces the optimal increase inτ.

Next we change the calibration of parameters determining job rationing and study IRFs with

more wage rigidity (γ = 0.25), less wage rigidity (γ = 0.75), more diminishing marginal returns to

labor (α = 0.5), and less diminishing marginal returns to labor (α = 0.84). The steady states differ

slightly across these scenarios as described in Table4. As shown on Figure11, the qualitative

behavior of the model with these different calibrations remains unchanged. Quantitatively, the

net replacement rate increases more after an adverse shock when wages are more rigid or the

production function has more diminishing marginal returnsto labor . The converse is true when

wages are more flexible or marginal returns to labor do not diminish as much with employment.

Furthermore, unemployment and vacancy-unemployment ratio respond much more to a technology

shock when wages are more rigid (lowerγ).

5 Conclusion

This paper analyzes optimal unemployment insurance over the business cycle. We model unem-

ployment as the result from matching frictions (in good times) and job rationing (in bad times).

Our model captures the intuitive notion that jobs are scarceduring a recession, while retaining the

core structure of standard search models. Our central result is that the optimal replacement rate
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is higher during recessions. We prove this result theoretically, using a simple optimal unemploy-

ment insurance formula expressed in terms of micro- and macro-elasticity of unemployment with

respect to net reward from work, and risk aversion. Numerical simulations of our model calibrated

with US data show that the variation of the optimal replacement rate is quantitatively large over

the business cycle.

There are a variety of models with job rationing. Here, we present only one possible source of

job rationing: the combination of real wages that only partially adjust to productivity shocks with

diminishing marginal returns to labor. We showed that our optimal UI formula can be expressed in

terms of sufficient statistics, and that the cyclical behavior of these statistics drove the properties

of optimal UI. Since the three fundamental properties of oursufficient statistics—εm is acyclical,

the wedge(εm− εM) is positive, and the wedge(εm− εM) is countercyclical—are robust to the

origin of job rationing, the countercyclicality of the optimal replacement rate is a general property,

independent from the specific source of job rationing.

This paper is a first attempt at providing a general-equilibrium framework to study optimal

unemployment insurance over the business cycle. Our analysis should be extended in various di-

rections in future work. First and most important, our key economic mechanism hinged crucially

on a positive and countercyclical gap between micro- and macro-elasticity. Although there is a

large empirical literature on the effects of unemployment insurance on unemployment duration,

to our knowledge, no study has estimated separately micro- and macro-elasticities, as well as the

gap between the two. This is the most urgent step to test the validity of our normative predictions,

and provide most realistic numerical simulations solidly grounded on those estimated elasticities.

Conceptually, this test is also important to distinguish between models of unemployment fluctua-

tions without job rationing (α = 1 as inHall (2005)) and models with job rationing (α < 1 as in

Michaillat (2010), which have very different policy implications.

Second, the model is simplistic in that there are only technology shocks. Future work should

explore how other shocks (such as demand shocks or financial disturbances) influence optimal UI.

We conjecture that our reduced-form formulas expressed in terms the micro- and macro-elasticities

are likely to carry over in a model with other shocks, and a gapbetween the two elasticities will
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continue to be a symptom of a job rationing.

Finally, we could extend the analysis to allow to a broader and more realistic set of unemploy-

ment insurance tools. In most OECD countries, the government chooses both level and duration of

UI. Indeed, in the United States and other countries, the debate about the generosity of UI benefits

during recessions focuses primarily on the duration of benefits. Our analysis could be fruitfully

extended to a setting in which more generous unemployment insurance implies both higher and

longer unemployment benefits, as inFredriksson and Holmlund(2001).
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A Proofs

A.1 Proof of Proposition 1

By definition, we have:

εM − εm =
∆C

1−N

[

∂Ns

∂θ
+

∂Ns

∂E
∂E
∂θ

]

dθ
d∆C

. (A1)

The supply equation (3), Ns(θ,E) = E f(θ)/[s+(1− s)E f(θ)] implies thatU = 1− (1− s)N =
s/[s+(1−s)E f(θ)], and hence

∂Ns

∂E
=

s f(θ)
[s+(1−s)E f(θ)]2

=U ·
N
E
, (A2)

∂Ns

∂θ
=

sE f′(θ)
[s+(1−s)E f(θ)]2

=U · (1−η) ·
N
θ
, (A3)

where 1− η = θ f ′(θ)/ f (θ) is the elasticity off (θ) with respect toθ which is constant with a
Cobb-Douglas matching function. So we can rewrite (A1) as

εM − εm =
∆C

1−N
·U ·

N
θ
·

[

1−η+
θ
E

∂E
∂θ

]

·
dθ

d∆C
. (A4)

Using the labor demand equation (7), F ′(N)=W(a)+ s·r·a
q(θ) , we haveF ′′ ·dN=−dθ·s·r ·aq′(θ)/q(θ)2=

(dθ/θ) ·(F ′−W) ·η whereη =−θq′(θ)/q(θ) is minus the elasticity ofq(θ). Therefore,dθ/dN=
[F ′′/(F ′−W)](θ/η) =− [(1−α)/N] [F ′/(F ′−W)] (θ/η) where 1−α =−NF′′/F ′ is minus the
elasticity ofF ′ and constant in the Cobb-Douglas case. Hence, we have

N
θ

dθ
dN

=−
1−α

η
F ′

F ′−W
(A5)

dθ
d∆C

=
dθ
dN

dN
d∆C

=−
1−α

η
·

F ′

F ′−W
·

θ
N
·
1−N

∆C
· εM.

