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ABSTRACT

This paper analyzes optimal unemployment insurance (UI) over the business cycle. We obtain an optimal
UI formula that resolves the trade-off between insurance and job-search incentives in a broad class
of models in which the job-finding rate depends on UI. Our formula generalizes the standard Baily-Chetty
formula, only valid when the job-finding rate is a constant. The formula relates the optimal replacement
rate of UI to the usual sufficient statistics (risk aversion, consumption-smoothing benefits of UI, and
microelasticity of unemployment with respect to UI) and a new sufficient statistic (macroelasticity
of unemployment with respect to UI). While the microelasticity accounts only for the response of job
search to UI, the macroelasticity also accounts for the response of the job-finding rate to UI. We calibrate
the formula using available empirical estimates of the sufficient statistics. The wedge between micro-
and macroelasticity is positive and countercyclical in empirical studies, capturing negative job-search
externalities that are more acute in recessions. An implication is that the Baily-Chetty formula underestimates
optimal UI, especially in recessions. We show that the standard search-and-matching model with Nash
bargaining generates a negative wedge between micro- and macroelasticity. To generate a wedge that
is positive and countercyclical, we construct an alternative search-and-matching model with rigid wages
and diminishing marginal returns to labor. Using our formula, we prove that optimal UI is countercyclical
in this model. We also show that the calibrated model generates realistic fluctuations in unemployment
and the elasticity wedge.
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In a seminal paper, Baily [1978] analyses the optimal provision of unemployment insurance (UI)

when workers are risk averse, workers cannot insure themselves against unemployment, and workers’

job-search effort is not observable. UI helps workers smooth consumption when they become unem-

ployed, but it also increases unemployment by discouraging job search. The optimal UI equalizes the

marginal benefit of smoothing consumption with the marginal cost of increasing unemployment. Optimal

UI satisfies a very simple and robust formula in this model [Baily, 1978; Chetty, 2006a].

A key assumption of Baily’s model is that the job-finding rate is a parameter that does not depend

on UI. This assumption is too restrictive to study UI over the business cycle. The reason is that in the

macroeconomic models used to study the labor market over the business cycle—the search-and-matching

models—the job-finding rate does depend on UI. In this paper, we allow the job-finding rate to depend

on UI and generalize the Baily formula accordingly. We apply the formula to a search-and-matching

model that captures key empirical features of the labor market over the business cycle. We derive the

implications of our formula for the cyclicality of optimal UI in this model.

We begin in Section 1 by deriving a formula for the optimal replacement rate—the generosity of un-

employment benefits expressed as a fraction of the income of employed workers—in a model in which

the job-finding rate depends on UI. The formula, expressed with estimable sufficient statistics, does not

require much structure on the primitives of the model. As in the Baily formula, a first term captures the

trade-off between the need for insurance, measured by the coefficient of risk aversion, and the need for

job-search incentives, measured by the elasticity of unemployment with respect to UI. But to measure

the budgetary costs of UI, we replace the microelasticity used in the Baily formula by a macroelasticity.

The microelasticity accounts only for the response of job search to UI whereas the macroelasticity also

accounts for the response of the job-finding rate to UI. Empirically, the microelasticity εm is the elasticity

of the unemployment probability of a worker whose individual benefits change whereas the macroelas-

ticity εM is the elasticity of aggregate unemployment when benefits change for all workers. Our formula

also adds to the Baily formula a second term proportional to the wedge εm/εM − 1. The wedge captures

the welfare effect of the employment change following the response of the job-finding rate to UI.

Although we derive the formula in a static model in which workers cannot insure themselves, the

formula also applies in more realistic models. Following the approach of Gruber [1997] and Chetty

[2006a], we show that the formula also applies in a dynamic model in which jobs are continuously created

and destroyed and workers can partially insure themselves against unemployment. Since the formula

applies in presence of self-insurance and labor market flows, which are both important empirically, the

formula can be combined with empirical estimates of the sufficient statistics to obtain illustrative optimal

replacement rates. Available empirical evidence suggest that εm/εM is above 1 [Crépon et al., 2012;
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Lalive, Landais and Zweimüller, 2012] and countercyclical [Crépon et al., 2012; Kroft and Notowidigdo,

2011]. Hence, the optimal replacement rate is above that given by the Baily formula and countercyclical.

From a theoretical perspective the empirical finding that εm/εM > 1 is surprising because it is not

consistent with the behavior of the search-and-matching model with Nash bargaining, commonly used by

macroeconomists to analyse optimal UI over the business cycle [for example, Mitman and Rabinovich,

2011]. Indeed, we show at the beginning of Section 2 that εm/εM < 1 in that model. The reason why

εm < εM is simple. Consider a reduction in UI. There is a microeffect: the reduction in unemployment

from higher job-search effort, measured by εm. In addition, the Nash-bargained wage falls because the

outside option of workers falls. This reduction in wage leads firms to hire even more, thus reinforcing

the microeffect. Hence the macroeffect, measured by εM , is stronger than the microeffect.

To rationalize the empirical findings that εm/εM is above one and countercyclical, Section 2 develops

a parsimonious macroeconomic model of UI. Our model builds on the framework of Michaillat [2012a].

That framework modifies the search-and-matching model with Nash bargaining by assuming that (i) the

wage schedule is rigid instead of arising from Nash bargaining; and (ii) the production function has

diminishing marginal returns to labor instead of constant returns to labor. Michaillat [2012a] shows

that realistic unemployment fluctuations arise with assumption (i) and jobs are rationed in recessions

with assumptions (i) and (ii)—that is, the labor market does not converge to full employment even when

search efforts are arbitrarily large. We show that in this model, εm/εM is above one and countercyclical

under assumptions (i) and (ii).

First, we prove that εm/εM > 1. Intuitively, the number of jobs available is limited because of

diminishing marginal returns to labor. Hence, searching more to increase one’s probability of finding a

job mechanically decreases others’ probability of finding one of the few jobs available. Since εm/εM > 1,

our formula calls for a higher replacement rate than the Baily formula. The higher replacement rate

discourages job search and thus corrects the negative rat-race externality imposed by jobseekers on

others. This externality arises because jobseekers search taking the job-finding rate as given, without

internalizing their negative influence on the job-finding rate of others. Since the replacement rate given

by the Baily formula is also the replacement rate offered by small private insurers, our formula suggests

that small private insurers would not provide enough insurance against unemployment.

Second, we prove that εm/εM is countercyclical, and also that the macroelasticity εM is procyclical.

Intuitively, recessions are periods of acute job shortage during which job search and matching frictions

have little influence on the labor market equilibrium. Therefore, aggregate search efforts have little

influence on unemployment and the macroelasticity εM is small. Since the microelasticity εm remains

broadly the same, the wedge εm/εM is large in recessions.
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Combining the results on the cyclicality of εm/εM and εM with the optimal UI formula, we prove

that the optimal replacement rate is countercyclical. In recessions, the macroelasticity decreases, im-

plying that increasing UI only raises unemployment negligibly; thus the marginal budgetary cost of UI

decreases. In recessions, the wedge εm/εM also increases, implying that the welfare cost of the rat-race

externality increases; thus the marginal benefit of UI from correcting the externality increases. The lower

marginal cost and higher marginal benefit imply that it is socially optimal to increase UI in recessions.

At the end of Section 2, we calibrate and simulate our model to show that the cyclical fluctuations of

the elasticities accord with available empirical evidence. When the unemployment rate increases from

4% to 10%, εm increases slightly from 0.8 to 1, εM decreases from 0.6 to 0.2, and importantly, εm/εM

increases from 1.3 to 5. As a consequence, the optimal replacement rate increases from 45% to 59%.

In Section 3, we derive an alternative optimal UI formula under the assumption that the government

taxes profits. This assumption may not be realistic, but it is standard in macroeconomics and it allows us

to connect our results with the literature. Our optimal UI formula adds to the Baily formula a term mea-

suring the deviation from a generalized Hosios [1990] condition, which gives the efficient labor market

tightness in our model. If the generalized Hosios condition holds, our formula coincides with the Baily

formula even if micro- and macroelasticity differ; but if it does not hold and there is a wedge between

micro- and macroelasticity, then our formula departs from the Baily formula. When the deviation from

the Hosios condition is positive because labor market tightness is too low and when εm/εM > 1, the

optimal replacement rate is above that given by the Baily formula. Using a standard approximation, we

show that the optimal replacement rate remains countercyclical when the government taxes profits.

Section 4 concludes by showing that optimal UI remains countercyclical in three alternative settings.

Simulations of a calibrated model suggest that optimal UI is countercyclical when the government adjusts

the duration of unemployment benefits instead of their level: the optimal duration increases from less than

6 weeks when unemployment is 4%; to 26 weeks when unemployment is 5.9%; and to over 100 weeks

when unemployment reaches 10%. Optimal UI is also countercyclical in a model in which business

cycles are driven by aggregate demand shocks instead of technology shocks. Finally, optimal UI is

countercyclical in a model in which the government can provide a wage subsidy to employers to attenuate

employment fluctuations. All proofs and extensions are collected in the Appendix.

1 Optimal UI Formula

This section introduces a generic model of the labor market, which generalizes the model of Baily [1978]

by allowing the job-finding rate to depend on UI. This extension is necessary to be able to apply our
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framework to search-and-matching models. Workers are risk averse and cannot insure themselves against

unemployment. To improve welfare the government provides unemployment benefits, financed by a

labor tax. Since jobseekers’ search efforts are not observable, the government trades off the provisions

of insurance and incentives to search. A simple formula resolves this trade-off. The formula relates the

optimal replacement rate of UI to four sufficient statistics: two statistics present in the Baily formula

(microelasticity of unemployment with respect to UI and risk aversion) and two new statistics arising

because the job-finding rate depends on UI (macroelasticity of unemployment with respect to UI and

elasticity of search with respect to job-finding rate). At the end of the section, we combine our formula

with available empirical estimates of these sufficient statistics to illustrate the resulting replacement rates.

1.1 Model

Labor market. There is a measure 1 of workers. Initially, u ∈ (0, 1) workers are unemployed and 1−u
workers are employed. Unemployed workers search for a job with effort e, which is not observable. A

jobseeker finds a job at a rate f per unit of effort; thus, a jobseeker searching with effort e finds a job

with probability e · f . A fraction e · f of the u unemployed workers find jobs so the number of new hires

is h = u · e · f . After hiring, the number of employed workers is

n = 1− u+ u · e · f. (1)

Workers. Firms pay a wage w. To finance unemployment benefits B · w, the government imposes

a labor tax T . As in the public finance literature, tax incidence is entirely on the worker’s side so w

does not respond to T . Workers cannot save, borrow, or insure themselves against unemployment in

other ways. Employed workers consume their post-tax labor income ce = (1 − T ) · w and unemployed

workers consume unemployment benefits cu = B · w. A worker’s utility from consumption is v(c), an

increasing and concave function. We introduce two measures of the generosity of UI: the consumption

gain from work ∆c ≡ ce − cu and the utility gain from work ∆v(∆c, ce) ≡ v(ce) − v(ce − ∆c), an

increasing function of ∆c. Given job-finding rate f and utility gain from work ∆v, a jobseeker chooses

effort e to maximize expected utility

v(cu) + e · f ·∆v − k(e), (2)

where k(e) is the disutility from search, an increasing and convex function. The optimal effort e(f,∆v)

satisfies the first-order condition

k′(e) = f ·∆v. (3)
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As k(e) is convex, e(f,∆v) increases with ∆v and f . Workers search more when UI is less generous and

when jobs are easier to find. We define labor supply ns(f,∆v) as the employment rate when workers

search optimally:

ns(f,∆v) = 1− u+ u · e(f,∆v) · f (4)

Labor supply increases with f and ∆v as e(f,∆v) increases with f and ∆v. Labor supply is higher

when UI is less generous because search efforts are higher. Labor supply is also higher when jobs are

easier to find, mechanically and because search efforts are higher.

Job-finding rate. To capture the dependence of the job-finding rate on UI, we assume that the job-

finding rate f(∆v) is a function of the utility gain from work. Employment is also a function of the

utility gain from work:

n(∆v) = ns(f(∆v),∆v). (5)

Our framework is quite general. It nests the Baily model, a rat-race model, and a broad class of

search-and-matching models as special cases. To obtain the Baily model, we set the job-finding rate f

as a parameter, independent of ∆v. In the rat-race model, u jobseekers queue in front of a fixed number

o < u of vacant jobs. In equilibrium the job-finding rate equates the number u · e · f of new hires with o;

therefore, f = o/(u · e). To obtain the rat-race model, we set the job-finding rate as the function f(∆v)

implicitly defined by f = o/ [u · e(f,∆v)]. Finally, Section 2 determines the function f(∆v) to obtain

various search-and-matching models.

Unemployment insurance. The government chooses the consumption gain from work ∆c and the

consumption ce of employed workers. This is equivalent to choosing directly the unemployment benefit

rate B and the labor tax rate T . Given that the government chooses ∆c and ce and not ∆v directly,

it is convenient to redefine job-finding rate, labor supply, and employment as functions of (∆c, ce).

Abusing notations slightly, we define f(∆c, ce) ≡ f(∆v(∆c, ce)), ns(f,∆c, ce) ≡ ns(f,∆v(∆c, ce)),

and n(∆c, ce) ≡ n(∆v(∆c, ce)). The goal of the government is to maximize welfare

n · v(ce) + (1− n) · v(cu)− u · k(e). (6)

The government accounts for the labor market structure given by (1), the fact that effort is chosen opti-

mally by jobseekers, and the dependence of the job-finding rate on UI. The government balances its bud-

get each period by financing outlays of unemployment benefits with the labor tax: (1−n)·B ·w = n·T ·w.

5



The budget constraint implies

n · ce + (1− n) · cu = n · w. (7)

1.2 Microelasticity and macroelasticity of unemployment

To characterize the solution of the government’s problem, we need to define two elasticities:

DEFINITION 1. The microelasticity of unemployment with respect to consumption gain from work is

εm ≡ ∆c

1− n
· ∂n

s

∂∆c

∣∣∣∣
f,ce
. (8)

The macroelasticity of unemployment with respect to consumption gain from work is

εM ≡ ∆c

1− n
· ∂n
∂∆c

∣∣∣∣
ce
. (9)

Both elasticities are normalized to be positive. They are computed keeping the consumption ce of

employed workers constant; that is, ce does not adjust to meet the budget constraint of the government.

The microelasticity measures the percentage increase in unemployment 1− n when the net reward from

work ∆c decreases by 1%, taking into account jobseekers’ reduction in search effort but ignoring the

equilibrium adjustment of the job-finding rate f . It can be estimated by measuring the reduction in the

job-finding probability of an individual unemployed worker whose unemployment benefits are increased,

keeping the benefits of all other workers constant. The macroelasticity measures the percentage increase

in unemployment when the net reward from work decreases by 1%, assuming that both search effort

and job-finding rate adjust. It can be estimated by measuring the increase in aggregate unemployment

following a general increase in unemployment benefits financed by deficit spending.

To relate microelasticity εm and macroelasticity εM , we introduce an elasticity that characterizes the

response of jobseekers to a change in labor market conditions:

DEFINITION 2. The discouraged-worker elasticity εd is the elasticity of search effort with respect to

the job-finding rate:

εd ≡ f

e
· ∂e
∂f

∣∣∣∣
∆v

.

If εd > 0, workers search less when it becomes more difficult to find a job. In other words, εd > 0

captures the discouragement of jobseekers when labor market conditions deteriorate. Lemma 1 shows

that εm and εM admit a simple relationship:
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LEMMA 1. Microelasticity εm and macroelasticity εM are related by

εM = εm +
u · e

1− n
·
(
1 + εd

)
·∆c · ∂f

∂∆c

∣∣∣∣
ce
.

If the job-finding rate f does not depend on the consumption gain from work ∆c, εM = εm.

The formal proof is relegated to the Appendix. We propose an informal version of the proof here.

Consider a cut in unemployment benefits d∆c > 0. Since ∆v and f depend on ∆c, the cut cre-

ates variations d∆v and df . Using (4) and (5), we decompose the variation in employment as dn =

dn∆v + dnf where dn∆v = u · f · (∂e/∂∆v) d∆v is the variation keeping f constant and dnf =

[u · e+ u · f · (∂e/∂f)] df = u · e ·
[
1 + εd

]
df is the additional variation through a change in f . By

definition, εM = [∆c/(1− n)] · [dn/d∆c] and εm = [∆c/(1− n)] · [dn∆v/d∆c]; therefore, we obtain the

result of Lemma 1 when we multiply the decomposition dn = dn∆v + dnf by [∆c/(1− n)] · [1/d∆c].

If the job-finding rate is independent of UI, df = 0, dnf = 0, and εM = εm. But if the job-finding rate

responds to UI, df 6= 0, dnf 6= 0, and εm 6= εM . The rat-race model illustrates the difference between

εM and εm. In the rat-race model the number of jobs is fixed so εM = 0, even though εm > 0.

1.3 Formula

Proposition 1 provides a formula for the optimal replacement rate τ , defined as the ratio of unemployment

benefits cu over post-tax labor income ce. The replacement rate measures the generosity of the UI system.

PROPOSITION 1. The optimal replacement rate τ ≡ cu/ce satisfies

1

n
· τ

1− τ
=

n

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
. (10)

The Lagrange multiplier φ on the government’s budget constraint satisfies the inverse Euler equation

1

φ
=

[
n

v′(ce)
+

1− n
v′(cu)

]
. (11)

If n ≈ 1 and if the third and higher order terms of v(·) are small, the formula simplifies to

τ

1− τ
≈ ρ

εM
· (1− τ) +

[
εm

εM
− 1

]
· 1

1 + εd
·
[
1 +

ρ

2
· (1− τ)

]
, (12)

where ρ ≡ −ce · v′′(ce)/v′(ce) is the coefficient of relative risk aversion evaluated at ce. If the job-finding

rate is independent of the consumption gain from work, εm = εM , the second term in the right-hand side

of (10) and (12) vanishes, and the formulas reduce to those in Baily [1978] and Chetty [2006a].
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The formal proof is relegated to the Appendix. We propose an informal version of the proof here,

based on marginal deviations from the optimum. The Lagrangian of the government’s problem is

L = v(ce)− u [1− ef(∆c, ce)] [v(ce)− v(ce −∆c)]− uk(e) + φ [n(∆c, ce) (w −∆c)− ce + ∆c] ,

where e maximizes (2) and φ is the Lagrange multiplier on the budget constraint (7).

