Optimal Unemployment Insurance over the Business Cycle

Landais (LSE), Michaillat (LSE), and Saez (Berkeley)

November 2013

Unemployment insurance debate

- 1. UI provides a safety net
- 2. UI reduces job search and raises unemployment
- 3. UI raises wages and raises unemployment
- 4. job search is irrelevant if firms do not hire much
 - **\blacksquare** public-finance approach: 1 + 2
 - our approach: 1 + 2 + 3 + 4

Public-finance approach [Baily, 1978]

- workers are initially unemployed
- workers search for a job with some effort
- workers find a job at rate f per unit of effort
- workers are risk averse but no self-insurance
- job-search effort is unobservable
- limitation: *f* is a fixed parameter

Our approach

- matching model of unemployment with firms
- job-finding rate f depends on tightness θ
- θ = recruiting effort / job-search effort
- θ depends on UI + business cycle
- contribution: optimal UI formula in sufficient statistics when *f* responds to UI + business cycle

Outline

1. General matching model

- 2. Optimal UI formula
- 3. Specific matching models
- 4. Quantitative exploration

A static model

- measure 1 of identical workers, initially unemployed
- measure 1 of identical firms
- workers and firms meet on frictional labor market
- **tightness** θ = recruiting effort/job-search effort

Summary of matching frictions

- \blacksquare unobservable job-search effort: e
- job-finding rate per unit of effort : $f(\theta)$
- **job-finding probability:** $e \cdot f(\theta)$ with f' > 0
- employees = $[1 + \tau(\theta)] \cdot \text{ producers}$
- **recruiters** = $\tau(\theta)$ · producers with $\tau' > 0$
- workers like θ , firms dislike θ

Workers

given θ and UI, choose *e* to maximize

• effort supply $e^{s}(\theta, UI)$ determines optimal effort:

$$k'(e^{s}) = f(\theta) \cdot [v(c^{e}) - v(c^{u})]$$

■ labor supply $l^{s}(\theta, UI)$ determines employment rate:

$$l^{s}(\theta, UI) = e^{s}(\theta, UI) \cdot f(\theta)$$

- **u** number of employees l > number of producers n
- **\blacksquare** given θ and wage w, choose n to maximize

Government

- UI provides c^u to unemployed workers
- UI provides $c^e > c^u$ to employed workers
- generosity of UI is replacement rate:

 $R \equiv 1 - \frac{c^e - c^u}{w} =$ labor tax rate + benefit rate

Equilibrium

- take UI policy as given
- equilibrium is (θ, w) such that supply = demand:

$$l^{s}(\boldsymbol{\theta}, UI) = l^{d}(\boldsymbol{\theta}, w)$$

- **\blacksquare** 2 variables, 1 equation: wage *w* is indeterminate
- **•** take general wage schedule: $w = w(\theta, UI)$
- **equilibrium tightness is** $\theta(UI)$

Equilibrium in (l, θ) plane

Outline

- 1. General matching model
- 2. Optimal UI formula
- 3. Specific matching models
- 4. Quantitative exploration

Government's problem

■ choose UI to maximize welfare

$$l \cdot v(c^e) + (1-l) \cdot v(c^u) - k(e)$$

subject to budget constraint

$$l \cdot c^{e} + (1-l) \cdot c^{u} = y\left(\frac{l}{1+\tau(\theta)}\right)$$

• subject to $e = e^{s}(\theta, UI)$, $l = l^{s}(\theta, UI)$, $\theta = \theta(UI)$

Social welfare maximization

- Lagrangian: $\mathscr{L} = welfare + \phi \cdot budget$
- first-order condition $d\mathscr{L}/dUI = 0$ implies

$$\left. \frac{\partial \mathscr{L}}{\partial UI} \right|_{\theta} + \left. \frac{\partial \mathscr{L}}{\partial \theta} \right|_{UI} \cdot \frac{d\theta}{dUI} = 0$$