Finally, the individual first-order condition (5) for E defines implicitlyE(∆u,θ) with

∆u
E

·
∂E
∂∆u

=
U
κ
+

1−U
κ+1

, (A6)

θ
E
·

∂E
∂θ

=
(1−η)U

κ
. (A7)

Combining those equations, we obtain

εM − εm =−
1−η

η
· (1−α) ·U ·

1
1−W/F ′

·

(

1+
U
κ

)

· εM.
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This proves item (ii) in Proposition1. We define

R(a,∆u)≡ εm/εM = 1+
1−η

η
· (1−α) ·U ·

1
1−W/F ′

·

(

1+
U
κ

)

. (A8)

We have

dN
d∆C

=
∂Ns

∂E
dE

d∆C
+

∂Ns

∂θ
dθ

d∆C
=

N ·U
E

dE
d∆C

−
1−η

η
(1−α)U

F ′

F ′−W
dN
d∆C

,

and hence,

dN
d∆C

=
N ·U/E

1+ 1−η
η (1−α)U F ′

F ′−W

·
dE

d∆C
,

dθ
d∆C

=−
1−α

η
F ′

F ′−W
·

θ
N
·

dN
d∆C

=
−1−α

η U F ′

F ′−W(θ/E)

1+ 1−η
η (1−α)U F ′

F ′−W

·
dE

d∆C
.

Therefore using (A7) and (A6):

dE
d∆C

=
∂E
∂∆u

d∆u
d∆C

+
∂E
∂θ

dθ
d∆C

=

(

U
κ
+

1−U
κ+1

)

E
∆u

d∆u
d∆C

−

1−η
η (1−α)U F ′

F ′−W
U
κ

1+ 1−η
η (1−α)U F ′

F ′−W

·
dE

d∆C
,

which implies

dE
d∆C

=

(

1+ 1−η
η (1−α)U F ′

F ′−W

)

(

U
κ + 1−U

κ+1

)

1+ 1−η
η (1−α)U F ′

F ′−W

(

1+ U
κ
)

·
E
∆u

·
d∆u
d∆C

,

dN
d∆C

=
U ·N
∆u

(U
κ + 1−U

κ+1

)

1+ 1−η
η (1−α)U F ′

F ′−W

(

1+ U
κ
)
·

d∆u
d∆C

.

Now, we have
d∆u
d∆C

=
d(u′(Cu+∆C)−u′(Cu))

d∆C
= u′(Ce)+∆u′

dCu

d∆C
.

UsingCu = N(W−∆C), this implies

d∆u
d∆C

= ū′+∆u′(W−∆C)
dN
d∆C

(A9)

dN
d∆C

=
NU
∆u

(

U
κ + 1−U

κ+1

)(

ū′+∆u′(W−∆C) dN
d∆C

)

1+ 1−η
η (1−α)U F ′

F ′−W

(

1+ U
κ
)

,

dN
d∆C

=
NU · ū′

∆u

(U
κ + 1−U

1+κ
)

1+ 1−η
η (1−α)U F ′

F ′−W

(

1+ U
κ
)

−
∆u′·(W−∆C)

∆u ·NU ·
(U

κ + 1−U
1+κ

)

.
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Therefore,

εM =
NU
1−N · ū′·∆C

∆u

(

U
κ + 1−U

1+κ
)

1+ 1−η
η (1−α)U F ′

F ′−W

(

1+ U
κ
)

− ∆u′·(W−∆C)
∆u ·NU ·

(

U
κ + 1−U

1+κ
)

εM =
ū′ ·∆C · [U/(1−N)]

(κ+1) ·R(a,∆u) ·∆u · 1
N ·

[

1+ U
κ
]−1

−∆u′ · (W−∆C) ·U
(A10)

Finally, using (ii) in Proposition1, we have,

εm =
ū′ ·∆C · [U/(1−N)]

(κ+1) ·∆u · 1
N ·

[

1+ U
κ
]−1

−∆u′ · (W−∆C) ·U ·R(a,∆u)−1
(A11)

Using the approximation, 1−N << 1 ands<< (1−N)/N, we haveU = 1− (1− s)N << 1,
U/κ<< 1, 1−N≃ 1, andū′ ≃ u′(Ce). The second term in the factor deliminated by curly brackets
in εm in (A11) is negligible (relative to the first term). Furthermore,U/(1−N) = 1−sN/(1−N)≃
1 ass<< (1−N)/N, implying εm ≃ [u′(Ce) ·∆C/∆u]/(κ+1) and proving (i).

We show that∂R/∂a< 0 to prove (iii) in the proposition. We first state a lemma describing the
response of the equilibrium to a change in technology (comparative statics) for a given UI∆u.

Let T ≡ F ′(N,a)/(F ′(N,a)−W(a)). Using the firm’s optimal recruiting behavior (6), we can
write

T(N,θ) =
F ′(N,a)

F ′(N,a)−W(a)
=

F ′(N,a)
s· r ·a

q(θ(a)) =
α

s· r
·Nα−1 ·q(θ).

LEMMA A1. Fix the UI program∆u > 0. Let a> 0. In equilibrium, we have the following
comparative-static results: dN/da> 0, dU/da< 0, dE/da> 0, dθ/da> 0, and dT/da< 0.

Proof. For a given UI program∆u, a worker’s optimal search behavior (5) implicitly defines search
effort as a functionE(θ) such that∂E/∂θ > 0. Firm’s optimal recruiting behavior (7) implicitly
defines labor demand as a functionNd(a,θ) such that∂Nd/∂a> 0 and∂Nd/∂θ < 0. Equation (3)
defines labor supply as a functionNs(E(θ),θ) such that∂Ns/∂E > 0 and∂Ns/∂θ > 0—that is,
dNs/dθ > 0. The equilibrium conditionNs(θ) = Nd(a,θ) implicitly defines labor market tightness
as a functionθ(a). Differentiating this condition with respect toa yields

dNs

dθ
dθ
da

=
∂Nd

∂a
+

∂Nd

∂θ
dθ
da

dθ
da

=
∂Nd

∂a
·

[

dNs

dθ
−

∂Nd

∂θ

]−1

.

Thusdθ/da>0. In equilibrium,N(a)=Ns(θ(a)) sodN/da>0 anddU/da=−(1−s)(dN/da)<
0. SinceE(a) = E(θ(a)), dE/da> 0. Since∂T/∂θ < 0 and∂T/∂N < 0, dT/da< 0.