First, consider changes dce = dc/v′(ce) and dcu = dc/v′(cu). The changes have no first-order impact

on ∆v = v(ce)−v(cu), and hence no impact on effort e(f,∆v), job-finding rate f(∆v), and employment

n(∆v). The effect on social welfare is dSW = n·v′(ce)·dce+(1−n)·v′(cu)·dcu = dc. The effect on the

expenditure of the government is dX = −n ·dce− (1−n) ·dcu = −dc · {[n/v′(ce)] + [(1− n)/v′(cu)]}.
At the optimum, dL = dSW + φdX = 0, which establishes the inverse Euler equation (11).

Next, consider a change d∆c, keeping ce constant. We apply the envelope theorem as workers choose

effort e optimally. The first-order condition ∂L/∂∆c = 0 implies that

0 = −v′(cu) · (1− n) + ∆v · u · e · ∂f
∂∆c

∣∣∣∣
ce

+ φ ·
[
1− n+ (w −∆c) · ∂n

∂∆c

∣∣∣∣
ce

]
,

which, dividing by φ · (1− n), can be rearranged as

0 =

[
1− v′(cu)

φ

]
+
w −∆c

∆c
· ∆c

1− n
· ∂n
∂∆c

∣∣∣∣
ce

+
1

φ
· ∆v

∆c
· ∆c

1− n
· h
f
· ∂f
∂∆c

∣∣∣∣
ce
.

Lemma 1 shows that the last term, capturing the welfare effect of the variation df , is proportional to

the wedge εm − εM . Using the lemma and the definitions of εM and φ, we rewrite the equation as

0 = n ·
[
1− v′(cu)

v′(ce)

]
+
w −∆c

∆c
· εM +

1

φ
· ∆v

∆c
· 1

1 + εd
·
[
εM − εm

]
. (13)

The first term in (13) reflects the welfare effect of transferring resources from the unemployed to the

employed by increasing ∆c. As long as cu < ce and workers are risk averse, this term is negative. The

second term in (13) captures the desirable effect on the budget of reducing the unemployment rate by

increasing ∆c. This budgetary effect is due to the aggregate behavioral response of workers; hence, it

involves the macroelasticity εM . The third term in (13) captures the welfare effect due to the variation in

the job-finding rate f , which is proportional to the elasticity wedge εm − εM . Since (1/n) · τ/(1− τ) =

(w −∆c)/∆c, we rearrange (13) as (10), which completes the derivation.

If microelasticity εm and macroelasticity εM are equal, our formulas reduce to the Baily formula.

For example, formula (12) becomes τ/(1 − τ) ≈ (ρ/εm) · (1 − τ). The trade-off between the need for

insurance, captured by the coefficient of relative risk aversion ρ, and the need for incentives to search,
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captured by the microelasticity εm, appears transparently.

In a model of equilibrium unemployment, micro- and macroelasticity generally differ and our formula

presents two departures from the Baily formula. The first term in the right-hand side of formulas (10)

and (12) involves the macroelasticity εM instead of the microelasticity εm conventionally used to calibrate

optimal benefits [Chetty, 2008; Gruber, 1997]. εM captures the response of unemployment to UI when

the response of the job-finding rate is accounted for while εm only captures the response of a jobseeker’s

job-finding probability to UI, keeping the job-finding rate constant. For government budgetary purposes,

εM is the relevant parameter. A second term proportional to the wedge εm/εM − 1 also appears in the

right-hand side of formulas (10) and (12). The term accounts for the first-order welfare effect of the

employment change that arises from the equilibrium adjustment of the job-finding rate after a change in

UI. Even in the absence of any concern for insurance (if workers are risk neutral), some unemployment

insurance should be provided as long as the second term is positive (εm/εM > 1). Below, we show that

this term is a corrective tax on the externality created by job search on other jobseekers.

While equation (10) is an exact formula, equation (12) is a simpler formula obtained with the approx-

imation method of Chetty [2006a]. Formula (12) is expressed with sufficient statistics, which means that

the formula is robust to changes in the primitives of the model. Indeed the formula is valid for any utility

over consumption with coefficient of relative risk aversion ρ; any search behavior with discouraged-

worker elasticity εd and microelasticity εm; and any labor demand yielding a macroelasticity εM .

1.4 Implementing the formula using available sufficient statistics

We now combine our optimal UI formula with empirical estimates of the sufficient statistics to assess the

optimal replacement rate of UI. But before that, we show that the formula also applies in a dynamic model

in which jobs are continuously created and destroyed, and in which workers partially insure themselves

through home production. As self-insurance and labor market flows are empirically important, this result

ensures that the formula can be used to calibrate realistically the optimal replacement rate.

Formula in a dynamic model with partial self-insurance. We start by describing the dynamic model

with partial self-insurance. The analysis focuses on the steady state of the model. At the end of period

t−1, a fraction s of the nt−1 existing jobs is exogenously destroyed. Workers who lose their job become

unemployed, and start searching for a new job at the beginning of period t. At the beginning of period t,

ut = 1− (1−s) ·nt−1 unemployed workers look for a job and ht = [1− (1− s) · nt−1] ·et ·ft jobseekers

find a job. In steady state, employment n is constant so inflows to unemployment s · n equal outflows
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from unemployment [1− (1− s) · n] · e · f and

n =
e · f

s+ (1− s) · e · f
≡ ñ(e · f). (14)

As in the static model, n is only a function of the product e · f .

Workers unemployed in period t consume unemployment benefits and an amount yt produced at

home at a utility cost m(yt), an increasing and convex function. Workers choose yt to maximize the

utility when unemployed v(cet − ∆ct + yt) −m(yt). This choice minimizes the utility gain from work

v(cet ) − v(cet − ∆ct + yt) + m(yt). Let ∆vh(∆c, ce) ≡ miny {v(ce)− v(ce −∆c+ y) +m(y)} be the

optimal utility gain from work when unemployment insurance is (∆c, ce). As in the absence of home

production, the utility gain from work is a function of ∆c and ce only.

There is no time discounting. In that case, given job-finding rate f and unemployment insurance

(ce,∆c), the representative worker chooses search effort e to maximize expected per-period utility

v(ce)− [1− ñ(e · f)] ·∆vh − [1− (1− s) · ñ(e · f)] · k(e). (15)

As in the static model, the optimal search effort e(f,∆vh) is a function of the job-finding rate and utility

gain from work. We also define the labor supply ns(f,∆vh) ≡ ñ(e(f,∆vh) · f).

Finally, the job-finding rate f(∆vh) is a function of the utility gain from work. The employment rate

is n(∆vh) ≡ ns(f(∆vh),∆vh). We define the elasticities εm, εM , and εd as in Definitions 1 and 2.

The government chooses ∆c and ce to maximize the per-period social welfare (15) subject to the

per-period budget constraint (7). The government accounts for the structure (14) of the labor market,

the dependence of the job-finding rate on UI, and the fact that effort and home production are chosen

optimally by workers. The maximization problem has virtually the same structure as in the static model.

As a consequence, the formulas of Proposition 1 remain valid:

PROPOSITION 2. Consider a dynamic model in which workers have access to home production when

they are unemployed. We normalize k(·) so that k(e) = 0 at the optimum. Then in steady state with no

time discounting, the optimal replacement rate τ ≡ cu/ce satisfies

1

n
· τ

1− τ
=

n

εM
·
[
v′(ch)

v′(ce)
− 1

]
+

1

φ
· ∆vh

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
, (16)

where ch ≡ cu+y is consumption while unemployed, and ∆vh ≡ miny
{
v(ce)−

[
v(ch)−m(y)

]}
is the

difference in utility between being employed and being unemployed. The Lagrange multiplier φ on the

government’s budget constraint satisfies the inverse Euler equation 1/φ = [n/v′(ce)]+
[
(1− n) /v′(ch)

]
.
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Suppose that n ≈ 1, that m(·) is normalized so that m(y) = 0 at the optimum, and that the third and

higher order terms of v(·) are small. Then formula (16) simplifies to

τ

1− τ
≈ ρ

εM
· (1− ξ) +

[
εm

εM
− 1

]
· 1

1 + εd
·
[
1 +

ρ

2
· (1− ξ)

]
·
[

1− ξ
1− τ

]
, (17)

where ξ = ch/ce is the consumption drop upon unemployment.

The optimal UI formulas (10) and (12) carry over with minor modifications in a dynamic model in

which workers have partial access to self-insurance. These results are similar to those in Chetty [2006a],

who generalizes the analysis of Baily [1978]. The only difference is that when workers partially self-

insure, the optimal replacement rate tends to be lower than without self-insurance because the insurance

value
[
v′(ch)/v′(ce)

]
− 1 of UI is smaller as ch ≥ cu.1 The normalizations that the disutilities k(e)

from job search and m(y) from home production are zero at the optimum imply that the welfare cost of

unemployment is measured solely by the loss of consumption that it imposes.2

The optimal UI formula (17) is expressed with five sufficient statistics: microelasticity εm, macroelas-

ticity εM , discouraged-worker elasticity εd, relative risk aversion ρ, and consumption drop upon unem-

ployment ξ = ch/ce. Naturally, the consumption drop depends on the replacement rate τ = cu/ce.

Without self-insurance, ξ = τ . With partial self-insurance, around the current replacement rate τ̂ ,

ξ ≈ ξ̂+εi ·(τ− τ̂), where ξ̂ is the current consumption drop and εi ≡ −∂ch/∂∆c
∣∣
ce

is the marginal effect

of unemployment benefits on consumption when unemployed. The statistics εi measures the availability

of self-insurance: without self-insurance, εi = 1; with perfect self-insurance, εi = 0. Formula (17),

combined with this expression for ξ, links τ to seven sufficient statistics: τ̂ , ξ̂, εi, ρ, εm, εM , and εd.

Empirical estimates of τ̂ , ξ̂, εi, ρ, εm, εM , and εd. In the US, weekly unemployment benefits replace

between 50% and 70% of the last weekly pre-tax earnings of a worker [Pavoni and Violante, 2007].

Following Chetty [2008] we set the benefit rate to 50%. Since earnings are subject to a 7.65% payroll

tax, we set the current replacement rate to τ̂ = 0.5/(1− 0.0765) = 0.54.

The ratio ξ̂ captures the consumption drop upon unemployment in the current system. For food

consumption ϕ, Gruber [1997] estimates
[
ϕh − ϕe

]
/ϕe = −0.068. As emphasized by Browning and

Crossley [2001], total consumption is more elastic than food consumption to an income change. The

estimates of Hamermesh [1982] imply that the elasticity of food consumption with respect to aggre-

1The welfare effect of the adjustment of the job-finding rate is dampened because ∆vh ≤ ∆v = v(ce)− v(cu). Whether
the optimal replacement rate increases or decreases as a result depends on the sign of (εm/εM )− 1.

2This is a neutrality assumption. In the model, job search and home production impose costs but we have omitted on-the-
job labor costs. Unemployment may generate additional costs such as human capital loss or psychological cost, also omitted
here.
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gate income for unemployed workers is 0.36.3 Accordingly we expect that 1 − ξ̂ =
[
ce − ch

]
/ce =([

ϕe − ϕh
]
/ϕe
)
/0.36 = 0.068/0.36 = 0.19 and ξ̂ = 0.81.

Gruber [1997] also estimates −dϕh/d∆c = 0.27. Using again the estimates of Hamermesh [1982],

we find that dch = dϕh/0.36 and hence εi = 0.27/0.36 = 0.75. In words, increasing unemployment

benefits by $1 increases total consumption when unemployed by $0.75.

Many studies estimate the coefficient of relative risk aversion ρ. We choose ρ = 1. This is on the low

side of available estimates but is consistent with labor supply behavior [Chetty, 2004, 2006b]. Naturally

the higher ρ, the more generous optimal UI.

There is little empirical work estimating the elasticity εd of job search effort with respect to the

job-finding rate. Empirically, εd seems to be close to zero because labor market participation and other

measures of search intensity are, if anything, slightly countercyclical even after controlling for changing

characteristics of unemployed workers over the business cycle [Shimer, 2004].4

Many studies estimate the microelasticity εm (see Krueger and Meyer [2002] for a survey). The

ideal experiment to estimate εm is to offer higher unemployment benefits to a randomly selected and

small subset of individuals within a labor market and compare unemployment durations between these

treated individuals and the other jobseekers. In practice, εm is estimated by comparing individuals with

different benefits in the same labor market at a given time, while controlling for individual characteristics.

Most studies evaluate the elasticity εs of the job-finding rate with respect to benefits. This elasticity

approximately equals εm in normal circumstances.5 In US administrative data from the 1980s, the classic

study of Meyer [1990] finds an elasticity of 0.9 with few individual controls and 0.6 with more individual

controls. In a larger US administrative dataset from the early 1980s, and using a regression kink design

to better identify the elasticity, Landais [2012] finds an elasticity around 0.3.

To investigate the cyclicality of εm, it is necessary to replicate the estimation across labor markets

with different unemployment rates. The best empirical setting to do so is that of Schmieder, von Wachter

and Bender [2012b]. They use sharp variations in the potential duration of unemployment benefits by

age in Germany, population-wide administrative data, and a regression discontinuity approach to estimate

the microelasticity of unemployment with respect to the potential duration of benefit entitlement. Their

3This estimate includes food consumed at home and away from home. Hamermesh [1982] estimates that for unemployed
workers the permanent-income elasticity of food consumption at home is 0.24 while that of food consumption away from
home is 0.82. He also finds that in the consumption basket of an unemployed worker, the share of food consumption at
home is 0.164 while that of food consumption away from home is 0.041. Therefore the aggregate income elasticity of food
consumption is 0.24× [0.164/(0.164 + 0.41)] + 0.82× [0.041/(0.164 + 0.41)] = 0.36.

4The empirical finding that εd is small is consistent with the theoretical properties of εd in the dynamic model. Indeed,
Lemma A14 in the Appendix shows that εd ≈ u · {k′(e)/ [e · k′′(e)]}, so εd is small when the unemployment rate u is small.

5Equation (A35) in the Appendix gives the relationship between εm and εs in the steady-state of the dynamic model and
shows that εm ≈ εs when τ/(1− τ) ≈ 1 and u� 1, which is the empirically relevant case.
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estimates are broadly constant over the German business cycle, suggesting that εm is broadly acyclical.6

Schmieder, von Wachter and Bender [2012b] however focus on the elasticity with respect to potential

duration (instead of benefits) and in Germany (not the US). Landais [2012] focuses on the elasticity

with respect to the benefit level and also finds that the regression kink design estimates of εm are fairly

constant over the business cycle in the United States in the 1980s.7

Identifying empirically εM is inherently more difficult than estimating εm because it necessitates ex-

ogenous variations in benefits across comparable labor markets, instead of exogenous variations across

comparable individuals within a single labor market. The ideal experiment to estimate εM is to offer

higher unemployment benefits to all individuals in a randomly selected subset of labor markets and com-

pare unemployment rates between these treated labor markets and the other labor markets. Although

no study offers an ideal identification of εM , studies comparing individuals with different benefits across

labor markets—for example across US states or within state over time—capture mainly macroelasticities

[for example, Kroft and Notowidigdo, 2011; Moffitt, 1985]. Interestingly, the results of these studies sug-

gest that macroelasticities strongly decline with state unemployment rates in the US. Combined with the

finding that εm is acyclical, this finding suggests that the elasticity wedge εm/εM increases in recessions.

Alternatively, one can recover the macroelasticity εM and implement formula (17) by measuring the

elasticity wedge εm/εM and using the estimates for the microelasticity εm described above. The elasticity

wedge captures the externalities of job search on other jobseekers. Several papers have tried to directly

estimate the sign and magnitude of these externalities. Early studies find that an increase in the search

effort of some jobseekers, induced by a reduction in UI or by job training programs, has a negative effect

on the job-finding probability of other jobseekers that implies a wedge εm/εM > 1 [Burgess and Profit,

2001; Ferracci, Jolivet and van den Berg, 2010; Gautier et al., 2012; Levine, 1993].8 The estimates range

from εm/εM ≈ 1.4 in Denmark [Gautier et al., 2012] to εm/εM ≈ 2 in the US [Levine, 1993].9

More recently, using a large change in UI duration for a subset of workers in a subset of geograph-

ical areas in Austria, Lalive, Landais and Zweimüller [2012] compellingly identify significant search

6Schmieder, von Wachter and Bender [2012b] estimate the effect of potential duration on the duration of both covered
unemployment and total non-employment. They find that the elasticity of total non-employment is constant over the business
cycle (Table 4, column 2), while the elasticity of the duration of covered unemployment is slightly countercyclical (Table 4,
column 3). But the elasticity of the duration of covered unemployment is the sum of a mechanical effect (the truncation of
benefit duration at a larger number of weeks of unemployment) and a behavioral response. They show that the countercycli-
cality is driven entirely by the mechanical effect (Table 4, columns 5 and 6). Their results can therefore be interpreted as
evidence that behavioral responses are broadly constant over the business cycle.

7Note that elasticities in Schmieder, von Wachter and Bender [2012b] are smaller than our preferred elasticities in Meyer
[1990] or Landais [2012] for at least two reasons. First, elasticities with respect to the benefit level are found to be larger than
elasticities with respect to potential duration (see Landais [2012] for a side-by-side comparison in the US context). Second,
elasticities are usually found to be larger in the US than in European countries where the baseline UI system is more generous.

8In contrast, Blundell et al. [2004] do not find any significant spillover effects of a job training program in the UK.
9See Table 3, column (1), in Gautier et al. [2012] and see Table 5, column (1), in the working-paper version of Levine

[1993] that is available at http://dataspace.princeton.edu/jspui/handle/88435/dsp01wh246s14w.
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externalities that translate into a wedge εm/εM ≈ 1.35 > 1. Crépon et al. [2012] analyze a large ran-

domized field experiment in France in which some young educated jobseekers are treated by receiving

job placement assistance. The experiment has a double-randomization design: (1) some areas are treated

and some are not, (2) within treated areas some jobseekers are treated and some are not. Interpreting the

treatment as an increase in search effort from eC for control jobseekers to eT for treated jobseekers, their

empirical results for long-term employment translate into a wedge εm/εM = 1.58.10

Crépon et al. [2012] also investigate the cyclicality of elasticity wedge εm/εM . They estimate that

the wedge is larger in geographical areas and time periods with higher unemployment. For example,

εm/εM = 14.5/(14.5 − 7.6) = 2.10 during the 2008-2009 recession in areas with high unemployment,

compared with εm/εM = 3.5/(3.5−0.9) = 1.35 otherwise. The wedge for men in bad areas, bad periods

is even higher: εm/εM = 23.9/(23.9 − 14.6) = 2.57.11 As an important caveat, those estimates are not

extremely precise and vary somewhat across specifications.