- $\bullet \partial \mathscr{L} / \partial UI \big|_{\theta} = 0 \text{ is Baily formula}$
- $\partial \mathscr{L} / \partial \theta \Big|_{UI} = 0$ is generalized Hosios condition
- $d\theta/dUI$ can be expressed in sufficient statistics

Baily formula

• optimal UI at constant θ satisfies

 \blacksquare R: replacement rate of UI

 microelasticity ε^m: response of unemployment to UI at constant θ (only search effort responds)

Microelasticity in (l, θ) plane

Microelasticity in (l, θ) plane

Generalized Hosios condition

• optimal θ at constant UI satisfies

$$\frac{\Delta v}{\phi \cdot w} + R \cdot \left(1 + \varepsilon^d\right) - \frac{\eta}{1 - \eta} \cdot \tau(\theta) = 0$$

- Δv : utility gain from employment
- η : curvature of matching function
- ε^d : discouraged-worker elasticity
- $\tau(\theta)$: business-cycle statistic

Hosios term over the business cycle

Labor market tightness θ

Hosios term over the business cycle

Labor market tightness θ

Hosios term over the business cycle

Labor market tightness θ

Externalities

Externalities

Elasticity wedge measures $d\theta/dUI$

macroelasticity ε^M: response of employment to UI in general equilibrium (search effort + θ respond)
1 - (ε^M/ε^m) > 0: lower UI ⇒ lower θ
1 - (ε^M/ε^m) = 0: UI does not influence θ
1 - (ε^M/ε^m) < 0: lower UI ⇒ higher θ

Optimal UI formula in general equilibrium

$$\frac{R}{1-R} = \text{Baily term} + P \cdot \left[1 - \frac{\varepsilon^{M}}{\varepsilon^{m}}\right] \cdot \underbrace{\text{Hosios term}}_{\partial \mathscr{L} / \partial UI}_{\theta}$$

 \blacksquare R: replacement rate of UI

 $\blacksquare \left[\frac{d\theta}{dUI} \cdot \left[\frac{\partial \mathcal{L}}{\partial \theta} \right|_{UI} \right]: \text{ externality-correction term}$

• more UI than Baily if $\left[d\theta/dUI \right] \cdot \left[\partial \mathscr{L}/\partial \theta \Big|_{UI} \right] > 0$

• more UI than Baily **if UI brings** θ **to optimum**

Optimal UI formula in general equilibrium

$$\frac{R}{1-R} = \text{Baily term} + \overbrace{P}^{+} \cdot \left[1 - \frac{\varepsilon^{M}}{\varepsilon^{m}}\right] \cdot \text{Hosios term}$$

Optimal replacement rate vs. Baily rate

	$1-(\boldsymbol{\varepsilon}^M/\boldsymbol{\varepsilon}^m)$		
	_	0	+
recession	lower	same	higher
at Hosios	same	same	same
expansion	higher	same	lower

Outline

- 1. General matching model
- 2. Optimal UI formula
- 3. Specific matching models
- 4. Quantitative exploration

Three matching models

	Pissarides	Hall	Michaillat
production	linear	linear	concave
	y(n) = n	y(n) = n	$y(n) = n^{\alpha}, \ \alpha < 1$
wage	Nash bargaining	rigid	rigid
	$w = w(\theta, UI)$	w > 0	<i>w</i> > 0
reference	Pissarides [1985]	Hall [2005]	Michaillat [2012]