Using LemmaA1, we can immediately conclude that∂R/∂a< 0.
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A.2 Proof of Proposition 2

First, usingCu = N(W−∆C),

dCu

d∆C
= (1−N)

τ
1− τ

· εM −N.

Second, using the optimality condition (4), and the isoelastic assumption fork(E), we can write

∆u+(1−s) ·k(E) = ∆u ·
κ+1
κ+U

.

Lastly, the combination of (A1), (A3), and (A7) yields

∂Ns

∂θ
·

dθ
d∆C

=
(

εM − εm) 1−N
∆C

κ
κ+U

.

Reshuffling these terms in (10) and dividing the equation by(1−N)εMu′ yields (12).

A.3 Proof of Proposition 3

Consider optimality condition (12). It can be written as

Q(τ) = Z(a,τ) (A12)

with a∈ (0,+∞) andτ ∈ [0,1]. For anya, we assume that (A12) admits a unique solutionτ∗(a).
Equivalently, we assume thatQ(τ) andZ(a,τ) cross only once forτ ∈ [0,1].

LEMMA A2. limτ→1Q(τ) = +∞ and for any a> 0, limτ→1Z(a,τ) = M <+∞

Proof. We consider two cases.

First case: Ce/Cu → K > 1 Then∆u = ln(Ce/Cu) → ln(K) > 0. In that case all variables are
∈ (0,+∞). Moreover,∆C,∆u,∆u′ are bounded away from zero. Accordingly, the elasticitiesεm

andεM ∈ (0,+∞). Then limτ→1Z(a,τ) ∈ (0,+∞).

Second case:Ce/Cu → 1 Then∆u= ln(Ce/Cu)→ 0, which complicates the analysis. We need
to prove thatQ(a,τ) converges to a finite limit. Since∆u→ 0, U → 1, E → 0, N → 0, θ → +∞.
HenceR(a,∆u)→ R≡ 1+(1−η)/η(1−α)(κ+1)/κ. Budget constraint imposes(1−N)bW+
N(1− t)W = NW, or t = b(1−N)/N. Sinceτ = t +b, τ = b/N, so thatCu = τNW andCe =
[1− (1−N)τ]W. Whenτ → 1, Cu ∼ NW andCe ∼ NW. We haveU/(1−N)→ 1, (κ+1)(1+
U/κ)−1→ κ, N(W−∆C)∼ NW, ū′ ∼ u′(Cu) = 1/Cu, ū′∆C∼ ∆C/Cu, ∆u= ln(Ce/Cu)∼Ce/Cu−
1= ∆C/Cu, −∆u′ = ∆C/(Ce·Cu) so that−∆u′ ·NW∼ ∆C/Cu. Accordingly,εM/N ∼ 1/(κR+1).
Moreover,−∆u′/ū′ → 0 whenτ → 1, (εm/εM −1)κ(κ+1)/(κ+U)2 → (1−η)/η(1−α), and
ū′∆C/∆u∼ 1. Hence, limτ→1Z(a,τ) ∈ (0,+∞).

47



LEMMA A3. Let a> 0 and letτ∗(a) be the unique solution to(A12). For all τ < τ∗(a), Q(τ) <
Z(a,τ) and for allτ > τ∗(a), Q(τ)> Z(a,τ).

Proof. Using the results from LemmaA2 and the single-crossing assumption.

As the government budget isb(1−N)W = tNW, 1−N << 1 implies thatt << 1 and hence
Cu/Ce = b/(1− t)≃ b+ t = τ. Therefore,∆u= ln(Ce/Cu) =− ln(τ). We denote againR(a,τ) =
εm/εM. Using the approximation(11) for εm from Proposition1, we can write the micro-elasticity
as a function ofτ:

εm(τ)≃−
1

κ+1
1− τ
ln(τ)

.

Therefore, the approximated optimal formula (13) can be rewritten as:

τ
1− τ

≃
1

εm(τ)

{

R(a,τ) ·
1− τ

τ
+

1
κ
(R(a,τ)−1)

}

.

We write the equilibrium condition asQ(τ)= Ẑ(a,τ). From Proposition1, we know that∂R(a,τ)/∂a<
0 for all τ ∈ [0,1]. We can use the result from Proposition1 because the partial derivative wrta
taking∆u as given is the same as the partial derivative wrta takingτ as given, since∆u depends
only onτ and not on a. Therefore∂Ẑ/∂a< 0 for all τ.

Consider a decrease in technology froma to a′ < a. Q(τ∗(a)) = Ẑ(a,τ∗(a)) < Ẑ(a′,τ∗(a)).
LemmaA3 (which applies tôZ if a′ close enough toa, when our approximations are valid) implies
thatτ∗(a)< τ∗(a′). Thus,∂τ∗/∂a< 0.

B Derivation of the Ramsey Allocation in the Dynamic Model

B.1 Firm and household problem

The unconditional probability of observing an historyat is given by the probability measureµt(at).

Representative firm: Endogenous layoffs never occur in equilibrium so the Lagrangian of the
firm problem is

L =
+∞

∑
t=0

δt ∑
at

µt(a
t) ·

{

F(Nd
t ,at)−Wt ·N

d
t −

r ·at

q(θt)
·
[

Nd
t − (1−s) ·Nd

t−1

]

}

. (A13)

I assume that the firm maximization problem is concave and admits an interior solution (which will
always be the case in equilibrium). Immediately, we can showthat employmentNd

t is determined
by first-order condition (22).
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Representative household: The Lagrangian of the household’s problem is

+∞

∑
t=0

δt ∑
at

µt(a
t) ·

{

−
[

1− (1−s)Ns
t−1

]

·k(Et)+(1−Ns
t ) ·u(C

u
t )+Ns

t ·u(C
e
t )

+At
{[

1− (1−s) ·Ns
t−1

]

·Et f (θt)+(1−s) ·Ns
t−1−Ns

t

}

}

,

whereNs
t (a

t) is the probability to be employed in periodt after periodat and{At(at)} is a collec-
tion of Lagrange multipliers. The first-order condition with respect to effort in the current period
et gives:

k′(Et) = f (θt) ·At.