Optimal replacement rate τ . Table 1 illustrates the optimal replacement rate obtained with our for-

mula and plausible empirical estimates of the sufficient statistics. Because the value of εm, εm/εM , and εd

are uncertain, the table presents optimal replacement rates for a range of plausible estimates. We consider

two values for εd: 0 and 0.5. Column (1) considers εm/εM = 1 as in the Baily model whereas column

(2) considers εm/εM = 1.5 based on our discussion of empirical evidence above. Column (3) considers

εm/εM = 1.2 and column (4) considers εm/εM = 2.5, in expansions and recessions. To span the range

of available estimates, Panels A, B, and C consider the cases εm = 0.3, εm = 0.6, and εm = 0.9.

Three results are noteworthy in columns (1) and (2). First, consistent with Gruber [1997], optimal

replacement rates in the Baily model in column (1) are fairly low, and are actually below current replace-

ment rates even for a low value εm = 0.3. Second, introducing a wedge εm/εM = 1.5 as in column (2)

increases the replacement rate across all rows by about 6-10 percentage points. The percentage point in-

creases are somewhat higher for higher values of εm. Thus, our extension of the Baily model has sizable

effects on the optimal replacement rate for reasonable empirical estimates. Third, the elasticity εd has

only modest effects on the optimal replacement rate, at least within the range of estimates considered.

Columns (3) and (4) illustrate the consequences of the fluctuations of εm/εM over the business cy-

10Compared to control jobseekers in the same area, treated jobseekers face a higher job-finding probability:
[
eT − eC

]
·

fT = 5.7%. But compared to control jobseekers in control areas, control jobseekers in treated areas face a lower job-finding
probability: eC ·

[
fT − fC

]
= −2.1% (Table 10, column 1, panel B in Crépon et al. [2012]). Therefore the increase

in the job-finding probability of treated jobseekers in treated areas compared to control jobseekers in control areas is only[
eT · fT

]
−
[
eC · fC

]
= 5.7− 2.1 = 3.6%. By definition, the microelasticity εm is proportional to

[
eT − eC

]
· fT and the

macroelasticity εM is proportional to
[
eT · fT

]
−
[
eC · fC

]
, implying a wedge εm/εM = 5.7/3.6 = 1.58.

11Those estimates for all workers and long-term employment outcomes are reported in Table 11, panel A, column (2) in
Crépon et al. [2012]. Estimates for men are in column (4).
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Table 1: Optimal replacement rate τ for different values of sufficient statistics

Baily model Average Expansion Recession
εm/εM = 1 εm/εM = 1.5 εm/εM = 1.2 εm/εM = 2.5

(1) (2) (3) (4)

Panel A: εm = 0.3

εd = 0 0.49 0.56 0.52 0.63
εd = 0.5 0.49 0.55 0.52 0.62

Panel B: εm = 0.6

εd = 0 0.41 0.49 0.45 0.58
εd = 0.5 0.41 0.48 0.44 0.56

Panel C: εm = 0.9

εd = 0 0.35 0.46 0.40 0.56
εd = 0.5 0.35 0.44 0.39 0.53

Notes: The table presents the optimal replacement rate τ = cu/ce for a range of values for εm, εm/εM , and εd. The
replacement rate is obtained by solving

τ

1− τ
=

1

εM
· 1− ξ

ξ
+

[
εm

εM
− 1

]
· 1

1 + εd
· ln(1/ξ)

1− τ
.

This formula is (16) when v(c) = ln(c) (corresponding to a coefficient of relative risk aversion ρ = 1), n ≈ 1, and we
normalize m(y) = 0 at the optimum. (The approximated formula (17) generates comparable estimates.) In the formula,
εm and εM are the micro- and macroelasticity of unemployment with respect to the consumption gain from work, εd is the
elasticity of search effort with respect to the job-finding rate, ξ = ξ̂+εi ·(τ− τ̂) is the consumption drop upon unemployment.
As discussed in the text, we set the current replacement rate τ̂ = 0.54, the current consumption drop ξ̂ = 0.81, the marginal
consumption effect of unemployment benefits εi = 0.75.

cle. We assume that all the other parameters remain constant over the business cycle.12 The optimal

replacement rate is countercyclical: it increases sharply from column (3), an expansion, to column (4), a

recession. Two other results are interesting. In expansions, when εm/εM ≈ 1, the optimal replacement

rate is close to the replacement rate from the Baily formula in column (1). Hence, the Baily formula

offers an excellent approximation of the optimal replacement rate in expansions. But in recessions, when

εm/εM = 2.5, the optimal replacement rate increases by 15 to 20 percentage points. Hence, the Baily

formula no longer offers a good approximation of the optimal replacement rate in recessions.

12As discussed above, it seems that the microelasticity is fairly constant over the business cycle. But the other parameters
could vary over the business cycle. For instance, if the unemployed were more likely to deplete their savings in recessions, the
consumption-smoothing benefits of UI would increase in recessions, pushing for countercyclical UI. Kroft and Notowidigdo
[2011] find however fairly constant consumption smoothing benefits of UI over the business cycle, as assumed in Table 1.
More empirical work on this important issue would be valuable [Chetty and Finkelstein, 2012].
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2 A Macroeconomic Model of UI

Available empirical evidence suggest that εm/εM > 1. From a policy perspective, this finding is impor-

tant because it implies that the Baily formula, conventionally used to calibrate optimal UI, underestimates

the optimal replacement rate of UI. This finding is also important from a theoretical perspective because

it is not consistent with the behavior of the standard macroeconomic model of UI. Indeed, the standard

model is a search-and-matching model with Nash bargaining that predicts εm/εM < 1. To explain the

finding that εm/εM > 1, we develop an alternative macroeconomic model of UI by building on the

search-and-matching model of Michaillat [2012a]. In our model, εm/εM is not only above 1 but also

countercyclical. In addition, the macroelasticity εM is procyclical. Applying formula (10) to our model,

we show theoretically that the optimal replacement rate of UI is countercyclical.

2.1 The search-and-matching model with Nash bargaining

We begin by analyzing the implications for UI of the search-and-matching model with Nash bargain-

ing.13 This model is the canonical search-and-matching model and the standard model used by macroe-

conomists to analyse optimal UI. While the analysis usually abstracts from aggregate shocks, several

recent papers use the model to study optimal UI over the business cycle.14,15 For instance, the model of

Mitman and Rabinovich [2011] is closely related to that presented below.16 To be consistent with Section

1, we confine our analysis to a static model although our results hold in a dynamic model.

Matching frictions. Initially, u ∈ (0, 1) workers are unemployed and search for a job with effort e.

Firms post o vacancies to recruit unemployed workers. The number of matches is given by a constant-

returns matching function h(e · u, o) of aggregate search effort e · u and vacancies o, differentiable

and increasing in both arguments, with the restriction that h(e · u, o) ≤ u. Conditions on the labor

market are summarized by labor market tightness θ ≡ o/(e · u). A jobseeker finds a job at a rate

f(θ) = h(e · u, o)/(e · u) = h(1, θ) per unit of search effort. It is easy for jobseekers to find jobs when

the labor market is tight because the job-finding rate f(θ) increases with θ. A vacancy is filled with

probability q(θ) = h(e · u, o)/o = h (1/θ, 1). It is difficult for firms to find workers when the labor

13See Pissarides [2000] for an overview of search-and-matching models in which wages are determined by Nash bargaining.
14Analyses of optimal UI that abstract from aggregate shocks and hence business cycles include Fredriksson and Holmlund

[2001], Cahuc and Lehmann [2000], Coles and Masters [2006], and Lentz [2009].
15A few papers, such as Kiley [2003], Sanchez [2008], Kroft and Notowidigdo [2011], and Andersen and Svarer [2011],

study optimal UI over the business cycle in partial-equilibrium models in which the job-finding rate is a fixed parameter.
16Mitman and Rabinovich [2011] go beyond our analysis because they determine jointly the optimal level and the optimal

expected duration of unemployment benefits. (Our theory focuses only on the optimal level of benefits.) However, since their
analysis is more complex, they do not obtain theoretical results and must rely on simulation results. Another study of optimal
UI over the business cycle in a search-and-matching model with Nash bargaining is Moyen and Stähler [2009].
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market is tight because the vacancy-filling rate q(θ) decreases with θ. It costs r · a to post a vacancy,

where r > 0 measures the resources spent on recruiting by firms and a is the level of technology. We

assume away randomness at the firm level: a worker is hired with certainty by opening 1/q(θ) vacancies

and spending r · a/q(θ). When the labor market is tight, q(θ) is low and recruiting is costly.

Firms. The representative firm takes labor n as input. It produces a consumption good according to

the production function a · g(n) = a · nα, where α > 0 measures the marginal returns to labor and a > 0

is the level of technology, which proxies for the position in the business cycle. The wage w is taken as

given by the firm. The firm sells its production on a perfectly competitive market. We normalize the

price of the good to 1. The firm starts with 1− u workers. Given labor market tightness θ, technology a,

and wage w, the firm chooses employment n to maximize real profit

π = a · g(n)− w · n− r · a
q(θ)

· [n− (1− u)] .

The first-order condition of this maximization is

g′(n) =
w

a
+

r

q(θ)
. (18)

The model makes the following assumption on the production function g(n):

ASSUMPTION 1. The production function has constant marginal returns to labor: α = 1.

Under this assumption, the first-order condition (18) becomes 1 = (w/a) + r/q(θ).

Wage setting. Wages are set once worker and firm have matched. Since the costs of search are sunk at

the time of matching, a surplus arise from each worker-firm match. Any wage sharing the surplus could

be an equilibrium wage. The model makes the following assumption on the wage:

ASSUMPTION 2. The wage w is determined using the generalized Nash solution to the bargaining

problem faced by firm-worker pairs. The bargaining power of workers is β ∈ (0, 1).

The Nash bargaining solution allocates a fraction β of the surplus of the match to the worker and

the rest to the firm. Assume a log utility function: v(c) = ln(c). Then, as showed in Appendix B, the

bargained wage is

w

a
= − β

1− β
· 1

∆v
· r

q(θ)
. (19)
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Equilibrium representation. To illustrate how the job-finding rate f(θ) responds to a change in UI,

we propose a new representation of the labor market equilibrium using a labor supply-labor demand

diagram in a price θ-quantity n plan. This labor supply-labor demand diagram is useful to illustrate the

impact of a broad range of labor market policies and aggregate shocks. Section 4 uses the diagram to

discuss the impact of aggregate demand shocks and shocks to disutility of search.17

In the search-and-matching model, the labor supply (4) becomes

ns(f(θ),∆v) = 1− u+ u · e(f(θ),∆v) · f(θ),

which gives the employment rate after matching when jobseekers search optimally for a given labor

market tightness θ. The labor supply increases with θ because f(θ) increase with θ and e(f,∆v) increase

with f . The labor supply is concave in θ if and only if (1 − η) · (1 + κ)/κ < 1, where 1 − η ≡
θ · f ′(θ)/f(θ) > 0 and κ ≡ e · k′′(e)/k′(e).18

Combining the expression (19) for the bargained wage with the firm’s first-order condition (18) yields

the following the labor demand equation:

r

q(θ)
=

[
1 +

β

1− β
· 1

∆v

]−1

. (20)

This equation defines a perfectly elastic labor demand θd(∆v), which depends on the utility gain from

work ∆v but not on technology. Keeping ∆v constant, there are no fluctuations in tightness over the

business cycle.19 In addition, labor demand θd(∆v) increases with ∆v since q(θ) decreases with θ.

When UI decreases, the outside option of jobseekers decreases, so the bargained wage decreases. As a

consequence, it is more profitable for firms to hire workers, and firms are willing to hire workers for a

higher labor market tightness.

In presence of matching frictions, labor market tightness acts as a price equilibrating labor supply and

labor demand. The wage cannot equilibrate supply and demand because the wage is set only once worker

17Michaillat [2012b] uses the diagram to discuss the effect of public employment on private employment and total employ-
ment over the business cycle.

18See Lemma A11 in the Appendix. If jobseekers exert a constant search effort irrespective of labor market tightness
(κ = +∞), then the labor supply is concave for any parameter values.

19In a number of variations of the search-and-matching model with Nash bargaining, Blanchard and Galı́ [2010] and others
also prove that labor market tightness does not fluctuate over the business cycle. In some variations of the model, tightness
does fluctuate; but under commonly used parameter calibrations, the fluctuations are tiny compared to the data [Shimer, 2005].
The calibration strategy of Hagedorn and Manovskii [2008], however, generates realistic fluctuations. This is the calibration
strategy followed by Mitman and Rabinovich [2011] to study optimal UI over the business cycle.
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and firm have met. Here, equilibrium tightness is determined by the perfectly elastic labor demand:

θ(∆v) = θd(∆v).

Equilibrium employment can be directly read off the labor supply curve: n(∆v) = ns(f(θ(∆v)),∆v).

Figure 1(a) depicts the equilibrium of the search-and-matching model with Nash bargaining.

Wedge between microelasticity and macroelasticity. Proposition 3 establishes the macroelasticity

εM is greater than the microelasticity εm in the search-and-matching model with Nash bargaining:

PROPOSITION 3. Under Assumptions 1 and 2, εm/εM < 1.

Figure 1(a) provides intuition in a price θ-quantity n diagram. When UI falls, jobseekers search

more. The labor supply shifts outwards, which increases employment by εm. In addition when UI falls,

jobseekers face a worse outside option. The wage obtained by Nash bargaining falls, which raises labor

demand and equilibrium labor market tightness. Employment rises further, and the total increase in

employment is measured by εM . Clearly, εM > εm.

If, as Hall [2005], we abandon the Nash bargaining assumption and assume that wages are rigid

instead, then εm = εM . This property is illustrated in Figure 1(b). It arises because labor demand is

perfectly elastic and independent of UI, such that equilibrium tightness is independent of UI.

The property that εm < εM is inconsistent with the empirical evidence discussed in Section 1.4. But

the evidence is obtained by analyzing the short-run response of the labor market to a change in UI. If

wages take time to adjust to a change in UI, the long-run response of the labor market may be different

and εM could be larger than εm in the long run. Therefore, while the search-and-matching model with

Nash bargaining may not be appropriate to study the effects of UI over the business cycle, it may well

provide a good description of the effects of UI in the long run. Indeed the labor supply literature finds

that macroelasticities tend to be larger than microelasticities because frictions attenuate labor supply

responses in the short run [Chetty, 2012].

2.2 An alternative search-and-matching model

To obtain εm/εM > 1, we develop a macroeconomic model of UI that replaces Assumptions 1 and 2 with

the assumptions on the production function and wage schedule made by Michaillat [2012a]:

ASSUMPTION 3. The production function has diminishing marginal returns to labor: α < 1.

ASSUMPTION 4. The wage schedule is rigid: w = ω · aγ , where ω ∈ (0,+∞) and γ < 1.
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Assumption 3 is motivated by the observation that, at business cycle frequency, some production

inputs are slow to adjust. Assumption 4 exploits the indeterminacy, highlighted by Hall [2005], of the

equilibrium wage in search-and-matching models. The wage schedule in Assumption 4 borrows from

Blanchard and Galı́ [2010]. Wages are rigid in the sense that (i) they only partially adjust to a change

in technology, and (ii) they do not respond to a change in UI. Rigidity (i) is measured by the parameter

γ < 1; if γ = 0, real wages do not respond to technology and are completely fixed over the cycle.

Both rigidities are empirically grounded. First, many historical, ethnographic, and empirical studies

document wage rigidity over the business cycle [for example, Bewley, 1999; Jacoby, 1984; Kramarz,

2001]. Second, empirical studies consistently find that reemployment wages do not respond to changes

in unemployment benefits [Card, Chetty and Weber, 2007; Schmieder, von Wachter and Bender, 2012a].

Equilibrium representation. The labor supply is the same as in the model with Nash bargaining. But

the labor demand is different. The first-order condition (18) implicitly defines labor demand nd(θ, a).

Under Assumption 3, g′(n) decreases with n, q decreases with θ, so labor demand nd(θ, a) decreases

with θ. When the labor market is tight, it is expensive for firms to recruit, depressing labor demand.

Under Assumption 4, w/a decreases with a so nd(θ, a) increases with a. When technology is high,

wages are relatively low, stimulating labor demand.

Once again, in presence of matching frictions, labor market tightness acts as a price equilibrating

labor supply and labor demand. Equilibrium tightness θ(∆v, a) is implicitly defined by

ns(f(θ),∆v) = nd(θ, a). (21)

Equilibrium employment n(∆v, a) is given by the intersection of the labor supply with the labor demand.

As in the generic model of Section 1, the equilibrium job-finding rate f(θ(∆v, a)) is a function of the

utility gain from work ∆v.

How does tightness equilibrate labor supply and labor demand? If labor demand is above labor

supply, an increase in θ reduces labor demand by increasing the marginal recruiting cost; it increases

labor supply by increasing the job-finding rate as well as optimal search effort; until labor supply and

labor demand are equalized. In practice, the equilibrium is reached through posting of vacancies. For

instance if labor demand is above labor supply at the current tightness, the number of vacancies posted

by firms is not sufficient to hire the desired number of workers. Firms post more vacancies, increasing

tightness. The job-finding rate rises so more jobseekers find a job and jobseekers search more. We

observe a movement along the labor supply curve. At the same time, the vacancy-filling probability

falls, hiring costs rise, and the employment desired by firms fall. We observe a movement along the
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labor demand curve. To conclude, firms close the gap between supply and demand by posting vacancies.

Figures 1(c) and 1(d) represent the equilibrium in our model. The figures plot labor demand curves

in expansions (panel (c)) and recessions (panel (d)). They also plot labor supply curves for high and

low unemployment benefits (dotted and solid line). Because of diminishing marginal returns to labor

(Assumption 3), the labor demand curve is downward sloping. Because of wage rigidity (Assumption 4),

the labor demand shifts inward when technology drops between panel (c) and panel (d).