Pissarides' model: $1 - (\varepsilon^M / \varepsilon^m) < 0$

Employment

Pissarides' model: $1 - (\varepsilon^M / \varepsilon^m) < 0$

Employment
Pissarides' model: $1 - (\varepsilon^M / \varepsilon^m) < 0$

_abor market tightness

Employment

Hall's model: $1 - (\varepsilon^M / \varepsilon^m) = 0$

Employment

Hall's model: $1 - (\varepsilon^M / \varepsilon^m) = 0$

Employment

Michaillat's model: $1 - (\varepsilon^M / \varepsilon^m) > 0$

Labor market tightness

Michaillat's model: $1 - (\varepsilon^M / \varepsilon^m) > 0$

Labor market tightness

Michaillat's model: $1 - (\varepsilon^M / \varepsilon^m) > 0$

Labor market tightness

Optimal UI in various matching models

	Pissarides	Hall	Michaillat
wage ext.	yes	no	no
labor-demand ext	. no	no	yes
$1-(\boldsymbol{\varepsilon}^M/\boldsymbol{\varepsilon}^m)$	—	0	+
optimal UI	procyclical	acyclical	countercyclical

Outline

- 1. General matching model
- 2. Optimal UI formula
- 3. Specific matching models
- 4. Quantitative exploration

Empirical strategy

- microelasticity: increase in probability of unemployment when individual UI increases
 - macroelasticity: increase in aggregate
 unemployment when aggregate UI increases

Elasticity wedge estimates

- Crepon, Duflo, Gurgand, Rathelot, and Zamora
 [QJE, 2013] for France
 - treatment: job-search assistance
 - labor-demand externality only
 - $\blacktriangleright \ 1 (\epsilon^M/\epsilon^m) = 0.37 > 0$

■ Lalive, Landais, and Zweimüller for Austria

- ▶ treatment: increase UI duration from 52 to 209 weeks
- labor-demand and wage externality
- $1 (\epsilon^M / \epsilon^m) = 0.35 > 0$

Optimal UI over the business cycle

Optimal UI over the business cycle

Optimal UI over the business cycle

Future research

- 1. empirical estimates of elasticity wedge $1 (\varepsilon^M / \varepsilon^m)$
- 2. optimal macro policies over the business cycle
 - fiscal policy, insurance programs, monetary policy
 - formula for policy au takes form

$$0 = \mathsf{PF} \, \operatorname{term} + \frac{d\theta}{d\tau} \cdot \mathsf{Hosios} \, \operatorname{term}$$

- PF term = $\partial SW / \partial \tau |_{\theta}$ and Hosios term = $\partial SW / \partial \theta |_{\tau}$
- see Michaillat and Saez [2013]

BACKUP

Matching frictions

- measure 1 of workers, initially unemployed
- job-search effort (unobservable): *e*
- number of vacancies: o
- constant-returns matching function: $m(\cdot, \cdot)$
- number of matches: $l = m(e, o) \le 1$
- labor market tightness: $\theta \equiv o/e$
- vacancy-filling proba.: $q(\theta) = l/o = m(1/\theta, 1)$
- job-finding rate: $f(\theta) = l/e = m(1, \theta)$
- job-finding proba.: $e \cdot f(\theta)$

Matching cost

posting each vacancy requires r workers:

Formula in dynamic model

$$\frac{\frac{w}{\Delta c} - 1 \approx \frac{1}{\varepsilon^m} \left(\frac{c^e}{c^u} - 1 \right) + \frac{1}{1 + \varepsilon^d} \left(1 - \frac{\varepsilon^M}{\varepsilon^m} \right) \\ \times \left[\frac{\ln(c^e/c^u)}{1 - c^u/c^e} + \left(1 + \varepsilon^d \right) \left(\frac{w}{\Delta c} - 1 \right) - \frac{\eta}{1 - \eta} \frac{w}{\Delta c} \frac{\tau(\theta)}{u} \right]$$

 \blacksquare solve for replacement rate $1-(\Delta c/w)$

- exogenous sufficient statistics: ε^d , ε^M , ε^m , η , $\tau(\theta)/u$
- $1 (\varepsilon^M / \varepsilon^m)$ measures labor-demand & wage externality
- **\tau(\theta)/u measures business cycle**

Flows in finite-duration model

Flows in finite-duration model

Flows in finite-duration model

Countercyclical arrival rate of ineligibility

40 / 34