The first-order condition with respect to expected employment statusNs
t yields

At = [u(Ce
t )−u(Cu

t )]+δ(1−s)Et [k(Et+1)]+δ · (1−s) ·Et [At+1(1−Et+1 f (θt+1))]

k′(Et)

f (θt)
= [u(Ce

t )−u(Cu
t )]+δ · (1−s) ·Et

[

k′(Et+1)

f (θt+1)

]

−δ · (1−s)(κ+1) ·Et [k(Et+1)]+δ(1−s)Et [k(Et+1)]

Thus, the optimal effort function therefore satisfies the Euler equation (18).

B.2 Ramsey Problem

The maximization of the government is over a collection of sequences
{Nt(at),Et(at),θt(at),Ce

t (a
t),Cu

t (a
t), ∀at}+∞

t=0. We can form a Lagrangian:

+∞

∑
t=0

δt ∑
at

µt(a
t) ·

{

(−(1− (1−s)Nt−1) ·k(Et)+(1−Nt) ·u(C
u
t )+Nt ·u(C

e
t )

+At

[

F(Nt ,at)−NtC
e
t − (1−Nt)C

u
t −

r ·at

q(θt)
[Nt − (1−s) ·Nt−1]

]

+Bt

[

[u(Ce
t )−u(Cu

t )]−
k′(Et)

f (θt)
+δ(1−s)Et

[

k′(Et+1)

f (θt+1)

]

−κδ(1−s)Et [k(Et+1)]

]

+Ct

[

F ′(Nt ,at)−Wt −
r ·at

q(θt)
+δ(1−s)Et

[

r ·at+1

q(θt+1)

]]

+Dt [(1− (1−s) ·Nt−1) ·Et f (θt)+(1−s) ·Nt−1−Nt ]

}

where{At(at),Bt(at),Ct(at),Dt(at), ∀at}+∞
t=0 are sequences of Lagrange multipliers, and

Et [Xt+1] = ∑
at+1|at

µt+1(at+1)

µt(at)
Xt+1(a

t+1)
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is conditional expectation operator. We rewrite the Lagrangian as:

+∞

∑
t=0

δt ∑
at

µt(a
t) ·

{

(−(1− (1−s)Nt−1) ·k(Et)+(1−Nt) ·u(C
u
t )+Nt ·u(C

e
t )

+At

[

F(Nt,at)−NtC
e
t − (1−Nt)C

u
t −

r ·at

q(θt)
[Nt − (1−s) ·Nt−1]

]

+Bt

[

[u(Ce
t )−u(Cu

t )]−
k′(Et)

f (θt)

]

+Bt−1(1−s)

[

k′(Et)

f (θt)
−κk(Et)

]

+Ct

[

F ′(Nt,at)−Wt −
r ·at

q(θt)

]

+Ct−1(1−s)

[

r ·at

q(θt)

]

+Dt [(1− (1−s) ·Nt−1) ·Et f (θt)+(1−s) ·Nt−1−Nt ]

}

First order conditions of the Ramsey problem with respect toNt(at) for t ≥ 0:

0= u(Ce
t )−u(Cu

t )+δ(1−s)Et [k(Et+1)]

−Dt +(1−s)Et [Dt+1 · (1−Et+1 f (θt+1)]

+Ct ·F
′′(Nt ,at)

+At

{

F ′(Nt ,at)− (Ce
t −Cu

t )−
rat

q(θt)

}

+(1−s)δEt

[

At+1 ·
rat+1

q(θt+1)

]

Dt = u(Ce
t )−u(Cu

t )+δ(1−s)Et [k(Et+1)]+(1−s)Et [Dt+1 · (1−Et+1 f (θt+1)]

+Ct ·F
′′(Nt ,at)+At {W(at)− (Ce

t −Cu
t )}+(1−s)δEt

[

(At+1−At) ·
rat+1

q(θt+1)

]

With respect toCe
t for t ≥ 0:

0= Nt ·u
′(Ce

t )+Bt ·u
′(Ce

t )−At ·Nt

At = u′(Ce
t )

(

1+
Bt

Nt

)

With respect toCu
t for t ≥ 0:

0= (1−Nt) ·u
′(Cu

t )−Bt ·u
′(Cu

t )−At · (1−Nt)

At = u′(Cu
t )

(

1−
Bt

1−Nt

)
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With respect toEt for t ≥ 0:

0=−Ut ·k
′(Et)−Bt

k′′(Et)

f (θt)
+(1−s)Bt−1

k′′(Et)

f (θt)
−κ(1−s)Bt−1k′(Et)+Dt ·Ut · f (θt)

0=−Ut ·k
′(Et)+

k′′(Et)

f (θt)
((1−s)Bt−1−Bt)−κ(1−s)Bt−1k′(Et)+Dt ·Ut · f (θt)

0=−(κ+1)Ut ·k(Et)+κ
k′(Et)

f (θt)
((1−s)Bt−1−Bt)−κ(κ+1)(1−s)Bt−1k(Et)+Dt · ·Et ·Ut · f (θt)

Dt ·Ht

(κ+1)k(Et)
=Ut +κ

1
Et f (θt)

[Bt − (1−s)Bt−1]+κ(1−s)Bt−1

With respect toθt for t ≥ 0:

0=−At ·η ·
r ·at

f (θt)
·Ht

+(1−η)Bt
k′(Et)

θt · f (θt)
− (1−η)(1−s) ·Bt−1

k′(Et)

θt · f (θt)

−Ct ·η ·
r ·at

f (θt)
+Ct−1 · (1−s) ·η

r ·at

f (θt)

+Dt ·Ut · (1−η) ·Etq(θt)

0=−At ·
r ·at

q(θt)
·Ht

+
1−η

η
k′(Et)

f (θt)
(Bt − (1−s) ·Bt−1)

−
r ·at

q(θt)
(Ct − (1−s) ·Ct−1)

+DtUt ·
1−η

η
·Et f (θt)

0= Ht ·

(

−At ·
r ·at

q(θt)
+Dt

1−η
η

)

+
1−η

η
k′(Et)

f (θt)
(Bt − (1−s) ·Bt−1)−

r ·at

q(θt)
(Ct − (1−s) ·Ct−1)

0= Ht ·

(

−At · r ·at +Dtq(θt)
1−η

η

)

+
1−η

η
k′(Et)

θt
(Bt − (1−s) ·Bt−1)− r ·at (Ct − (1−s) ·Ct−1)

The following proposition summarizes the results.