Jobs are rationed in recessions in the sense that the labor market does not clear and some unemploy-

ment remains even as unemployed workers exert an arbitrarily large search effort. Job rationing appears

Figure 1(d) because labor demand cuts the x-axis for employment strictly below 1. As labor demand

intersects the x-axis below full employment, it is unprofitable for firms to hire some workers even if

recruiting is costless at θ = 0. Even if workers searched infinitely hard, shifting labor supply outwards

such that θ → 0, firms would never hire all the workers. The mechanism creating job rationing is simple.

After a negative technology shock the marginal product of labor falls but rigid wages adjust downwards

only partially, so that the labor demand shifts inward (from panel (c) to panel (d)). If the adverse shock is

sufficiently large, the marginal product of the least productive workers falls below the wage. It becomes

unprofitable for firms to hire these workers even if recruiting is costless at θ = 0.

2.3 Wedge between microelasticity and macroelasticity

Formula (10) adds to the Baily formula a second term proportional to the wedge εm/εM−1. Proposition 4

establishes that εm/εM − 1 > 0 in our model:

PROPOSITION 4. Under Assumption 4, the elasticity wedge εm/εM admits a simple expression:

εm

εM
= 1 + α · (1− α) · 1− η

η
· 1 + κ

κ
· q(θ)
r
· h
n
· nα−1,

where 1 − η ≡ θ · f ′(θ)/f(θ) > 0 and −η ≡ θ · q′(θ)/q(θ) < 0 and κ ≡ e · k′′(e)/k′(e). Under

Assumption 3, the macroelasticity is strictly smaller than the microelasticity: εm/εM > 1.

Proposition 4, combined with formula (10), justifies the public provision of UI. Small private insurers

maximize profits by using the Baily formula to determine how much insurance to provide their clients

with. They solely take into account the microelasticity of unemployment and do not internalize search

externalities. Since εm/εM > 1, the replacement rate given by the Baily formula is below the optimal

replacement rate and small private insurers underprovide UI. Hence, the government would improve

welfare by complementing the private provision of UI.
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To understand why macroelasticity εM is smaller than microelasticity εm, consider the cut in un-

employment benefits d∆c > 0. The change creates variations d∆v > 0, dθ, df , and dn so that

all equilibrium conditions continue to be satisfied. As in the discussion of Lemma 1, we decom-

pose the increase in employment as dn = dn∆v + dnf where dn∆v ≡ u · f · (∂e/∂∆v) d∆v and

dnf ≡ [u · e+ u · f · (∂e/∂f)] df . Jobseekers search more, increasing their job-finding probability at

the current job-finding rate by dn∆v > 0. In Figure 1(c), the cut in benefits shifts the labor supply curve

outward and the interval A–C represents dn∆v. But the job-finding rate f(θ) does not remain constant.

If it did, labor market tightness θ and marginal recruiting cost r/q(θ) would remain constant. Wages are

rigid (Assumption 4) so they respond neither to the change in benefits or to possible changes in equi-

librium employment and tightness; therefore, wages remain constant. Consequently, the marginal cost

of labor would remain constant. At the same time, firms would need to absorb the dn∆v additional job-

seekers who would find a job. Since the production function has diminishing marginal returns to labor

(Assumption 3), the marginal productivity of these additional workers would be lower. Firms would face

the same marginal cost of labor but a lower marginal product of labor. This would not be optimal. Thus,

firms reduce the number of vacancies that they post, reducing labor market tightness by dθ < 0 and job-

finding rate by df < 0. A lower job-finding rate mechanically reduces the number of new hires and also

leads jobseekers to search less. The corresponding reduction in employment is dnf < 0, represented by

interval C–B in Figure 1(c). The increase dn > 0 in equilibrium employment, represented by the interval

A–B in Figure 1(c), is therefore smaller than the increase dn∆v and εm/εM = dn∆v/dn > 1.

2.4 Optimal replacement rate over the business cycle

The previous results do not require any assumptions on the functional forms of utility functions and

matching function. They only involve the local elasticities η, ρ, and κ. To characterize the cyclicality of

the microelasticity, the macroelasticity, and the optimal replacement rate, we make an assumption that

controls how the local elasticities fluctuate over the business cycle:

ASSUMPTION 5. The utility functions are isoelastic: v(c) = ln(c), k(e) = ωk · e1+κ/(1 + κ). The

matching function is Cobb-Douglas: h(e · u, o) = ωh · (e · u)η · o1−η.

The parameters ωk > 0 and ωh > 0 measure the cost of search and the effectiveness of matching.

To determine how the elasticities and the optimal replacement rate vary over the business cycle, we

must also specify the level of initial unemployment associated with each technology level:

ASSUMPTION 6. For any technology level, initial unemployment u is such that in equilibrium n −
(1− u) = s · n for s ∈ (0, 1).
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(d) Our model in a recession

Figure 1: Equilibrium of various search-and-matching models in a price θ-quantity n diagram

The equilibrium is determined given initial unemployment u and technology a. Assumption 6 ensures

that in equilibrium, the fraction [n− (1− u)] /n of new hires in the workforce is constant over the cycle.

The assumption replicates in our static model a feature of dynamic search-and-matching models, which

assume a constant job-destruction rate s independent of technology.20

Proposition 5 establishes the cyclicality of εm/εM and εM in our model with job rationing:

PROPOSITION 5. Under Assumptions 3, 4, 5, and 6, the elasticity wedge εm/εM is countercyclical

20Pissarides [2000] and many others assume a constant job-destruction rate s and balanced labor market flows. When flows
are balanced, firms hire each period as many workers as they lose. Therefore the fraction of new hires in the workforce is
constant over the cycle.
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and the macroelasticity εM is procyclical:

∂
(
εm/εM

)
∂a

∣∣∣∣
τ

< 0 and
∂εM

∂a

∣∣∣∣
τ

> 0.

The proposition says that the macroelasticity is larger in expansions than in recessions: in reces-

sions, jobs are acutely rationed and search efforts have little influence on aggregate unemployment. The

proposition also says that the wedge between micro- and macroelasticity is smaller in expansions than

in recessions: when jobs are acutely rationed, searching more mechanically increases one’s job-finding

probability but decreases others’ job-finding probability as in a rat race.

These results are illustrated in Figure 1. Figure 1(c) represents an expansion. Wages are low com-

pared to technology so the labor demand is high. In equilibrium, labor market tightness is high and

unemployment is low. The cut in unemployment benefits d∆c > 0 discussed after Proposition 4 shifts

the labor supply curve outward. At the current job-finding rate, jobseekers search more, increasing their

probability of finding a job by dn∆v > 0, represented by the interval A–C. To avoid absorbing the dn∆v

additional jobseekers who would find a job if the job-finding rate remained the same, firms reduce the

number of vacancies posted by dv < 0. Since tightness is high, the matching process is congested by

the large number of vacancies; therefore the reduction dv only has a small impact (∂h/∂v) dv < 0 on

the number of matches.21 It appears that vacancies only have a small effect on the number of matches

because the labor supply is steep at the equilibrium point. As a result, firms have to reduce drastically

the number of vacancies posted to avoid absorbing the additional jobseekers. At the new equilibrium,

tightness is much lower but dn is close to dn∆v. Therefore, εM is close to εm. In recessions, technol-

ogy falls but the wages fall only partially because of wage rigidity (Assumption 4); therefore, the labor

demand curve shifts inward from Figure 1(c) to Figure 1(d). In equilibrium, labor market tightness falls

and unemployment rises. Since tightness is low, the matching process is congested by the large number

of jobseekers. Vacancies have a large effect on the number of matches because the labor supply is flat at

the equilibrium point. As a result, firms barely reduce the number of vacancies posted to avoid absorbing

the dn∆v additional jobseekers. At the new equilibrium, tightness is barely lower but dn is much lower

than dn∆v. Therefore, εM is much lower than εm.

Proposition 6 establishes the cyclicality of optimal UI in our model with job rationing:

PROPOSITION 6. Suppose that formula (10) defines the optimal replacement rate as an implicit func-

tion τ(a) ∈ (0, 1) of technology a ∈ (0,+∞). Suppose Assumptions 3, 4, 5, and 6 hold, and that

n > 1/2 and (α/η) · s · (1− η) · (κ+ 1) /κ ≤ 1. Then the optimal replacement rate is countercyclical:

21Formally, (∂h/∂v) dv = (1− η) · q(θ)dv < 0 where q′(θ) < 0 because of the congestion effects.
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for any a < a∗, τ(a) > τ(a∗).

The proposition says that the optimal replacement rate is more generous in recessions than in ex-

pansions. The formal proof, relegated in the Appendix, exploits the exact optimal UI formula, given

by (10). But we can sketch the proof informally using the approximated optimal UI formula, given

by (12). Proposition 5 shows that the macroelasticity εM decreases in recessions. Hence, the first term

in (12) increases. In recessions the marginal budgetary cost of UI is small because a higher UI only

increases unemployment negligibly. Proposition 5 also shows that the wedge εm/εM increases in reces-

sions. Hence, the second term in (12) increases. The wedge measures the welfare cost of a negative

rat-race externality imposed by unemployed workers on others. The externality arises because unem-

ployed workers search taking the job-finding rate as given, and do not internalize their influence on the

others’ job-finding rate. UI corrects the externality by discouraging search. In recessions the externality

is acute so the marginal benefits of UI are high. As both terms in formula (12) increase, τ increases.

The formal proof is more complex because n enters formula (10). The results of Proposition 5

are not sufficient to prove the proposition. We need to prove that εM is sufficiently procyclical and

that εm/εM is sufficiently countercyclical to compensate the fluctuations in n. To do so, we need two

additional assumptions. The assumption n > 1/2 is needed because if technology a is so low that

most workers become unemployed, it becomes optimal to reduce the replacement rate τ . Suppose all

workers are unemployed (n = 0, θ = 0). Providing more consumption to employed workers has no

budgetary cost but it provides incentives for unemployed workers to search more, which could raise

employment. Clearly, it is optimal to reduce the generosity of UI. In fact Lemma A9 in the Appendix

establishes that when a → 0 then n → 0 and τ → 0. Hence, for very low levels of technology and

employment, the optimal replacement rate is bound to increase with technology. The assumption that

(α/η) · s · (1− η) · (κ+ 1) /κ ≤ 1 is needed to ensure that the labor supply is convex enough. As shown

by comparing Figures 1(c) and 1(d), the convexity of labor supply in the (n, θ) plane drives the cyclicality

of elasticities. The assumption is satisfied for reasonable calibrations because s, which stands for a job-

destruction rate, is tiny. The calibration of Table 2 implies (α/η) · s · (1− η) · (κ+ 1) /κ = 0.0025� 1.

2.5 Quantitative analysis in a dynamic model with partial self-insurance

In this section, we calibrate and simulate a dynamic version of the model just presented to test whether

it can realistically capture fluctuations in εm/εM and deliver optimal UI predictions consistent with our

implementation presented in Table 1. For realism, we cast the static model into a dynamic environment

and we add partial self-insurance through home production as we did in Section 1.4. Numerically, we

obtain realistic fluctuations in εm/εM and we find that optimal UI increases significantly in recessions.
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Model. The dynamic model is described in Appendix C. We only provide an overview here. Technol-

ogy follows a stochastic process {at}+∞
t=0 . As in Section 1.4, there are job creations and job destructions

on the labor market and workers can partially self-insure with home production while unemployed.

Given government policy and job-finding rate {cet , cut , ft}
+∞
t=0 , the representative worker chooses job-

search effort and home production {et, yt}+∞
t=0 to maximize expected utility

E0

+∞∑
t=0

δt · {(1− nst) · [v(cut + yt)−m(yt)] + nst · v(cet )− [1− (1− s) · nt−1] · k(et)} ,

subject to the law of motion for the employment probability nst :

nst = (1− s) · nst−1 +
[
1− (1− s) · nst−1

]
· et · f(θt).

E0 is the mathematical expectation conditioned on time-0 information, δ < 1 is the discount factor.

The representative firm is owned by a risk-neutral entrepreneur. Given wage, labor market tightness,

and technology {wt, θt, at}+∞
t=0 the firm chooses employment

{
ndt
}+∞
t=0

to maximize expected profit

E0

+∞∑
t=0

δt ·
{
at · g(ndt )− wt · ndt −

r · at
q(θt)

·
[
ndt − (1− s) · ndt−1

]}
,

where ndt − (1− s) · ndt−1 ≥ 0 is the number of hires in period t.

Wages follow an exogenous process {wt}+∞
t=0 defined by wt = ω · aγt . Labor market tightness {θt}+∞

t=0

equalizes labor demand
{
ndt
}+∞
t=0

to labor supply {nst}
+∞
t=0 : nt ≡ ndt = nst .

Given technology {at}+∞
t=0 , the government chooses consumption {cut }

+∞
t=0 of unemployed workers

and consumption {cet}
+∞
t=0 of employed workers to maximize social welfare subject to the period-by-

period budget constraint

nt · wt = nt · cet + (1− nt) · cut . (22)

Calibration. We calibrate all parameters of the model at a weekly frequency as shown in Table 2.22

We calibrate as many parameters as possible directly from microevidence and macrodata for the US for

the December 2000–June 2010 period. Following Michaillat [2012a] we set δ = 0.999, s = 0.0094,

r = 0.32 ·ω. We use a Cobb-Douglas matching function h(e · u, o) = ωh · (e · u)η · o1−η and set η = 0.7,

in line with empirical evidence [Petrongolo and Pissarides, 2001; Shimer, 2005]. As in Table 1, we set

22This exercise is only illustrative of the magnitudes of the optimal policy, because our model abstracts from a number of
relevant issues and there remains considerable uncertainty about the calibration of some parameters, such as the coefficient of
relative risk aversion.
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Table 2: Steady-state targets and parameter values used in simulations (weekly frequency)

Steady-state target Value Source

â Technology 1 Normalization
ê Effort 1 Normalization
l̂s Labor share 0.66 Convention
û Unemployment 5.9% JOLTS, 2000–2010
θ̂ Labor market tightness 0.47 JOLTS, 2000–2010
τ̂ Replacement rate cu/ce 54% Pavoni and Violante [2007], Chetty [2008]
ξ̂ Consumption drop ch/ce 81% Hamermesh [1982], Gruber [1997]
εi Marginal consumption drop dch/dcu 0.75 Hamermesh [1982], Gruber [1997]
εs Elasticity of unemployment hazard rate 0.90 Meyer [1990]

Parameter Value Source

δ Discount factor 0.999 Corresponds to 5% annually
ρ Coefficient of relative risk aversion 1 Chetty [2006b]
η Unemployment-elasticity of matching 0.7 Petrongolo and Pissarides [2001]
γ Real wage flexibility 0.5 Pissarides [2009], Haefke, Sonntag and van Rens [2008]
r Recruiting cost 0.21 Barron, Berger and Black [1997], Silva and Toledo [2009]
s Job-destruction rate 0.94% JOLTS, 2000–2010
ωh Efficacy of matching 0.19 Matches steady-state targets
α Marginal returns to labor 0.67 Matches steady-state targets
ω Steady-state real wage 0.67 Matches steady-state targets
ωm Level of home-production cost 11.0 Matches steady-state targets
µ Convexity of home-production cost 1.01 Matches steady-state targets
ωk Level of search disutility 0.20 Matches steady-state targets
κ Convexity of search disutility 3.15 Matches steady-state targets

ρ = 1. We calibrate the wage flexibility γ based on estimates obtained in microdata. The flexibility

of wages in newly created jobs mostly drives job creation. The best estimate of this flexibility using

US data is provided by Haefke, Sonntag and van Rens [2008]. Using panel data following production

and supervisory workers over the 1984–2006 period, they estimate an elasticity of total earnings of job

movers with respect to productivity of 0.7. If the composition of jobs accepted by workers improves in

expansions, 0.7 is an upper bound on the elasticity of wages in newly created jobs [Gertler and Trigari,

2009]. A lower bound on this elasticity is the elasticity of wages in existing jobs, estimated in the

0.1–0.45 range with US data [Pissarides, 2009]. We set γ = 0.5, in the range of plausible values.

We calibrate the remaining parameters by matching the steady-state value of variables in the model

to the average value of their empirical counterparts. We normalize average technology and average effort

to â = 1 and ê = 1. We compute average labor market tightness using the seasonally-adjusted, monthly

series of vacancy levels collected by the Bureau of Labor Statistics (BLS) in the Job Openings and

Labor Turnover Survey (JOLTS) and of unemployment levels computed by the BLS from the Current
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Population Survey (CPS). For the 2000–2010 period, θ̂ = v̂/ (ê · û) = 0.47. Similarly, we find û = 5.9%,

which implies n̂ = 0.950. As in Table 1, we set τ̂ = 54%.

To calibrate the matching efficacy ωh we exploit the steady-state relationship u · e · f(θ) = s · n =

s · (1−u)/(1−s). We find ωh = [s/(1− s)] · [(1− û)/ (ê · û)] · θ̂η−1 = 0.19. We target the conventional

labor share of l̂s ≡ (ŵ · n̂) /n̂α = 0.66. The firm’s profit-maximization condition (equation (A14) in the

Appendix) implies α = l̂s ·
(

[1− δ · (1− s)] · 0.32/q(θ̂) + 1
)

= 0.67. The condition also allows us to

recover ω = 0.67, and r = 0.32 · ω = 0.21.

Next, we calibrate the home-production parameters m(y) = ωm · (y1+µ − ŷ1+µ) /(1 + µ). Equa-

tion (A32) in Appendix C shows that µ is related to the statistics εi and ξ introduced earlier. As in

Table 1, we set εi = 0.75 and ξ = 0.81, which implies µ = 1.01. The budget constraint (22) yields aver-

age home production ŷ = 0.17 and average unemployment consumption ĉh = 0.53. We set ωm = 11.0

for the worker’s optimal choice of home production (equation (A17) in appendix) to hold for ĉh and ŷ.

Finally, we calibrate the parameters of the search disutility k(e) = ωk · (e1+κ − 1) /(1 + κ). Equa-

tion (A34) in Appendix C shows that κ is related to the statistics εs and ξ introduced earlier. We follow

Gruber [1997] and use the estimate εs = 0.9 obtained by Meyer [1990]. We obtain κ = 3.15. We set

ωk = 0.20 for the worker’s optimal choice of effort (equation (A18) in the Appendix) to hold for ê = 1.

Simulations. To describe how the optimal replacement rate varies over the business cycle, we com-

pare steady states parameterized by different technology levels.23 The results are displayed in Figure 2.