PROPOSITION A1 (Characterization of Ramsey allocation). The Ramsey allocation{Ce
t ,C

u
t ,θt ,Nt,Et}

+∞
t=0

and the sequences of Lagrange multipliers from the government problem{At ,Bt ,Ct ,Dt}
+∞
t=0 are
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characterized by the following constraints:

0= F(Nt ,at)−NtC
e
t − (1−Nt)C

u
t −

r ·at

q(θt)
Ht (A14)

0= [u(Ce
t )−u(Cu

t )]−
k′(Et)

f (θt)
+δ(1−s)Et

[

k′(Et+1)

f (θt+1)

]

−κδ(1−s)Et [k(Et+1)] (A15)

0= F ′(Nt ,at)−W(at)−
r ·at

q(θt)
+δ(1−s)Et

[

r ·at+1

q(θt+1)

]

(A16)

0=Ut ·Et f (θt)−Ht, (A17)

and the following first-order conditions with respect to Nt , Ce
t , Cu

t , Et , θt (respectively):

Dt = u(Ce
t )−u(Cu

t )+δ(1−s)Et [k(Et+1)]+(1−s)Et [Dt+1 · (1−Et+1 f (θt+1)]

+Ct ·F
′′(Nt ,at)+At {W(at)− (Ce

t −Cu
t )}+(1−s)δEt

[

(At+1−At) ·
rat+1

q(θt+1)

]

(A18)

At = u′(Ce
t )

(

1+
Bt

Nt

)

At = u′(Cu
t )

(

1−
Bt

1−Nt

)

Dt ·Ht

(κ+1)k(Et)
=Ut +κ

1
Et f (θt)

[Bt − (1−s)Bt−1]+κ(1−s)Bt−1 (A19)

0= Ht ·

(

−At · r ·at +Dtq(θt)
1−η

η

)

+
1−η

η
k′(Et)

θt
(Bt − (1−s) ·Bt−1)− r ·at (Ct − (1−s) ·Ct−1)

(A20)

Equivalently:

At =

{

Nt

u′(Ce
t )

+
1−Nt

u′(Ce
t )

}−1

(A21)

Bt = Nt · (1−Nt)

(

1
u′(Ce

t )
−

1
u′(Cu

t )

)

At (A22)

COROLLARY A1 (Ramsey allocation in the absence of aggregate shocks). The Ramsey alloca-
tion in the absence of aggregate shocks is constant:{Ce,Cu,N,θ,E,A,B,C,D} is characterized by
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the following equations:

[1−δ(1−s)]
k′(E)
f (θ)

+δ(1−s)κ ·k(E) = [u(Ce)−u(Cu)]

N =
1

(1−s)+s/ ·E · f (θ)

NCe+(1−N)Cu =F(N,a)−
s· r ·a
q(θ)

·N

0=F ′(N,a)−W(a)− [1−δ · (1−s)]
r ·a
q(θ)

D(1− (1−s) · (1−E · f (θ))) = (u(Ce)−u(Cu))+δ(1−s)k(E)+C ·F ′′(N,a)+A{W(a)− (Ce−Cu)}

D =
k′(E)
f (θ)

{

1+
B
N
·

κ
U

}

C/N =
1−η

η
k′(E)
r ·a ·θ

(

1+
B
N
·
( κ

U
+1

)

)

−A

A=

{

N
u′(Ce)

+
1−N
u′(Ce)

}−1

B= N · (1−N)
(

u′(Cu)−u′(Ce)
) A

u′(Ce) ·u′(Cu)

Proof. The first-order condition with respect toE becomes (when the labor market is in steady
state,E f(θ)U = H):

D ·U · f (θ)
k′(E)

=U +κ(1−s)B+κ
s

E f(θ)
B

D =
k′(E)
f (θ)

{

1+κ(1−s)
B
U

+κ ·
B
N

}

D =
k′(E)
f (θ)

{

1+
B
N
·

κ
U

}

The first-order condition with respect toθ becomes

0= s·N ·

(

−A ·
r ·a
q(θ)

+D
1−η

η

)

+
1−η

η
k′(E)
f (θ)

s·B−
r ·a
q(θ)

·s·C

r ·a
q(θ)

· (A ·N+C) =
1−η

η

(

N ·D+
k′(E)
f (θ)

·B

)

r ·a
q(θ)

· (A ·N+C) =
1−η

η
k′(E)
f (θ)

(

N+B ·
( κ

U
+1

))

C=
1−η

η
k′(E)
r ·a ·θ

(

N+B ·
( κ

U
+1

))

−A ·N
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COROLLARY A2 (Equivalence with one-period model). The Ramsey allocation in the dynamic
model in the absence of aggregate shocks converges to the solution of the Ramsey problem in the
one-period model when the discount factorδ converges towards1.