The figure shows that unemployment is higher in steady states with lower technology. It also shows

that labor market tightness decreases with unemployment, shaping a Beveridge curve. Search efforts de-

crease in recessions, when UI becomes more generous and the job-finding rate falls. We obtain realistic

fluctuations in unemployment for fairly modest changes in technology.

The figure also shows that when the unemployment rate increases from 4% to 10%, the microelastic-

ity εm increases slightly from 0.8 to 1, whereas the macroelasticity εM decreases sharply from 0.6 to 0.2.

Thus, the wedge εm/εM increases drastically from 1.3 to 5 when the unemployment rate increases from

4% to 10%. Since these numbers roughly have the same magnitude as those in Table 1, the calibrated

model can deliver realistic variations of εm/εM over the business cycle. Finally, we find that optimal UI

is strongly countercyclical. The optimal replacement rate increases from 45% to 59% when the unem-

ployment rate increases from 4% to 10%. These replacement rates have the same magnitude as those

in Table 1. In fact we find that in recessions, it is optimal to increase benefits not only relative to the

consumption of employed workers, but also in absolute terms.

23In steady state, technology remains constant over time: at = a for all t.
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Figure 2: Elasticities and optimal unemployment insurance over the business cycle
Notes: Panels obtained by simulating the dynamic model with partial self-insurance. The model is calibrated in Table 2. The
simulations are described in Appendix C. The elasticities εm and εM are given by equations (A36) and (A37) in Appendix C.
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3 Taxation of Profits and Connection with Baily and Hosios

In Section 1, we derived a formula for optimal UI under the assumptions that profits are not redistributed

to workers, and that they cannot be taxed by the government. We showed that our formula reduces to the

standard Baily [1978] formula when microelasticity equals macroelasticity. In this section, we derive an

alternative formula for optimal UI when profits can be taxed fully by the government. Equivalently, the

formula applies if profits are uniformly distributed to workers.

Are these realistic assumptions? If profits cannot be fully taxed and firms are owned by foreigners

or if ownership is very concentrated such that profits are not uniformly distributed, those are not good

assumptions. Empirically, profits are negligible in the income of unemployed workers.24 Therefore, the

model without profit taxation that we studied in Sections 1 and 2 is the most relevant in practice.

Even though the assumption that the government is able to tax profits may not be realistic, this

assumption is standard in the macroeconomic literature. Hence, it offers a useful theoretical benchmark

which allows us to connect our theory of optimal UI with the standard Baily [1978] formula for optimal

UI and the Hosios [1990] condition for efficiency in search-and-matching models. With profits taxation,

the formula for optimal UI reduces to the standard Baily formula for optimal UI when a generalized

Hosios condition holds. Using an approximation of the formula, we show that the result that optimal UI

is countercyclical continue to hold when government can tax profits.

To establish the connection, we need more structure on the model than in Section 1 so we work with

the search-and-matching model of Section 2. We assume that the government uses profits to finance

the UI system. The government’s budget constraint is (1 − n) · B · w = n · T · w + π where π =

a · g(n)− [r · a/q(θ)] · h− w · n are the firm’s profits. Equivalently, the budget constraint is

(1− n) · cu + n · ce = a · g(n)− r · a
q(θ)

· [n− (1− u)] . (23)

3.1 Jointly optimal unemployment insurance and labor market tightness

We begin by assuming that the government chooses not only the consumption ce of employed workers

and the consumption gain from work ∆c, but also labor market tightness θ. The assumption that the

government can control θ may not be realistic, but the results obtained under this assumption are a useful

building block for the subsequent analysis.25

24We analyzed individual income tax statistics for 2004. While individuals and families reporting positive unemployment
benefits had an average income (Adjusted Gross Income) equal to 78% of the population average, they had a capital income
(the sum of interest payments, dividends, and realized capital gains) equal to only 17% of the population average.

25In our framework, wages paid by firms and tightness are directly related by the labor demand equation (18). If the
government could control wages, then it could control tightness directly. But it seems unlikely that the government could
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By choosing ce, ∆c, and θ, the government maximizes welfare (6) subject to the budget constraint (23),

optimal search by jobseekers, and the definition of equilibrium employment n = ns(f(θ),∆c, ce).

Proposition 7 characterizes the jointly optimal UI and tightness:

PROPOSITION 7. Optimal tightness θ, optimal consumptions ce and cu, and Lagrange multiplier φ on

the resource constraint satisfy the inverse Euler equation (11), the Baily formula

w −∆c

∆c
=

n

εm
·
[
v′(cu)

v′(ce)
− 1

]
, (24)

and the generalized Hosios condition

∆v

φ
+ (w −∆c) ·

(
1 + εd

)
− η

1− η
· r · a
q(θ)

= 0, (25)

where we define the implicit wage w as w ≡ a · g′(n)− r · a/q(θ).

The Baily formula (24) applies here because the job-finding rate f(θ) is kept constant when choosing

the optimal ∆c; therefore, the effects that arise from the response of the job-finding rate in formula (10)

disappear. The generalized Hosios condition (25) determines the optimal labor market tightness θ. A

marginal increase in θ has two effects. First, it increases the job-finding rate f(θ), which increases

employment through (1). The employment increase leads to a welfare gain proportional to ∆v (first term

of (25)) and to a budget gain proportional to w−∆c (second term of (25)). Second, it reduces profits by

increasing hiring costs r · a/q(θ). The profit reduction creates a budget loss proportional to hiring costs

(third term of (25)). At the optimum, the marginal benefits from the increase in θ (first and second terms

of (25)) equal the marginal cost (third term of (25)).

If workers are risk neutral, the Baily formula implies that it is optimal to set w = ∆c and provide no

UI. In that case, equation (25) simplifies to ∆v/φ = [η/(1− η)] · r · a/q(θ). Risk neutrality also implies

φ = 1 and ∆v = w. Hence, (25) further simplifies to w = [η/(1 − η)] · r · a/q(θ), the standard Hosios

condition for efficiency in a search-and-matching model. Therefore, we interpret (25) as a generalized

Hosios condition that determines the optimal wage level in presence of risk aversion and optimal UI.

3.2 Connection between Baily formula and Hosios condition

We assume again, as in Sections 1 and 2, that the government cannot control labor market tightness,

which is determined endogenously to equilibrate labor supply and labor demand. But unlike in Sections 1

do so. See Okun [1981] for a useful discussion of this point from a macroeconomic perspective. In public economics,
the standard assumption is that the incidence of payroll taxes is fully on workers; therefore payroll taxes are ineffective to
manipulate the wage effectively paid by firms. See our discussion in section 4.3 below where we relax this assumption.
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and 2, the government can tax profits and use them to finance UI. Hence, the government faces the

same problem as in Sections 1 and 2 except that the budget constraint is given by (23) instead of (7).

Proposition 8 provides the formula for optimal UI when the government taxes profits:

PROPOSITION 8. We characterize the optimal unemployment insurance with profit taxation.

(i) The optimal consumptions ce and cu satisfy the inverse Euler equation (11) and the formula

w −∆c

∆c
=

n

εm
·
[
v′(cu)

v′(ce)
− 1

]
+

1

∆c
· 1

1 + εd
·
(

1− εM

εm

)
·
[

∆v

φ
+ (w −∆c) ·

(
1 + εd

)
− η

1− η
· r · a
q(θ)

]
. (26)

(ii) A formula equivalent to (26) is

w −∆c

∆c
=

n

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
+ a · g′′(n) · h

∆c
. (27)

Part (i) shows that the optimal replacement rate τ/(1 − τ) is the sum of an insurance term, which

is the term in the standard Baily formula (24), and an externality-correction term, which is proportional

to the deviation from the generalized Hosios condition (25). When the generalized Hosios condition

holds, the externality-correction term vanishes and the optimal replacement rate is given by the Baily

formula. When wages are too high (and equivalently tightness is too low) relative to the generalized

Hosios condition, the deviation from the generalized Hosios condition is positive. Since εm/εM > 1, the

externality-correction term is positive. Therefore, optimal UI is more generous than in the Baily formula.

The optimal replacement rate is the sum of an insurance term and an externality-correction term

because the derivative of the Lagrangian L of the government’s problem with respect to ∆c can be de-

composed as ∂L/∂∆c
∣∣
ce

= ∂L/∂∆c
∣∣
θ,ce

+ ∂L/∂θ
∣∣
∆c,ce

· ∂θ/∂∆c
∣∣
ce

. Therefore, the first-order con-

dition ∂L/∂∆c
∣∣
ce

= 0 in the current problem is a linear combination of the first-order conditions

∂L/∂∆c
∣∣
θ,ce

= 0 and ∂L/∂θ
∣∣
∆c,ce

= 0 in the joint optimization problem of section 3.1. Hence, the

optimal formula is also a linear combination of the Baily formula and the generalized Hosios condition.

Moreover, the generalized Hosios condition is multiplied by the elasticity wedge 1 − (εM/εm) because

the factor ∂θ/∂∆c
∣∣
ce

is proportional to the wedge from Lemma 1.

Part (ii) shows that the optimal UI formula is the same as formula (10) except for the addition of a

last term a · g′′(n) · h/∆c. (Lemma A1 in the Appendix shows that (1/n) · τ/(1 − τ) = (w −∆c)/∆c

when the government cannot tax profits.) The last term reflects the negative impact of UI on marginal

profits: an increase in UI leads to an increase in tightness that increases hiring costs and reduces profits.

As the last term is negative, the optimal (w −∆c)/∆c is lower than in (10).
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The formula proposed by Part (ii) is quite general. In particular, it remains valid even if wages

respond to the utility gain from work ∆v. The reason is that when the government taxes profits, the

wage does not appear in the government’s budget constraint so it does not appear at all in the govern-

ment’s problem.26 The influence of ∆v on wages and equilibrium employment is simply captured by the

macroelasticity εM . Hence this formula applies in a search-and-matching model with Nash bargaining,

such as that used by Mitman and Rabinovich [2011].27

3.3 Optimal replacement rate over the business cycle

Proposition 9 provides an approximated formula for optimal UI when the government taxes profits:

PROPOSITION 9. We characterize the optimal unemployment insurance with profit taxation.

(i) If n ≈ 1, u� 1, and the third and higher order terms of v(·) are small, (27) simplifies to

w −∆c

∆c
≈ ρ

εM
· (1− τ) +

[
εm

εM
− 1

]
· 1

1 + εd
·
[
1 +

ρ

2
· (1− τ)

]
. (28)

(ii) If r � 1, (w −∆c)/∆c ≈ α · τ/(1 − τ) − (1 − α). Therefore if n ≈ 1, u � 1, and r � 1, then

dτ/da < 0 and d [1− (∆c/w)] /da < 0.

Part (i) proposes an approximated formula that links the optimal implicit tax on work 1 − (∆c/w)

to the usual sufficient statistics. The right-hand-side of the approximated formula is exactly the same as

in formula (12). The reason is that if u � 1, then h ≤ u � 1 and the additional marginal-profit term

is quantitatively negligible relative to the other terms. The left-hand-side of the approximated formula

is different from that in (12) because of profit taxation. Indeed profits π are assumed to be taxed and

equally redistributed, which increases both cu and ce by the same amount π and introduces a wedge

between the replacement rate τ = cu/ce and the implicit tax on work 1 − (∆c/w). More precisely

with no profits, the budget constraint (7) can be written as cu + n · ∆c = w · n, which implies that

(1/n) · τ/(1 − τ) = (w − ∆c)/∆c. With profits equally redistributed, the budget constraint becomes

cu + n ·∆c = w · n + π, which implies that (1/n) · τ/(1− τ) = (w −∆c)/∆c + π/(n ·∆c). Lemma

A1 in the Appendix shows that if r � 1 and n ' 1, α · τ/(1− τ) ≈ (1−α) + (w−∆c)/∆c. The effect

of profit taxation on consumption levels is conceptually similar to the effect of self-insurance. If profits

were equally distributed, they would constitute a cushion against unemployment, making τ higher in the

26In contrast, the wage does appear in the government’s budget constraint (7) when the government cannot tax profits.
27It is conceivable that, in the long-run, wages respond to UI as in the Nash-bargaining model, leading to a higher wedge

εm/εM . If this effect is acyclical, it would affect the level of optimal UI but not its cyclicality. Simulations incorporating both
wage responses to UI (as in Mitman and Rabinovich [2011]) and wage rigidity (as in our model) are left for future research.
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right-hand-side of (28) and requiring a smaller UI program as measured by the wedge on reward to work

(w − ∆c)/∆c. This implication of profit taxation on UI is misleading for practical implementation if

profits are not equally distributed among workers.

Part (ii) shows that for small u and r, although its level is different, the optimal replacement rate

τ remains decreasing with technology a in the case with profit taxation. This in turn implies that the

implicit tax on work 1 − (∆c/w) is also countercylical. That is, both the optimal replacement rate and

the optimal implicit tax on work increase in recessions when technology falls.

4 Robustness of the Countercyclicality of Optimal UI

This section examines the robustness of the result that optimal UI is countercyclical. It shows that opti-

mal UI remains countercyclical (i) when the government adjusts the duration of unemployment benefits

instead of their level; (ii) when business cycles are driven by aggregate demand shocks instead of tech-

nology shocks; and (iii) when the government uses wage subsidies to attenuate employment fluctuations.

4.1 Duration of unemployment benefits

In the baseline dynamic model, unemployment benefits never expire. In this section, unemployment

benefits have a finite duration that the government adjusts over the cycle.28 This model is more realistic

because in practice, benefits have finite duration and the government modulates benefit duration over the

cycle.29 We follow Fredriksson and Holmlund [2001] and Mitman and Rabinovich [2011] and assume

that eligible unemployed workers exhaust their benefits cut with probability λt at the end of each period

t. Ineligible unemployed workers receive social assistance cat < cut until they find a job.

The replacement rates τu,e = cut /c
e
t of unemployment benefits and τa,e = cat /c

e
t of social assistance

are constant over time. The government chooses the rate λt at which eligible workers become ineligible

to maximize welfare subject to a budget constraint similar to (22). We solve the model numerically using

the calibration in Table 2. We set the replacement rates at τu,e = 57% and τa,e = 0.52 · τu,e = 30%

such that an expected duration of 26 weeks is optimal at the average unemployment rate of 5.9%.30 The

28This section only provides an overview of the model, whose formal description and analysis is in Appendix D.1.
29US unemployment benefits have a maximum duration of 26 weeks in normal times. Under the Extended Benefits pro-

gram, duration is extended by 13 weeks in states where unemployment is above 6.5% and by 20 weeks in states where
unemployment is above 8%. Often, duration is further extended in severe recessions. For example in 2008, the Emergency
Unemployment Compensation program further extended durations by 53 weeks when state unemployment was above 8.5%.

30We assume that social assistance only provides food stamps. According to Pavoni and Violante [2007], in the United
States, the median monthly allotment of food stamps for a family of four was $397 per month in 1996, and the median monthly
wage for a worker with at most a high-school diploma was $1,540. Thus the rate of social assistance is 397/1, 540 = 26%.
As the rate of unemployment benefits is 50%, τa,e/τu,e = 0.26/0.5 = 0.52.
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Figure 3: Optimal duration of unemployment insurance over the business cycle
Notes: Panels obtained with the dynamic model in which unemployment benefits have finite duration. The model is calibrated
in Table 2. Appendix C describes the numerical simulations.

left panel in Figure 3 shows how unemployment and its composition varies with technology. When

technology increases, total unemployment falls, the number of eligible jobseekers falls, but the number

of ineligible jobseekers increases because the arrival rate of ineligibility increases drastically. The right

panel shows that the optimal arrival rate of ineligibility λ is strongly procyclical. Accordingly the optimal

expected duration of unemployment benefits 1/λ is strongly countercyclical. When unemployment is

4%, the optimal arrival rate of ineligibility is 18%, corresponding to an expected benefit duration of less

than 6 weeks. When unemployment reaches 5.9% the optimal arrival rate falls to 3.9%, corresponding

to an expected benefit duration of 26 weeks. When unemployment reaches 8.0%, the optimal arrival rate

drops below 1.0%, corresponding to an expected benefit duration of 100 weeks. The optimal arrival rate

is virtually zero when unemployment is above 9%.

4.2 Aggregate demand shocks

A limitation that the model shares with most search-and-matching models is that business cycles are

generated by technology shocks only. This is implausible: aggregate demand shocks likely contribute

to labor market fluctuations. To study optimal UI in a demand-generated business cycle, Appendix D.2

builds a simple model with nominal wage rigidity in which recessions are driven by aggregate demand

shocks. Jobs are rationed in that model as well. Firms face a downward-sloping aggregate demand

curve in the goods market. The larger the quantity produced by workers, the lower the market price for

goods. When aggregate demand is low enough, the production of workers would sell at a price below

the nominal wage if all workers were employed. In this situation, firms would not hire all workers in the

labor force and some unemployment would remain even if recruiting were costless: jobs are rationed.
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As showed by Figure A1 in the Appendix, we can use our labor supply-labor demand diagram to

represent the labor market equilibrium in the model with demand-generated business cycles. The labor

supply is the same, and the labor demand has the same properties, as in the model with technology-

generated business cycles. The labor demand curve is downward sloping in the price θ–quantity n plane

because higher employment n implies more production, lower prices in the goods market, higher real

wages because of nominal wage rigidity, and it requires a lower tightness θ for firms to be willing to hire.

When aggregate demand falls, prices fall and real wages rise, so the labor demand curve shifts inwards.

Since the labor market equilibria have a similar structure, it is not surprising that the results obtained

in the model with technology-generated business cycles carry over to the model with demand-generated

business cycles. The cyclicality of the wedge εm/εM and the cyclicality of the macroelasticity (Proposi-

tion 5), as well as the cyclicality of the optimal replacement rate (Proposition 6) remain the same once

derivatives are taken with respect to aggregate demand instead of technology. Hence, optimal UI is more

generous in recessions caused by low aggregate demand.

Other macroeconomic shocks could drive recessions. In Appendix D.3, we consider a preference

shock that affects job-search disutility in the model. When it is unpleasant for unemployed workers to

search, a recession arises because jobseekers reduce their effort, reducing labor supply and increasing

unemployment. This shock can easily be represented using the labor supply-labor demand diagram.

Unsurprisingly, simulations show that optimal UI is procyclical when business cycles are driven by

preference shocks. However, this model is unrealistic because it has the property that labor market

tightness is countercyclical, at odds with empirical evidence.31

4.3 Unemployment insurance combined with wage subsidies

Because of real wage rigidity, wages are high relative to technology in recessions, which raises unem-

ployment. If the government could perfectly control wages paid by firms, it could completely eliminate

unemployment fluctuations. As discussed in Section 3, it seems unlikely that the government be able

to control wages at no cost. But changing the payroll tax imposed on employers to alter the wages ef-

fectively paid by firms, even if it is costly, could attenuate unemployment fluctuations. In this section

we show that our results remain valid when the government attenuates unemployment fluctuations using

wage subsidies. The formal proof is in Appendix D.4.

The government chooses unemployment benefit rate B, tax rate T imposed on the salary w∗ received

by employees, and a subsidy rate σ imposed on the salary w∗ paid by employers. Firms pay a wage

31In future work, it would be valuable to consider fluctuations arising from shocks to recruiting costs r, which could proxy
recessions arising from mis-match due to industrial shifts.
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w = (1−σ) ·w∗, employed workers consume ce = (1−T ) ·w∗, and unemployed workers consume cu =

B · w∗. Equivalently, we consider that the government chooses directly the wage w and consumptions

ce, and cu. The government is subject to the budget constraint (1− n) · B · w∗ + n · σ · w∗ = t · n · w∗.
This constraint can be rewritten exactly as the baseline budget constraint (7).

If wage subsidies were costless, it would be optimal to eliminate unemployment fluctuations and

keep UI at a constant level. However, it is improbable that the government could implement a wage

subsidy at no cost.32 Formally, we represent these costs as an increasing convex cost function C(σ)

included in the objective function of the government. In that case, it is not optimal to eliminate entirely

cyclical fluctuations in unemployment because of the cost C(σ). Let w be the optimal wage chosen by

the government given the cost of the subsidy.

Given w the government chooses ∆c to maximize social welfare (6) subject to the budget con-

straint (7). This is exactly the problem faced by the government in the baseline model. Therefore the

optimal UI formula (10) remains valid. Let w̃ ≡ w/a be the optimal wage w normalized by technology

a. w̃ is the only source of fluctuations in the economy through the firm’s profit-maximization condi-

tion (18). Since the government cannot stabilize unemployment completely, w̃ must fluctuate. Once we

replace the derivatives with respect to a by derivatives with respect to w̃, the results on the cyclicality

of the elasticities εm and εM (Proposition 5) and the result on the cyclicality of the optimal replacement

rate (Proposition 6) remain valid. The sign of the derivatives naturally changes because an increase in w̃

has the same effect as a decrease in a: it raises unemployment and reduces labor market tightness. To

conclude, the properties of optimal UI that we derive are robust to the presence of a wage subsidy that

attenuates unemployment fluctuations, but does not fully eliminate them.
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Appendix—For Online Publication

A Proofs
We begin by deriving a few preliminary results.

LEMMA A1.

(i) If the budget constraint faced by the government is (no taxation of profits)

n · ce + (1− n) · cu = n · w,

then
w −∆c

∆c
=

1

n
· τ

1− τ
.

(ii) If the budget constraint faced by the government is (full taxation of profits)

n · ce + (1− n) · cu = a · g(n)− r · a
q(θ)

· [n− (1− u)] ,

then

α · 1

n
· τ

1− τ
= (1− α) +

w −∆c

∆c
+

(
1− α · h

n

)
· r · a
q(θ)

· 1

∆c
.

If n ≈ 1 and r � 1, then

α · τ

1− τ
≈ (1− α) +

w −∆c

∆c
.

Proof. First, we prove Part (i). Recall that τ = cu/ce and ∆c = ce − cu. The budget constraint implies
that

cu = n · [w −∆c]

1

n
· cu

ce − cu
=
w −∆c

∆c
1

n
· [cu/ce]

1− [cu/ce]
=
w −∆c

∆c

w −∆c

∆c
=

1

n
· τ

1− τ
.

Second, we prove Part (ii). By definition of profits,

π = a · g(n)− r · a
q(θ)

· h− n · w,

Therefore, the budget constraint implies that

cu = n · (w −∆c) + π

1

n
· τ

1− τ
=
w −∆c

∆c
+

π

n ·∆c
. (A1)
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We determine π/(n · ∆c). The production function is isoelastic so a · g(n)/n = (1/α) · a · g′(n).
Furthermore, a · g′(n) = w + r · a/q(θ). So we use the definition of profits to write

π

n
=

1− α
α
· w +

[
1

α
− h

n

]
· r · a
q(θ)

π

∆c · n
=

1− α
α

+
1− α
α
· w −∆c

∆c
+

[
1

α
− h

n

]
· r · a
q(θ)

· 1

∆c
. (A2)

The result of the lemma follows from (A1) and (A2).

LEMMA A2. The derivatives of effort supply e(f,∆v) satisfy

εd =
f

e
· ∂e
∂f

∣∣∣∣
∆v

=
1

κ

∆v

e
· ∂e
∂∆v

∣∣∣∣
f

=
1

κ
.

Proof. Obvious because the effort supply satisfies k′(e) = f · ∆v and κ is the elasticity of k′(e): κ ≡
e · [k′′(e)/k′(e)].

LEMMA A3. The derivatives of the utility gain from work ∆v(∆c, ce) satisfy

∂∆v

∂∆c

∣∣∣∣
ce

= v′(cu)

∂∆v

∂ce

∣∣∣∣
∆c

= v′(ce)− v′(cu).

Proof. Obvious because ∆v(∆c, ce) = v(ce)− v(ce −∆c).

A.1 Proof of Lemma 1
Using the definitions of εM and εm, we write

εM =
∆c

1− n
· ∂∆v

∂∆c
· n′(∆v)

εm =
∆c

1− n
· ∂∆v

∂∆c
·
[
u · f · ∂e

∂∆v

]
.

The expression of εm arises because ns(f,∆v) = 1− u+ u · e(f,∆v) · f , which implies that

∂ns

∂∆v
= u · f · ∂e

∂∆v
.

The employment rate is n(∆v) = 1− u+ u · e(f,∆v) · f(∆v). Using the definition of the discouraged-
worker elasticity εd, we obtain

n′(∆v) = u ·
[
∂e

∂∆v
· f +

∂e

∂f
· f ′(∆v) · f + e · f ′(∆v)

]
= u · f · ∂e

∂∆v
+ u · e · f ′(∆v) ·

[
εd + 1

]
.
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Therefore, εM and εm are related by

εM = εm +
u · e

1− n
·
(
1 + εd

)
·∆c · f ′(∆v) · ∂∆v

∂∆c
,

which is the result of Lemma 1 once we abuse notations by denoting ∂f/∂∆c ≡ f ′(∆v) · (∂∆v/∂∆c).

A.2 Proof of Proposition 1
The Lagrangian of the government’s problem is

L(∆c, ce) = v(ce)− u · (1− e · f(∆v)) ·∆v − u · k(e) + φ · [n(∆v) · (w −∆c)− (ce −∆c)] ,

where φ is the Lagrange multiplier on the budget constraint. Effort e is chosen by workers to maximize
e · f(∆v) ·∆v− k(e), so we apply the envelope theorem. The first-order condition with respect to ∆c is

−(1− n) · v′(cu) +
∂∆v

∂∆c
· [∆v · u · e · f ′(∆v) + φ · n′(∆v) · (w −∆c)] + φ · (1− n) = 0.

The first-order condition with respect to ce is

n · v′(ce) + (1− n) · v′(cu) +
∂∆v

∂ce
· [∆v · u · e · f ′(∆v) + φ · n′(∆v) · (w −∆c)]− φ = 0.

Lemma A3 implies ∂∆v/∂ce = − [1− (v′(ce)/v′(cu))]·∂∆v/∂∆c. We multiply the first-order condition
with respect to ∆c by 1 − [v′(ce)/v′(cu)] and add it to the first-order condition with respect to ce. We
obtain the inverse Euler equation

1

φ
=

[
n

v′(ce)
+

1− n
v′(cu)

]
.

We come back to the first-order condition with respect to ∆c. We divide it by φ · (1− n), rearrange the
terms, and abuse notations as in the text by denoting ∂f/∂∆c ≡ f ′(∆v) · (∂∆v/∂∆c) and ∂n/∂∆c ≡
n′(∆v) · (∂∆v/∂∆c). We obtain

1

1− n
· ∂n
∂∆c

· (w −∆c) =

[
v′(cu)

φ
− 1

]
− 1

φ
· ∆v

1− n
· u · e · ∂f

∂∆c
. (A3)

The inverse Euler equation yields

v′(cu)

φ
− 1 = n ·

[
v′(cu)

v′(ce)
− 1

]
.

Lemma 1 implies

− ∆v

1− n
· u · e · ∂f

∂∆c
=

∆v

∆c
· 1

1 + εd
·
(
εm − εM

)
.

By definition,
1

1− n
· ∂n
∂∆c

=
1

∆c
· εM .
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Therefore we can rewrite (A3) as

w −∆c

∆c
· εM = n ·

[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm − εM

)
.

Using part (i) of Lemma A1 and dividing this equation by εM yields the formula

1

n
· τ

1− τ
=

n

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
.

Approximation. Assuming n ≈ 1, we simplify the formula to

τ

1− τ
≈ 1

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

v′(ce)
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
.

If the third and higher order terms of v are small (v′′′(c) ≈ 0), we approximate

∆v

v′(ce) ·∆c
≈ 1− 1

2
· v
′′(ce)

v′(ce)
· c

e

ce
· [ce − cu] = 1 +

1

2
· ρ · (1− τ)

v′(cu)

v′(ce)
≈ 1

v′(ce)
·
[
v′(ce)− v′′(ce) · ce · ∆c

ce

]
= 1 + ρ · (1− τ),

where ρ ≡ −ce · v′′(ce)/v′(ce). Thus, the formula becomes

τ

1− τ
≈ 1

εM
· ρ · [1− τ ] +

1

1 + εd
·
[
εm

εM
− 1

]
·
[
1 +

ρ

2
· (1− τ)

]
.

A.3 Proof of Proposition 2
The government chooses ∆c and ce to maximize the per-period social welfare subject to the per-period
budget constraint. The Lagrangian of the government’s problem is

L(∆c, ce) = v(ce)−
[
1− ñ(e · f(∆vh))

]
·∆vh

−
[
1− (1− s) · ñ(e · f(∆vh))

]
· k(e) + φ ·

[
n(∆vh) · (w −∆c)− (ce −∆c)

]
,

where φ is the Lagrange multiplier on the budget constraint. We apply the envelope theorem because
workers choose effort e to maximize per-period social welfare. We also exploit the following lemma:

LEMMA A4. Let ∆vh(∆c, ce) = miny {v(ce)− v(ce −∆c+ y) +m(y)} be the utility gain from work
when home production is optimal. The derivatives of ∆vh(∆c, ce) satisfy

∂∆vh

∂∆c
= v′(ch)

∂∆vh

∂ce
= v′(ce)− v′(ch).

Proof. Follows from the definition of ∆vh and the application of the envelop theorem.
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The first-order condition with respect to ∆c is

−(1− n) · v′(ch) +
∂∆vh

∂∆c
·
[[

∆vh + (1− s) · k(e)
]
· ñ′(ef) · e · f ′(∆vh) + φ · n′(∆vh) · (w −∆c)

]
+ φ · (1− n) = 0. (A4)

The first-order condition with respect to ce is

nv′(ce) + (1− n)v′(ch) +
∂∆vh

∂ce
[[

∆vh + (1− s)k(e)
]
ñ′(ef)ef ′(∆vh) + φn′(∆vh) (w −∆c)

]
− φ = 0.

We can manipulate these two first-order conditions to obtain the inverse Euler equation. To obtain the
optimal UI formula, we derive the pendant of Lemma 1 in the dynamic case.

LEMMA A5. Microelasticity εm and macroelasticity εM are related by

εM = εm +
ñ′(e · f) · e

1− n
·
(
1 + εd

)
·∆c · f ′(∆vh) · ∂∆vh

∂∆c

∣∣∣∣
ce
.

Proof. Given the definitions of εm and the labor supply, we have

εm =
∆c

1− n
· ñ′(e · f) · f · ∂e

∂∆vh
· ∂∆vh

∂∆c
.

Given the definition of εd and the fact that the employment rate n(∆vh) = ñ(e(f,∆vh) · f(∆vh))),

n′(∆vh) = ñ′(e · f) · f · ∂e

∂∆vh
+ ñ′(e · f) · e ·

(
1 + εd

)
· f ′(∆vh).

We conclude the proof by multiplying this equation by ∆c/(1− n) and using the definition of εM .

We come back to (A4), divide it by φ · (1 − n), normalize k(e) = 0, rearrange terms, and abuse
notations by denoting ∂f/∂∆c ≡ f ′(∆vh) ·

(
∂∆vh/∂∆c

)
and ∂n/∂∆c ≡ n′(∆vh) ·

(
∂∆vh/∂∆c

)
. We

obtain

1

1− n
· ∂n
∂∆c

· (w −∆c) =

[
v′(ch)

φ
− 1

]
− 1

φ
· ∆vh

1− n
· ñ′(e · f) · e · ∂f

∂∆c
(A5)

The inverse Euler equation yields

v′(ch)

φ
− 1 = n ·

[
v′(ch)

v′(ce)
− 1

]
.

Lemma A5 implies

− ∆vh

1− n
· ñ′(e · f) · e · ∂f

∂∆c
=

∆vh

∆c
· 1

1 + εd
·
(
εm − εM

)
.

By definition,
1

1− n
· ∂n
∂∆c

=
1

∆c
· εM .
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Therefore we can rewrite (A5) as

w −∆c

∆c
· εM = n ·

[
v′(ch)

v′(ce)
− 1

]
+

1

φ
· ∆vh

∆c
· 1

1 + εd
·
(
εm − εM

)
.

Using part (i) of Lemma A1 and dividing this equation by εM , we obtain the formula

1

n
· τ

1− τ
=

n

εM
·
[
v′(ch)

v′(ce)
− 1

]
+

1

φ
· ∆vh

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
.

Approximation. Assuming n ≈ 1, we simplify the formula to

τ

1− τ
≈ 1

εM
·
[
v′(ch)

v′(ce)
− 1

]
+

1

v′(ce)
· ∆vh

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
.

If the third and higher order terms of v are small (v′′′(c) ≈ 0), we approximate

v′(ch)

v′(ce)
≈ 1

v′(ce)
·
[
v′(ce)− v′′(ce) ·

(
ce − ch

)]
= 1 + ρ · (1− ξ),

where ρ ≡ −v′′(ce) · ce/v′(ce) and ξ = ch/ce. We normalize m(y) = 0. Hence, ∆vh = v(ce)− v(ch) +
m(y) = v(ce)− v(ch). By linearization, we obtain

∆vh

v′(ce) ·∆c
≈ v(ce)− v(ce)− v′(ce) · (ch − ce)− v′′(ce)/2 · (ch − ce)2

v′(ce) · (ce − cu)
∆vh

v′(ce) ·∆c
≈
[
ce − ch

ce − cu

]
− 1

2
· v
′′(ce) · ce

v′(ce)
· c

e − ch

ce
·
[
ce − ch

ce − cu

]
∆vh

v′(ce) ·∆c
≈
[

1− ξ
1− τ

]
·
[
1 +

ρ

2
· (1− ξ)

]
.

The formula becomes

τ

1− τ
≈ ρ

εM
· (1− ξ) +

[
εm

εM
− 1

]
· 1

1 + εd
·
[
1 +

ρ

2
· (1− ξ)

]
·
[

1− ξ
1− τ

]
.

A.4 Proof of Proposition 3
The equilibrium condition (20), obtained under Assumptions 1 and 2, implies that dθ/dτ < 0. As
v(c) = ln(c), ∆v = − ln(τ), and θ′(∆v) > 0. With v(c) = ln(c), Lemma 1 implies

εM = εm +
1/τ − 1

1− n
· h
f
·
(
1 + εd

)
· f ′(θ) · θ′(∆v).

Since θ′(∆v) > 0 and τ < 1, we infer that εM > εm > 0.

A.5 Proof of Proposition 4
We define the following elasticities: 1 − η ≡ θ · f ′(θ)/f(θ) > 0, −η ≡ θ · q′(θ)/q(θ) < 0, and κ ≡
e · k′′(e)/k′(e). We abuse notations slightly and define equilibrium labor market tightness θ(∆c, ce, a) ≡
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θ(∆v(∆c, ce), a) and equilibrium employment n(∆c, ce, a) ≡ n(∆v(∆c, ce), a).

LEMMA A6. The partial derivative of equilibrium tightness θ(∆c, ce, a) with respect to ∆c is

∂θ

∂∆c

∣∣∣∣
ce,a

=
θ

∆c
· κ

κ+ 1
· 1

1− η
· 1− n

h
·
(
εM − εm

)
.

Proof. The equilibrium job-finding rate is f = f(θ(∆c, ce, a)) so Lemma 1 implies that

εM = εm +
h

1− n
·
(
1 + εd

)
· ∆c

f(θ)
· f ′(θ) · ∂θ

∂∆c
.

The result follows because εd = 1/κ by Lemma A2 and f ′(θ)/f(θ) = (1− η)/θ by definition.

The labor demand equation (18) holds at any equilibrium such that

g′(n(∆c, ce, a)) =
w

a
+

r

q(θ(∆c, ce, a))
.

We differentiate this relationship with respect to ∆c, keeping ce and a constant. We obtain

(α− 1) · g
′(n)

n
· ∂n
∂∆c

= η · r

q(θ)
· 1

θ
· ∂θ
∂∆c

because under Assumption 4, (w/a) does not depend on ∆c. Lemma A6 implies

(α− 1) · g′(n) · 1− n
n
· εM =

r

q(θ)
· κ

κ+ 1
· 1− n

h
· η

1− η
·
(
εM − εm

)
−(1− α) · g′(n) =

r

q(θ)
· κ

κ+ 1
· n
h
· η

1− η
·
(

1− εm

εM

)
εm

εM
= 1 +

[
(1− α) · α · κ+ 1

κ
· 1

r
· 1− η

η

]
· q(θ) ·

(
h

n

)
· nα−1.

Since θ > 0, h > 0, η ∈ (0, 1), κ > 0, εm/εM > 1 if and only if α ∈ (0, 1).