Proof. The incentive-compatibility constraint in the one-periodmodel is given by (4). Notice that,
usingE f(θ)U = s·N,

k′(E)
E
N

=
k′(E)
f (θ)

E f(θ)U
U ·N

= s
k′(E)
f (θ)

1
U

−(1−s)k(E) = κ(1−s)k(E)− (1+κ)(1−s)k(E)

= κ(1−s)k(E)− (1−s)
k′(E)
f (θ)

E f(θ)U
U

= κ(1−s)k(E)−s
k′(E)
f (θ)

(1−s)N
U

k′(E)
E
N
− (1−s)k(E) = s

k′(E)
f (θ)

[

1
U

−
(1−s)N

U

]

+κ(1−s)k(E) = s
k′(E)
f (θ)

+κ(1−s)k(E)

So the incentive-compatibility constraint in the one-period model can be rewritten as (5). We can
form a Lagrangian:

L =−(1− (1−s)N) ·k(E)+(1−N) ·u(Cu)+N ·u(Ce)

+A

[

F(N,a)−NCe− (1−N)Cu−
r ·a
q(θ)

s·N

]

+B

[

[u(Ce)−u(Cu)]−s
k′(e)
f (θ)

−κ(1−s)k(e)

]

+C

[

F ′(N,a)−W(a)−
s· r ·a
q(θ)

]

+D [(1− (1−s) ·N) ·E f(θ)−s·N]

By inspection, it appears that the allocation solving the system of equations described in corol-
lary A1 for δ = 1 also solves constraints and first-order conditions associated with the maximiza-
tion of the Lagrangian in the one-period model.If both optimization problems are convex, then they
admit the same unique solution.

B.3 Impulse response to unexpected, transitory, technology shock

We first characterize the steady state of the model, and then describe the log-linearized equilibrium
conditions around this steady state.x denotes the steady-state value of variableXt. The steady-
state Ramsey allocation

{

ce,cu,n,θ,A,B,C,D
}

is characterized by CorollaryA1 whena= a= 1.
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Moreoverh= sn andu= 1− (1−s)n. x̌t ≡ d log(Xt) denotes the logarithmic deviation of variable
Xt . The equilibrium is described by the following system of log-linearized equations:

• Definition of labor market tightness:

ǔt + ět +(1−η) · θ̌t − ȟt = 0

• Definition of unemployment:
ǔt +ζ · ňt−1 = 0

whereζ = 1−u
u .

• Law of motion of employment:

(1−s) · ňt−1+s· ȟt − ňt = 0

• Resource constraint:

ǎt +αňt −
{

q1 ·
(

ȟt +η · θ̌t + ǎt
)

+q2 · {p1(ňt + čet)+ p2(−νňt + čut)}
}

= 0,

with q1 =
r

q(θ) ·s·n
1−α, p1 =

nce
(1−n)cu+nce

, ν = n
1−n, q2 = 1−q1, andp2 = 1− p1.

• Firm’s Euler equation:

−ǎt +(1−α) · ňt + r1 · γ · ǎt + r2 ·
(

η · θ̌t + ǎt
)

+ r3Et
[

η · θ̌t+1+ ǎt+1
]

= 0

with r1 = w0 ·
1

α·a ·n
1−α, r2 =

c
q(θ) ·

1
α ·n1−α, andr3 = 1− r1− r2.

• Productivity shock:
ǎt = ρ · ǎt−1+zt

• Household’s Euler equation:

εes1čet + εus2 ˇcut −

{

t2

[

1
1−δ(1−s)

[

κět − (1−η)θ̌t
]

−
δ(1−s)

1−δ(1−s)
E
[

κět+1− (1−η)θ̌t+1
]

]

+ t1(1+κ)E [ět+1]

}

= 0

where we define the elasticity ofu(·) around steady-state

εi =
d ln(u(x))

d ln(x)

∣

∣

∣

∣

x=ci

ands1 = u(ce)/∆u, s2 = 1−s1, t2 = 1− t1, andt1 =
κδ(1−s)k(e)

∆u
.
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• LagrangianAt :

Ǎt +u1
(

ňt − ε′ečet
)

+u2
(

−νňt − ε′učut
)

= 0

where we define the elasticity ofu(·) around steady-state

ε′i =
d ln(u′(x))

d ln(x)

∣

∣

∣

∣

x=ci

and whereu1 =
n/u′(ce)

n/u′(ce)+(1−n)/u′(cu)
, andu2 = 1−u1.

• LagrangianBt :

B̌t −
[

(1−ν)ňt + Ǎt −
(

ε′ečet
)

−
(

ε′učut
)

+
{

ε′ev1čet + ε′uv2čut
}]

= 0

wherev1 =
u′(ce)

u′(ce)−u′(cu)
, andv2 = 1−v1.

• LagrangianDt defined by equation (A19):

Ďt + ǔt +(1−η)θ̌t −κět −

[

w2ǔt +w3B̌t−1−w4

[

(1−η)θ̌t + ět −

{

1
s
B̌t −

1−s
s

B̌t−1

}]]

= 0

wherew1 =
u·D· f (θ)

k′(e) , andw2 = u/w1, w3 = κ · (1−s) ·B/w1, w4 = 1−w2−w3.

• LagrangianCt defined by equation (A20):

ȟt +x4
(

Ǎt + ǎt
)

+x5
(

−ηθ̌t + Ďt
)

−x6

[

−θ̌t +κět +
1
s
B̌t −

1−s
s

B̌t−1

]

−x7

[

ǎt +
1
s
Čt −

1−s
s

Čt−1

]

= 0

wherex1=Ar−q(θ) ·D· 1−η
η , x2=

1−η
η ·s·B· k′(e)

θ , x3= ·s·r ·C, andx4=A·r/x1, x5=1−x4,

x6 = x2/(x1h), x7 = 1−x6.