A.6 Some comparative statics
We now focus on log utility: v(c) = ln(c). It is natural to parameterize the equilibrium with (τ, a) instead
of (∆c, ce, a) because ∆v = ln(1/τ). Technology a captures the position in the business cycle and the
replacement rate τ captures the generosity of UI. We abuse notations slightly and define equilibrium
labor market tightness θ(τ, a) ≡ θ(ln(1/τ), a), and equilibrium employment n(τ, a) ≡ n(ln(1/τ), a). .

LEMMA A7. Under Assumptions 3 and 4, if v(c) = ln(c), we have the following comparative statics
for equilibrium tightness θ(τ, a) and equilibrium employment n(τ, a):

∂θ

∂a

∣∣∣∣
τ

> 0,
∂n

∂a

∣∣∣∣
τ

> 0.

Proof. If v(c) = ln(c), the labor market equilibrium (21) condition becomes

1− u+ u · e(f(θ(τ, a)), ln(1/τ)) · f(θ(τ, a)) = nd(θ(τ, a), a).
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We differentiate this condition with respect to a, keeping τ constant:

u ·
[
f · ∂e

∂f
+ e

]
· f ′(θ) · ∂θ

∂a
=
∂nd

∂θ
· ∂θ
∂a

+
∂nd

∂a

∂θ

∂a
=
∂nd

∂a︸︷︷︸
+

·

 u︸︷︷︸
+

·

 f︸︷︷︸
+

· ∂e
∂f︸︷︷︸
+

+ e︸︷︷︸
+

 · f ′(θ)︸︷︷︸
+

− ∂nd

∂θ︸︷︷︸
−


−1

.

because under Assumptions 3 and 4, ∂nd/∂θ < 0, and ∂nd/∂a > 0. So ∂θ/∂a > 0. We show that
∂n/∂a > 0 using n(τ, a) = 1− u+ u · e(f(θ(τ, a)), ln(1/τ)) · f(θ(τ, a)).

A.7 Proof of Proposition 5
Under Assumption 4, we can apply Proposition 4. Under Assumptions 3, 5, and 6, Proposition 4 implies
that εm/εM = 1 +χ · q(θ) ·nα−1, where χ ≡ α · (1−α) · [(1− η)/η] · [(1 +κ)/κ] · (s/r) > 0 is constant.
Under Assumptions 3 and 4, Lemma A7 implies that ∂θ/∂a

∣∣
τ
> 0 and ∂n/∂a

∣∣
τ
> 0. Since q′(θ) < 0

and α ≤ 1, we infer that ∂
[
εm/εM

]
/∂a
∣∣
τ
< 0.

We now focus on the cyclicality of εM . First, we determine an expression for εm. By definition

εm =
∆c

1− n
· h
e
· ∂e
∂∆v

· ∂∆v

∂∆c

εm =
∆c

∆v
· s · n

1− n
· 1

κ
· v′(cu)

εm =
s

κ
· (1/τ)− 1

ln (1/τ)
· n

1− n
, (A6)

where we used Assumption 6, the assumption that v(c) = ln(c), and the result from Lemma A2. We
infer that

εM = εm · ε
M

εm
=
s

κ
· (1/τ)− 1

ln (1/τ)
· n

1− n
· ε

M

εm
. (A7)

Under Assumption 5, the elasticity κ is constant. According to Lemma A7, valid under Assumptions 3
and 4, ∂n/∂a

∣∣
τ
> 0. We showed that ∂

[
εM/εm

]
/∂a
∣∣
τ
> 0. We conclude that ∂εM/∂a

∣∣
τ
> 0.

A.8 Proof of Proposition 6
Under Assumption 5, using the result from Lemma A2 that εd = 1/κ, formula (10) becomes

1

n
· τ

1− τ
=

n

εM
· 1− τ

τ
+

κ

κ+ 1
· ln(1/τ)

1− τ
· [(1− n) · τ + n] ·

(
εm

εM
− 1

)
1 =

n2

εM
·
(

1− τ
τ

)2

+
κ

κ+ 1
· ln (1/τ)

τ
· n · [(1− n) · τ + n] ·

(
εm

εM
− 1

)
. (A8)

Next, we express
(
εm/εM − 1

)
and εM as a function of n and τ .
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LEMMA A8. Under Assumptions 3, 4, 5 and 6 there exists Z0(τ) > 0 such that in equilibrium,

Z(n, τ) ≡ εm

εM
− 1 = Z0(τ) · n−Ω > 0, (A9)

where the constant Ω is defined by

Ω = (1− α) +
κ

κ+ 1
· η

1− η
· 1

s
> 0.

Proof. Under Assumption 4, we can use Proposition 4. Under Assumption 6, it says that

εm

εM
− 1 = (1− α) · α · κ+ 1

κ
· s
r
· 1− η

η
· q(θ) · nα−1. (A10)

We can write n as a function of θ and τ :

n = 1− u+ u · e(f(θ), ln(1/τ)) · f(θ).

Differentiating this equation with respect to θ, keeping τ constant, and using Lemma A2 under Assump-
tion 6, we obtain

∂n

∂θ

∣∣∣∣
τ

=
h

f
· f ′(θ) +

h

e
· ∂e
∂f
· f ′(θ) =

(
1 + εd

)
· (1− η) · h

θ
=
κ+ 1

κ
· (1− η) · h

θ

θ

n
· ∂n
∂θ

∣∣∣∣
τ

=
κ+ 1

κ
· (1− η) · s

n

θ
· ∂θ
∂n

∣∣∣∣
τ

=
κ

κ+ 1
· 1

1− η
· 1

s
.

Combining (A10) with this relationship between n and θ yields

∂ ln
(
εm/εM − 1

)
∂ ln(n)

∣∣∣∣
τ

= −
[
(1− α) +

κ

κ+ 1
· η

1− η
· 1

s

]
≡ −Ω,

where Ω > 0 is constant under Assumption 5. We obtain (A9) by integrating this relationship.

Using Lemmas A8 and (A7), we write εM as a function of n and τ

1

εM
=

1− n
n
· κ
s
· ln
(

1

τ

)
· τ

1− τ
· [1 + Z(n, τ)] . (A11)

Using Lemma A8 and (A11), we rewrite formula (A8) as

1 = n · (1− n) · κ
s
· [1 + Z(n, τ)] · ln

(
1

τ

)
· 1− τ

τ
+

κ

κ+ 1
· ln (1/τ)

τ
· n · [(1− n) · τ + n] · Z(n, τ).

Let S ≡ s/(κ+ 1) ∈ (0, 1). We rearrange the terms to obtain

s

κ
· τ

ln
(

1
τ

) = n · (1− n)(1− τ) + n · Z(n, τ) · [τ · S + (1− τ)− n · (1− τ) · (1− S)] . (A12)
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Let us define

F (τ) ≡ s

κ
· τ

ln(1/τ)

G(n, τ) ≡ n · (1− n) · (1− τ) + n · Z(n, τ) · [τ · S + (1− τ)− n · (1− τ) · (1− S)] .

Furthermore, we define Q(τ, a) ≡ G(n(τ, a), τ). We rewrite the optimal UI formula as F (τ) = Q(τ, a).
We assume that for any a > 0, F (τ) and Q(τ, a) cross only once at τ(a) ∈ (0, 1). The implicit function
τ(a) characterizes the optimal replacement rate for technology a.

LEMMA A9. Under Assumptions 3 and 4, lima→0 n(a, τ(a)) = 0 and lima→0 τ(a) = 0.

Proof. Under Assumptions 3 and 4, the labor demand equation (18) implies that for any a > 0, α ·
n(a, τ(a))α−1 ≥ ω · aγ−1 and 0 ≤ n(a, τ(a)) ≤ N(a) ≡ [(α/ω) · a1−γ]

1/(1−α). Since γ < 1 and
0 < α < 1, lima→0 N(a) = 0. The squeeze theorem implies that lima→0 n(a, τ(a)) = 0.

By definition, q(θ) ≤ 1. Therefore for any n and any τ ,

n · Z(n, τ) = (1− α) · α · κ+ 1

κ
· s
r
· 1− η

η
· q(θ) · nα ≤ (1− α) · α · κ+ 1

κ
· s
r
· 1− η

η
· nα.

The optimal UI formula is F (τ(a)) = Q(τ(a), a). Using the definition of Q, we infer

F (τ(a)) ≤ n(a, τ(a)) · [1− n(a, τ(a))] + (1− α) · α · κ+ 1

κ
· s
r
· 1− η

η
· n(a, τ(a))α.

We showed that lima→0 n(a, τ(a)) = 0. So there exists a0 > 0 such that for all a < a0, n(a, τ(a)) < 1/2.
For any a > 0, 0 ≤ n(a, τ(a)) ≤ N(a). Thus for any a < a0,

0 ≤ F (τ(a)) ≤ N(a) · [1−N(a)] + (1− α) · α · κ+ 1

κ
· s
r
· 1− η

η
·N(a)α.

Under Assumptions 3 and 4, the limit of the right-hand-side term when a→ 0 is 0 because lima→0N(a) =
0. Using the squeeze theorem, we infer that lima→0 F (τ(a)) = 0. We conclude that lima→0 τ(a) = 0
using the continuity of F on (0, 1).

Lemma A9 establishes that when employment converges to 0 because technology decreases to 0, then
the optimal replacement rate converges to 0. This result implies that for very low levels of technology
and employment, the optimal replacement rate is bound to increase with technology.

LEMMA A10. If n > 1/2 and Ω ≥ 1 then ∂G/∂n < 0.

Proof. We differentiate G(n, τ) with respect to n, keeping τ constant.

∂G

∂n
= −{(2 · n− 1) · (1− τ) + Z(n, τ) · [(2− Ω) · (1− S) · (1− τ) · n− (1− Ω) · [τ · S + (1− τ)]]} .

If n > 1/2, the first term (2 · n− 1) · (1− τ) > 0 since τ < 1. If Ω ≥ 1, the second term is nonnegative.
To see this, note that (1− S) · n < 1 and rewrite the second term as

Z(n, τ) · [(Ω− 1) · [τ · S + (1− τ) · {1− (1− S) · n}] + (1− S) · (1− τ) · n] ≥ 0.

If Ω ∈ [0, 1), the second term may be negative.
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At technology a, the optimal replacement rate τ(a) satisfies F (τ(a)) = Q(τ(a), a). We consider
a change in technology from a to a∗ > a. Using Lemma A7 under Assumption 5, we know that
n(τ(a), a∗) > n(τ(a), a). Using Lemma A10 for n > 1/2 and τ ∈ (0, 1), G(n(τ(a), a∗), τ(a)) <
G(n(τ(a), a), τ(a)) such that Q(τ(a), a∗) < Q(τ(a), a) = F (τ(a)). Since F (τ) and Q(τ, a) cross only
once for τ ∈ (0, 1), limτ→0 F (τ) = 0, and limτ→0 Q(τ, a) > 0, F (τ) necessarily crosses Q(τ, a) from
below. Therefore, it must be that τ(a) > τ(a∗).

A.9 Interpretation of the assumptions of Proposition 6
LEMMA A11. The labor supply ns(f(θ),∆v) is concave in θ if and only if (1− η) · (1 + κ)/κ < 1.

Proof. By definition, ns(f(θ),∆v) = 1− u+ u · e(f(θ),∆v) · f(θ). Thus,

∂ns

∂θ
=
(
1 + εd

)
· n

s − (1− u)

f
· f ′(θ) =

(
1 + εd

)
· (1− η) · n

s − (1− u)

θ
.

Lemma A2 implies that εd = 1/κ. Hence,

∂2ns

∂θ2
=

1 + κ

κ
· (1− η) · n

s − (1− u)

θ2
·
[

1 + κ

κ
· (1− η)− 1

]
.

Since ns ≥ 1− u, ∂2ns/∂θ2 < 0 if and only if (1− η) · (1 + κ)/κ < 1.

A.10 Proof of Proposition 7
The Lagrangian of the government’s problem is given by

L(θ,∆c, ce) = v(ce)− u · (1− e · f(θ)) ·∆v − u · k(e)

+ φ ·
{
a · g(ns(f(θ),∆v))− r · a

q(θ)
· [ns(f(θ),∆v)− (1− u)]− ce + [1− ns(f(θ),∆v)] ·∆c

}
,

where φ is the Lagrange multiplier on the resource constraint. We use the envelope theorem as workers
choose e optimally. The first-order condition with respect to ∆c is

−(1− n) · v′(cu) + φ · ∂n
s

∂∆v
· ∂∆v

∂∆c
·
[
a · g′(n)− r · a

q(θ)
−∆c

]
+ φ · (1− n) = 0.

The firm’s profit-maximization condition ensures that

w = a · g′(n)− r · a
q(θ)

and we rewrite the first-order condition with respect to ∆c as

−(1− n) · v′(cu) + φ · ∂n
s

∂∆v
· ∂∆v

∂∆c
· (w −∆c) + φ · (1− n) = 0.
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Similarly, the first-order condition with respect to ce is

n · v′(ce) + (1− n) · v′(cu) + φ · ∂n
s

∂∆v
· ∂∆v

∂ce
· (w −∆c)− φ = 0.

Using Lemma A3 we can rewrite ∂∆v/∂ce = − [1− (v′(ce)/v′(cu))] · ∂∆v/∂∆c. To obtain the inverse
Euler equation, we multiply the first-order condition with respect to ∆c by 1− [v′(ce)/v′(cu)] and add it
to the first-order condition with respect to ce. We come back to the first-order condition with respect to
∆c. We divide it by φ · (1− n) and rearrange the terms to obtain

1

1− n
· ∂n

s

∂∆v
· ∂∆v

∂∆c
· (w −∆c) =

[
v′(cu)

φ
− 1

]
.

By definition,
1

1− n
· ∂n

s

∂∆v
· ∂∆v

∂∆c
=

1

∆c
· εm.

Therefore, we can rewrite the first-order condition as

w −∆c

∆c
=

n

εm
·
[
v′(cu)

v′(ce)
− 1

]
.

Last, the first-order condition with respect to θ is

0 = (1− η) · h
θ
·∆v + φ · [w −∆c] · ∂n

s

∂f
· f ′(θ)− φ · η · r · a

q(θ)
· h
θ
.

Since the labor supply ns(f,∆v) = 1− u+ u · e(f,∆v) · f , we have

∂ns

∂f
· f ′(θ) =

(
1 + εd

)
· h
f
· f ′(θ) =

(
1 + εd

)
· h
θ
· (1− η).

We divide the first-order condition by φ · (h/θ) · (1− η) and obtain

∆v

φ
+ [w −∆c] ·

(
1 + εd

)
=

η

1− η
· r · a
q(θ)

.

A.11 Proof of Proposition 8
The Lagrangian of the government’s problem is given by

L(∆c, ce) = v(ce)− u · (1− e · f(θ)) ·∆v(∆c, ce)− u · k(e)

+ φ ·
{
a · g(n)− r · a

q(θ)
· [n− (1− u)]− ce + (1− n) ·∆c

}
,

where φ is the Lagrange multiplier on the resource constraint, θ stands for θ(∆v(∆c, ce)), and n stands
for n(∆v(∆c, ce)). We exploit the envelope theorem as workers choose effort e optimally. The first-order
condition with respect to ∆c is

−(1− n)v′(cu) +
∂∆v

∂∆c

[
(1− η)

h

θ
θ′(∆v)∆v + φn′(∆v) (w −∆c)− φη ra

q(θ)

h

θ
θ′(∆v)

]
+ φ(1− n) = 0.
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Similarly, the first-order condition with respect to ce is

n · v′(ce) + (1− n) · v′(cu) +
∂∆v

∂ce

[
(1− η)

h

θ
θ′(∆v)∆v + φn′(∆v) (w −∆c)− φη ra

q(θ)

h

θ
θ′(∆v)

]
− φ = 0.

Lemma A3 implies ∂∆v/∂ce = − [1− (v′(ce)/v′(cu))]·∂∆v/∂∆c. To obtain the inverse Euler equation,
we multiply the first-order condition with respect to ∆c by 1− [v′(ce)/v′(cu)] and add it to the first-order
condition with respect to ce. We come back to the first-order condition with respect to ∆c. We divide it
by φ · (1− n) and rearrange the terms to obtain

1

1− n
∂n

∂∆c
(w −∆c) =

[
v′(cu)

φ
− 1

]
− 1

1− n
(1− η)

h

θ
θ′(∆v)

∂∆v

∂∆c
·
[

∆v

φ
− η

1− η
ra

q(θ)

]
.

The inverse Euler equation yields

v′(cu)

φ
− 1 = n ·

[
v′(cu)

v′(ce)
− 1

]
.

Lemma 1 implies

− 1

1− n
· (1− η) · h

θ
· θ′(∆v) · ∂∆v

∂∆c
=

1

∆c
· 1

1 + εd
·
(
εm − εM

)
.

By definition,
1

1− n
· n′(∆v) · ∂∆v

∂∆c
=

1

∆c
· εM .

Therefore, we can rewrite the first-order condition as

w −∆c

∆c
· εM = n

[
v′(cu)

v′(ce)
− 1

]
+

1

∆c
· 1

1 + εd
·
(
εm − εM

) [∆v

φ
− η

1− η
· r · a
q(θ)

]
. (A13)

Adding [(w −∆c)/∆c] ·
[
εm − εM

]
on both sides and dividing by εm, we obtain the formula of Part (i):

w −∆c

∆c
=

n

εm
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· 1

∆c
· 1

1 + εd
·
(

1− εM

εm

)
·
[

∆v

φ
+ (w −∆c) · (1 + εd)− η

1− η
· r · a
q(θ)

]
.

We can rewrite (A13) as

w −∆c

∆c
=

n

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
− η

1− η
· r · a
q(θ)

· 1

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
.

Proposition 4 implies that under Assumption 4, the elasticity wedge satisfies

εm

εM
− 1 = −g′′(n) · 1− η

η
· 1

1 + εd
· q(θ)
r
· h.

Combining the last two equations, we obtain the formula of Part (ii):

w −∆c

∆c
=

n

εM
·
[
v′(cu)

v′(ce)
− 1

]
+

1

φ
· ∆v

∆c
· 1

1 + εd
·
(
εm

εM
− 1

)
+ a · g′′(n) · h

∆c
.
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A.12 Proof of Proposition 9
To obtain the approximated formula in Part (i), we apply the methodology developed in the proof of
Proposition 1 to formula (27). In addition, we need to handle the term a · g′′(n) · (h/∆c). If u� 1, then
h < u� 1, and a · g′′(n) · (h/∆c) ≈ 0. Therefore, we neglect this term in the formula.