• Optimality condition from first-order condition with respect toNt

Ďt −

{

y1(εez1čet + εuz2 ˇcut)+y2(1+κ)E [ět+1]+y3E
[

Ďt+1−z6
(

ět+1+(1−η)θ̌t+1
)]

+y4
(

Čt + ǎt +(α−2)ňt
)

+y5
(

Ǎt +{z3γǎt +z4čet +z5čut}
)

}

= 0

whereεi is defined as above andz1 = u(ce)
u(ce)−u(cu)

, y1 = u(ce)−u(cu)

D
, y2 = δ(1− s)k(e)

D
, y3 =

(1−s)
(

1−e f(θ)
)

, z3 =
w0

w0−(ce−cu)
, z4 = − ce

w0−(ce−cu)
, y4 = −α(1−α)Cnα−2

D
, z6 =

e f(θ)
1−e f(θ) ,

andz2 = 1−z1, z5 = 1−z3−z4, y5 = 1−y1−y2−y3−y4.
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Once we have solved the log-linear system, we can recover thelog-deviations of the policy
variables. LetPt be the consumption per employed worker

Pt =
1
Nt

·

(

Yt −
r ·at

q(θt)
Ht

)

tt = 1−
Ce

t

Pt

bt =
Cu

t

Pt

τt = tt +bt

These relations gives the steady-state valuesp,b, t,τ. Then we infer

p̌t =−ňt +
(

a1y̌t +a2
(

ǎt +ηθ̌t)+ ȟt
))

ťt =−b1(čet − p̌t)

b̌t = čut − p̌t

τ̌t = c1ťt +c2b̌t (A23)

wherea1 = y/(np), a2 = 1−a1, b1 = (ce/p)/t, c1 = t/τ, c2 = 1= c1. We can also determine the
log-deviation of the certainty equivalent consumption defined byu(Ct)≡ SWt . Then

sw
cu′(c)

šwt = čt .

B.3.1 Log-linear model under constant UI program

In that caseτ is constant, and the government does not pick the UI program optimally. In the log-
linear system, we eliminate the 4 Lagrange multipliersǍt , Ďt ,Čt , Ďt and 4 log-linear equations that
give these multipliers. We also replace the equation givingthe optimal UI program by an equation
that ensures thatτ remain constant:

τ̌t = 0,

whereτ̌t is a linear function of the log-deviations in the system, as described by (A23).

C Tables and Graphs
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Table 1: PARAMETER VALUES IN SIMULATIONS.

Interpretation Value Source

a Steady-state technology 1 Normalization
e Steady-state effort 1 Normalization
s Separation rate 0.95% JOLTS, 2000–2010
δ Discount factor 0.999 Corresponds to 5% annually
ωm Efficiency of matching 0.19 JOLTS, 2000–2010
η Elasticity of job-filling 0.7 Petrongolo and Pissarides(2001)
γ Real wage rigidity 0.5 Pissarides(2009), Haefke et al.(2008)
c Recruiting costs 0.21 0.32× steady-state wage
w0 Steady-state real wage 0.67 Matches steady-state unemployment of 5.9%
α Returns to labor 0.67 Matches labor share of 0.66
σ Risk aversion 1 Chetty(2006b)
κ Search elasticity 1.8 Meyer(1990)
ωk Searching cost 0.87 Matchese= 1 for t = 15% andb= 60%

Table 2: SUMMARY STATISTICS, QUARTERLY US DATA , 1964–2009.

U V/U W Y a

Standard Deviation 0.168 0.344 0.021 0.029 0.019
Autocorrelation 0.914 0.923 0.950 0.892 0.871

Correlation

1 -0.968 -0.239 -0.826 -0.478
– 1 0.220 0.828 0.479
– – 1 0.512 0.646
– – – 1 0.831
– – – – 1

Notes:All data are seasonally adjusted. The sample period is 1964:Q1–2009:Q2. Unemployment rateU is quarterly
average of monthly series constructed by the BLS from the CPS. Vacancy rateV is quarterly average of monthly series
constructed by merging data constructed by the BLS from the JOLTS and data from the Conference Board, as detailed
in the text. Vacancy-unemployment ratioV/U is the ratio of vacancy to unemployment. Real wageW is quarterly,
average hourly earnings of production and non-supervisoryworkers in the private sector, constructed by the BLS CES
program, and deflated by the quarterly average of monthly CPIfor all urban households, constructed by BLS.Y is
quarterly real output in the nonfarm business sector constructed by the BLS MSPC program. log(a) is computed as
the residual log(Y)−α · log(N) whereN is quarterly employment in the nonfarm business sector constructed by the
BLS MSPC program. All variables are reported in log as deviations from an HP trend with smoothing parameter 105.
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Table 3: SIMULATED MOMENTS WITH TECHNOLOGY SHOCKS AND CONSTANTUI PROGRAM

U V/U W Y a

Standard deviation 0.126 0.441 0.009 0.024 0.018
(0.023) (0.076) (0.002) (0.004) (0.003)

Autocorrelation 0.936 0.909 0.877 0.894 0.877
(0.023) (0.031) (0.040) (0.035) (0.040)

Correlation

1 -0.977 -0.985 -0.991 -0.985
– 1 0.974 0.972 0.974
– – 1 0.999 1.000
– – – 1 0.999
– – – – 1

Notes:Results from simulating the log-linearized model under constant UI program such thatτ = 72% with stochastic
technology. All variables are reported as logarithmic deviations from steady state. Simulated standard errors (standard
deviations across 50 simulations) are reported in parentheses.

Table 4: STEADY-STATE RAMSEY ALLOCATION ACROSS CALIBRATIONS

Calibration Parameter values Steady state

ωm ωk c τ u e v/u

From Table1 0.19 0.49 0.22 76% 6.1% 0.93 0.49
γ ∈ [0,1] 0.19 0.49 0.22 76% 6.1% 0.93 0.49
α = 1 0.19 0.49 0.32 56% 4.9% 1.21 0.57
η = 1 0.15 0.49 0.22 59% 5.0% 1.18 0.40
σ = 0.5 0.19 0.74 0.22 76% 6.2% 0.92 0.49
σ = 2 0.19 0.69 0.22 80% 6.6% 0.81 0.52
κ = 0.9 0.19 0.65 0.22 76% 6.2% 0.90 0.49
κ = 3.6 0.19 0.41 0.22 78% 6.1% 0.94 0.49
α = 0.5 0.19 0.49 0.16 79% 6.2% 0.90 0.50
α = 0.84 0.19 0.49 0.27 68% 5.7% 1.05 0.47
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Figure 1: LABOR DEMAND AND LABOR SUPPLY IN ONE-PERIOD MODEL

Notes: These diagrams describe equilibria in the one-period modelwith job rationing. The two panels represent
labor supply and labor demand for high technologya= 1.03 (top) and low technologya= 0.97 (bottom). The two
labor supply curves correspond to a net replacement rateτ = 72% calibrated in US data (dotted line) and to a low
replacement rateτ = 50% (plain line). Diagrams are obtained by plotting labor demand (7) and labor supply, which is
a combination of (3) and (5), for θ ∈ [0,1.5]. The one-period model is calibrated in Table1. Note that since we use
log-utility, keeping a constantτ imposes a constant∆u=− ln(τ).
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Figure 2: OPTIMAL UI PROGRAM AND EQUILIBRIUM OUTCOMES IN ONE-PERIOD MODEL AS

A FUNCTION OF TECHNOLOGY
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Figure 3: MICRO- AND MACRO-ELASTICITY OF UNEMPLOYMENT WITH RESPECT TO NET RE-
WARD FROM WORK.

Notes: The elasticity of 1−N with respect to∆C is represented as a function of technology. We fixτ = 76%—
equivalent to fixing∆u with log-utility— which is the optimal net replacement ratewith steady-state technology
a= 1.
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Figure 4: NET REPLACEMENT RATE DERIVED WITH ALTERNATIVE FORMULAS

Notes:The net replacement rateτ is obtained in the one-period model, and represented as a function of technologya.
The green (dashed with circles) line is obtained with the Baily formula using the micro-elasticityεm of unemployment
with respect to net rewards from work. The red (dashed) line is obtained with the Baily formula using the macro-
elasticity εM of unemployment with respect to net rewards from work. The blue (solid) line is obtained with our
optimal formula (12).
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Figure 5: WELFARE GAINS FROM ADOPTING AN OPTIMAL UNEMPLOYMENT INSURANCE

Notes:These welfare gains are percentage increase in certainty-equivalent consumption—the amount of consumption
Ceq such thatU(Ceq) = SW—from adopting the optimal level of unemployment benefits and labor tax. The welfare
gains are measured in the one-period model, as a function of technology. The optimal UI is compared to UI obtained
with various Baily formulas.
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Figure 6: COMPARISON OF ONE-PERIOD MODEL WITH JOB RATIONING(α = 0.67) TO MODEL

WITHOUT JOB RATIONING (α = 1)
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Figure 7: DETAIL OF RESPONSE OF OPTIMALUI PROGRAM TO A NEGATIVE TECHNOLOGY

SHOCK

Notes:This figure displays impulse response functions (IRFs), which represent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing a negative technology shockz1 = −0.01(about 4 times the
standard deviation 0.0026) to the log-linear equilibrium describing the Ramsey allocation (allocation with optimal
UI). The time period displayed on the x-axis is 250 weeks.
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Figure 8: RESPONSE OF OPTIMALUI PROGRAM AND EQUILIBRIUM OUTCOMES TO A NEGA-
TIVE TECHNOLOGY SHOCK

Notes:This figure displays impulse response functions (IRFs), which represent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing a negative technology shockz1 =−0.01 to the log-linear model
(about 4 times the standard deviation 0.0026). The time period displayed on the x-axis is 250 weeks. The blue (solid)
line IRFs are responses of the Ramsey allocation (allocation with optimal UI). The red (dashed) line IRFs are a useful
benchmark: the responses of the economy when the net replacement rate is constant withτ = 72%.
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Figure 9: COMPARISON OF RESPONSES OF OPTIMALUI PROGRAM TO A NEGATIVE TECHNOL-
OGY SHOCK ACROSS MODELS

Notes:This figure displays impulse response functions (IRFs), which represent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing a negative technology shockz1 = −0.01 to the log-linear
model (about 4 times the standard deviation 0.0026). The time period displayed on the x-axis is 250 weeks. The blue
(solid) IRFs are in our base model (α = 0.67,η = 0.7,γ = 0.5). The red (dashed) IRFs are in a model withα = 1 (no
diminishing returns to labor). The green (dot-dashed) IRFsare in a model withη = 1. The magenta (dotted) IRFs are
in a model withγ = 1 (no wage rigidities).
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Figure 10: RESPONSES OF OPTIMALUI TO A NEGATIVE TECHNOLOGY SHOCK FOR ALTERNA-
TIVE UTILITY CALIBRATIONS

Notes:This figure displays impulse response functions (IRFs), which represent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing a negative technology shockz1 =−0.01 to the log-linear model
(about 4 times the standard deviation 0.0026). The time period displayed on the x-axis is 250 weeks. The blue IRFs
are in our base model (σ = 1,κ = 1.8). The red (dot-dashed) IRFs are in a model withσ = 0.5 (less risk aversion).
The green (dotted) IRFs are in a model withσ = 2 (more risk aversion). The magenta (dashed) IRFs are in a model
with κ = 0.9 (larger micro-elasticity). The black (dashed) are in a model with κ = 3.6 (smaller micro-elasticity).
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Figure 11: RESPONSES OF OPTIMALUI TO A NEGATIVE TECHNOLOGY SHOCK FOR ALTERNA-
TIVE JOB-RATIONING CALIBRATIONS

Notes:This figure displays impulse response functions (IRFs), which represent the logarithmic deviation from steady
state for each variable. IRFs are obtained by imposing a negative technology shockz1 =−0.01 to the log-linear model
(about 4 times the standard deviation 0.0026). The time period displayed on the x-axis is 250 weeks. The blue IRFs
are in our base model (σ = 1,κ = 1.8). The red (dot-dashed) IRFs are in a model withα = 0.5 (more diminishing
returns to labor). The green (dashed) IRFs are in a model withα = 0.84 (less diminishing returns to labor). The
magenta (dashed) IRFs are in a model withγ = 0.25 (more wage rigidity). The black (dotted) are in a model with
γ = 0.75 (less wage rigidity).
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