We turn to Part (ii). The result that (w−∆c)/∆c ≈ if r � 1 derives directly from Lemma A1. Using
this result, the approximated formula of Part (i) becomes

α · τ

1− τ
≈ (1− α) +

ρ

εM
· (1− τ) +

[
εm

εM
− 1

]
· 1

1 + εd
·
[
1 +

ρ

2
· (1− τ)

]
.

By applying the methodology developed in the proof of Proposition 6 to this formula, it is easy to
show that dτ/da < 0. Since (w/∆c) ≈ α · τ/(1 − τ) + α, it is clear that d(∆c/w)/da > 0 and
d [1− (∆c/w)] /da < 0.

B Nash-Bargained Wages
Consider the search-and-matching model with Nash bargaining of Section 2. This section solves the
Nash bargaining problem faced by a worker-firm pair. Let E denote the value of being employed and U
the value of being unemployed after matching. These values satisfy

E = ln ((1− T ) · w)

U = ln (B · w)

W ≡ E − U = ln ((1− T ) · w)− ln (B · w) = ∆v,

where W is the worker’s surplus from a relationship with a firm. When worker and firm bargain, they
take tax rate T and unemployment benefits B · w as given. In the term (1− T ) · w, w is the outcome of
bargaining, but in the term B · w, w is the equilibrium wage, taken as given. Therefore when the worker
evaluates the marginal utility dW of an increase dw in the bargained wage, he only considers the change
of the post-tax earnings (1− T ) · w. Accordingly, dW/dw = 1/w.

In equilibrium the firm’s surplus from an established relationship is simply given by the hiring cost
since a firm can immediately replace a worker at that cost during the matching period: F = r · a/q(θ).
Since the firm’s utility is simply its profits, a wage w brings a utility −w to the firm and dF/dw = −1.

The generalized Nash solution to the bargaining problem is the wage w that maximizes

W(w)β · F(w)1−β,

where β is the worker’s bargaining power. The first-order condition of the maximization problem implies
that the worker’s surplus each period is related to the firm’s surplus by

β

1− β
· F = w · W .

Using the previous expressions forW , F , and dW/dw, we obtain the relationship between equilibrium
variables imposed by Nash bargaining over wages:

w

a
= − β

1− β
· 1

∆v
· r

q(θ)
.
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C Dynamic Model
This section studies the dynamic model used in the quantitative analysis of Section 2. We denote
cht ≡ cut + yt the total consumption of unemployed workers (consumption of market and home-produced
goods), ∆vht ≡ v(cet )− [v(cut )−m(yt)] the utility gain from work, and ∆ct ≡ cet − cut the consumption
gain from work. Unemployment is ut = 1−(1−s)·nt−1 and the number of hires is ht = nt−(1−s)·nt−1.

Technology follows a stochastic process {at}+∞
t=0 . Together with initial employment n−1 in the repre-

sentative firm, the history of technology realizations at ≡ (a0, a1, . . . , at) describes the state of the econ-
omy in period t. The unemployment insurance plan {cet , cut }

+∞
t=0 is measurable with respect to (at, n−1),

and is taken as given by firms and workers. We assume that the government commits to the policy plan.
The time-t element of the worker’s choice and firm’s choice must therefore be measurable with respect
to (at, n−1).

C.1 Equilibrium with unemployment insurance
Firms. Given labor market tightness, wage, and technology {θt, wt, at}+∞

t=0 the representative firm
chooses employment

{
ndt
}+∞
t=0

to maximize expected profit

E0

+∞∑
t=0

δt ·
{
at · g(ndt )− wt · ndt −

r · at
q(θt)

·
[
ndt − (1− s) · ndt−1

]}
.

The first-order condition with respect to ndt implies

at · g′(ndt ) =wt +
r · at
q(θt)

− δ · (1− s) · Et
[
r · at+1

q(θt+1)

]
. (A14)

Workers. Given government policy {cet , cut }
+∞
t=0 and labor market tightness {θt}+∞

t=0 the representative
worker chooses search effort and home production {et, yt}+∞

t=0 to maximize expected utility

E0

+∞∑
t=0

δt ·
{

(1− nst) · [v(cut + yt)−m(yt)] + nst · v(cet )−
[
1− (1− s) · nst−1

]
· k(et)

}
, (A15)

subject to the law of motion of the employment probability in period t,

nst = (1− s) · nst−1 +
[
1− (1− s) · nst−1

]
· et · f(θt). (A16)

The Lagrangian of the worker’s problem is

L = E0

+∞∑
t=0

δt ·
{
−
[
1− (1− s) · nst−1

]
· k(et) + (1− nst) · [v(cut + yt)−m(yt)] + nst · v(cet )

+ At ·
[[

1− (1− s) · nst−1

]
· et · f(θt) + (1− s) · nst−1 − nst

]}
,
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where {At(at), ∀at}+∞
t=0 is a sequence of Lagrange multipliers. The first-order condition with respect to

home production yt is

m′(yt) = v′(cht ). (A17)

The first-order condition with respect to effort et is

k′(et) = f(θt) · At.

The first-order condition with respect to employment probability nst is

At = ∆vht + δ · (1− s) · Et [k(et+1)] + δ · (1− s) · Et [At+1 · (1− et+1 · f(θt+1))] .

Combining both conditions, we find that the optimal search effort satisfies

k′(et)

f(θt)
− δ · (1− s) · Et

[
k′(et+1)

f(θt+1)
− et+1 · k′(et+1) + k(et+1)

]
= ∆vht . (A18)

Wage. In a labor market with matching frictions, the wage cannot equalize labor supply and demand.
Since the wage is not determined by a market-clearing condition, we impose instead that the wage follows
a stochastic process {wt}+∞

t=0 defined for all t ≥ 0 by

wt = ω · aγt . (A19)

As in Hall [2005], we also require that the wage neither interfere with the formation of an employment
match that generates a positive bilateral surplus, nor cause the destruction of such a match.

Labor market equilibrium. Instead of the wage, labor market tightness {θt}+∞
t=0 equalizes labor de-

mand
{
ndt
}+∞
t=0

to labor supply {nst}
+∞
t=0 , which defines employment {nt}+∞

t=0 :

ndt = nst ≡ nt. (A20)

Equilibrium. Given government policy {cet , cut }
+∞
t=0 , an equilibrium with unemployment insurance is a

collection of stochastic processes {yt, et, nt, θt, wt}+∞
t=0 that satisfy equations (A14),(A16), (A17), (A18),

and (A19).

C.2 Optimal unemployment insurance
The government chooses a government policy {cut , cet}

+∞
t=0 to maximize social welfare (A15) over all

equilibria with unemployment insurance subject to the budget constraint

nt · wt = nt · cet + (1− nt) · cut . (A21)

The constraint arises because the government must balance its budget each period. An equilibrium with
optimal unemployment insurance is a solution to the problem of the government.

We solve the problem of the government. The maximization of the government is over a collection
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{cet (at), cut (a
t), yt(at), et(at), nt(at), θt(at), ∀at}+∞

t=0 . We form the Lagrangian

L =E0

+∞∑
t=0

δt ·
{

(1− nt) ·
[
v(cht )−m(yt)

]
+ nt · v(cet )− [1− (1− s) · nt−1] · k(et)

+ At [nt · wt − nt · cet − (1− nt) · cut ]

+Bt

[[
v(cet )−

[
v(cht )−m(yt)

]]
− k′(et)

f(θt)

]
+Bt−1 · (1− s)

[
k′(et)

f(θt)
+ k(et)− et · k′(et)

]
+Qt

[
m′(yt)− v′(cht )

]
+ Ct

[
at · g′(nt)− wt −

r · at
q(θt)

]
+ Ct−1 · (1− s)

[
r · at
q(θt)

]
+Dt [(1− (1− s) · nt−1) · et · f(θt) + (1− s) · nt−1 − nt]

}
where {At(at), Bt(a

t), Qt(a
t), Ct(a

t), Dt(a
t), ∀at}+∞

t=0 are Lagrange multipliers. We define B−1 ≡ 0
and C−1 ≡ 0. The first-order conditions with respect to yt(at) for t ≥ 0 are

0 = (1− nt) ·
[
v′(cht )−m′(yt)

]
−Bt ·

[
v′(cht )−m′(yt)

]
+Qt ·

[
m′′(yt)− v′′(cht )

]
Using the optimal home production condition (A17), we obtain 0 = Qt ·

[
m′′(yt)− v′′(cht )

]
. Since

m′′ > 0 and v′′ < 0,

0 = Qt. (A22)

The first-order conditions with respect to cet (a
t) for t ≥ 0 are

At = v′(cet ) ·
(

1 +
Bt

nt

)
. (A23)

Using (A22), the first-order conditions with respect to cut (a
t) for t ≥ 0 are

0 = −(1− nt) · At + (1− nt) · v′(cht )−Bt · v′(cht )−Qt · v′′(cht )

At = v′(cht ) ·
[
1− Bt

(1− nt)

]
. (A24)

The first-order conditions with respect to et(at) for t ≥ 0 are

0 = −ut · k′(et)−Bt ·
k′′(et)

f(θt)
+ (1− s) ·Bt−1 ·

{
k′′(et)

f(θt)
− et · k′′(et)

}
+Dt · ut · f(θt)

0 = ut + κt · (1− s) ·Bt−1 ·
(

1− ut
ht

)
+ κt ·

ut
ht
·Bt −

Dt · ht
et · k′(et)

(A25)
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where κt ≡ et · k′′(et)/k′(et). The first-order conditions with respect to θt(at) for t ≥ 0 are

0 = (1− η) ·Bt ·
k′(et)

θt · f(θt)
− (1− η) · (1− s) ·Bt−1 ·

k′(et)

θt · f(θt)

− Ct · η ·
r · at
f(θt)

+ Ct−1 · (1− s) · η ·
r · at
f(θt)

+Dt · ut · (1− η) · et · q(θt)

0 =
k′(et)

θt
[Bt − (1− s) ·Bt−1]− η

1− η
· r · at · [Ct − (1− s) · Ct−1] +Dt · ht · q(θt) (A26)

The first-order conditions with respect to nt(at) for t ≥ 0 are

Dt = ∆vht + δ(1− s)Et [k(et+1) +Dt+1 (1− et+1f(θt+1)] + Ctatg
′′(nt) + At [wt −∆ct] . (A27)

The equilibrium with optimal unemployment insurance is a collection of 11 stochastic processes {cet ,
cut ,yt, et, nt, θt, At, Bt, Ct, Dt, Qt}+∞

t=0 that satisfy 11 equations {(A21), (A14), (A16), (A17), (A18),
(A22), (A23), (A24), (A25), (A26), (A27)}.

In steady state there are no aggregate shocks: at = a for all t. The equilibrium is constant and
characterized by a collection of 11 variables {ce, cu, y, n, θ, e, A,B,C,D,Q} determined by 11 equations
{(A21), (A14), (A16), (A17), (A18), (A22), (A23), (A24), (A25), (A26), (A27)}. We combine a few
of the first-order conditions and constraints of the government’s problem to express some Lagrange
multipliers in a simple form. These relationships are useful to solve for the steady state numerically.
Combining (A23) and (A24), we obtain expressions for the Lagrange multipliers A and B as a function
of equilibrium variables:

A =

[
n

v′(ce)
+

1− n
v′(ch)

]−1

(A28)

B = n · (1− n) ·
[

1

v′(ce)
− 1

v′(ch)

]
· A. (A29)

Since e/h = 1/(u · f(θ)) in steady state, (A25) becomes

D =
k′(e)

f(θ) · u
· [u+ κ · (1− s) ·B] +

k′′(e) · e
f(θ)

· s
h
·B

D =
k′(e)

f(θ)
·
[
1 +

B

n
· κ
u

]
, (A30)

where κ ≡ e · k′′(e)/k′(e). Using this expression, equation (A26) becomes:

0 = h ·D · f(θ) + k′(e) · s ·B − η

1− η
· r · a · θ · s · C

C =
1− η
η
· k′(e)

r · a · θ
·
[
n+B ·

(κ
u

+ 1
)]
. (A31)

C.3 Calibration
Cost of home production. We relate the convexity µ of the costm(y) = ωm · [y1+µ − ŷ1+µ] /(1+µ) of
home production to the statistics ξ = ch/ce and εi = dch/dcu (where dcu is a marginal change in benefits
for one unemployed worker). Unemployed workers choose y to maximize v(ce −∆c+ y)−m(y). The
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first-order condition is
m′(y) = v′(ce −∆c+ y).

Differentiating this condition for a marginal change dcu, we obtain

v′′(ch) · dch = m′′(y) · (dch − dcu)

εi =
dch

dcu
=

[
1− v′′(ch)

m′′(y)

]−1

.

Since m′ is isoelastic, ρ = −c · v′′(c)/v′(c), and y = ch − cu = ch · (1− τ/ξ), we obtain

m′′(y) = µ · m
′(y)

y
=

µ

1− τ/ξ
· v
′(ch)

ch
= − µ

1− τ/ξ
· 1

ρ
· v′′(ch).

Combining these two equations gives us an expression for µ as a function of ξ and εi:

µ = ρ ·
(

1− τ

ξ

)
· εi

1− εi
. (A32)

Disutility from job search. We relate the convexity κ of the disutility k(e) = ωk · (e1+κ − 1) /(1 + κ)
from search to the statistics εs and ξ. Recall that εs = (cu/ζ) · (dζ/dcu), where dcu is a marginal change
in benefits for one unemployed worker, and dζ = f · de is the marginal response of the hazard rate for
the worker due to the response of search de (we consider a change in benefits for one worker only, so the
job-finding rate f is not affected by the policy experiment).

LEMMA A12. Let e(f,∆vh) be the effort supply implicitly defined by (A18) in steady state:

[1− δ · (1− s)] · k
′(e)

f
+ δ · (1− s) · [e · k′(e)− k(e)] = ∆vh. (A33)

At e = 1, the partial derivative of the effort supply satisfies

∆vh

e
· ∂e

∂∆vh

∣∣∣∣
f

=
1

κ
.

Proof. We differentiate equation (A33) with respect to ∆vh, keeping f constant:

1 =

{
[1− δ · (1− s)] · k

′′(e)

f
+ δ · (1− s) · [e · k′′(e) + k′(e)− k′(e)]

}
· ∂e

∂∆vh

1 = k′′(e) ·
{

1− δ · (1− s)
f

+ δ · (1− s) · e
}
· ∂e

∂∆vh

At e = 1, k(e) = 0 and [
1− δ · (1− s)

f
+ δ · (1− s) · e

]
· k′(e) = ∆vh.
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Therefore, given that κ = e · k′′(e)/k′(e), we obtain

1 = e · k
′′(e)

k′(e)
· ∆vh

e

∂e

∂∆vh

1

κ
=

∆vh

e
· ∂e

∂∆vh
.

LEMMA A13. Let ∆vh(ce, cu) = miny {v(ce)− v(cu + y) +m(y)} be the utility gain from work when
home production is optimal. At home production y such that m(y) = 0, when ch ≈ ce,

cu

∆vh
· ∂∆vh

∂cu

∣∣∣∣
ce
≈ − τ

1− ξ
.

Proof. From Lemma A4, ∂∆vh/∂cu
∣∣
ce

= −v′(ch). Ifm(y) = 0 and if the second and higher order terms
of v(c) are small,

∆vh = v(ce)− v(ch) ≈ v′(ch) · (ce − ch) = v′(ch) · ce · (1− ξ).

To conclude,

cu

∆vh
· ∂∆vh

∂cu

∣∣∣∣
ce
≈ − cu

ce · (1− ξ)
· v
′(ch)

v′(ch)
= − τ

1− ξ
.

On average ê = 1, so Lemma A12 implies

∂ ln(ζ)

∂ ln(∆vh)

∣∣∣∣
f

=
∂ ln(e)

∂ ln(∆vh)

∣∣∣∣
f

=
1

κ
.

On average m(ŷ) = 0, so Lemma A13 implies

∂ ln(∆vh)

∂ ln(cu)

∣∣∣∣
ce

= − τ

1− ξ

Combining these results, we conclude that κ is related to εs by

εs = − ∂ ln(ζ)

∂ ln(cu)

∣∣∣∣
ce,f

= − ∂ ln(ζ)

∂ ln(∆vh)

∣∣∣∣
f

· ∂ ln(∆vh)

∂ ln(cu)

∣∣∣∣
ce

=
τ

1− ξ
· 1

κ

κ =
τ

(1− ξ)
· 1

εs
. (A34)

C.4 Elasticities
Relationship between εm and εs. We relate the microelasticity εm to the elasticity εs estimated by
Meyer [1990] and others. εs captures the response of search effort to a change in UI benefits. The
relationship allows us to find empirical estimates of εm.
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We use the notations introduced in the proof of Proposition 2. Since e = e(f,∆vh),

εs = −∂ ln(e · f)

∂ ln(cu)

∣∣∣∣
f,ce

= − ∂ ln(e)

∂ ln(cu)

∣∣∣∣
f,ce

= − ∂ ln(e)

∂ ln(∆vh)

∣∣∣∣
f

· ∂ ln(∆vh)

∂ ln(cu)

∣∣∣∣
f,ce

εs =
cu

e
· ∂e

∂∆vh

∣∣∣∣
f

· ∂∆vh

∂∆c

∣∣∣∣
ce
.

Since ns(f,∆c, ce) = ñ(e(f,∆vh(∆c, ce)) · f),

εm =
∆c

1− n
· ñ′(e · f) · f · ∂e

∂∆vh

∣∣∣∣
f

· ∂∆vh

∂∆c

∣∣∣∣
ce

εm =
∆c

e
· u · n

1− n
· ∂e

∂∆vh

∣∣∣∣
f

· ∂∆vh

∂∆c

∣∣∣∣
ce
,

because it is clear from (14) that ñ′(e·f)·f = [1− (1− s) · n]·n/e = (u·n)/e. Since ∆c/cu = (1−τ)/τ ,

εm =
1− τ
τ
· n · u

1− n
· εs (A35)

In normal circumstances, τ ≈ 0.5, n ≈ 1, and u ≈ (1− n) so εm ≈ εs.

Magnitude of εd. Lemma A14 shows that the discouraged-worker elasticity εd is commensurable to
unemployment in the dynamic model.

LEMMA A14. Let e(f,∆vh) be the effort supply in steady state implicitly defined by (A33). The
discouraged-worker elasticity satisfies

εd =
f

e
· ∂e
∂f

∣∣∣∣
∆vh

=
1

κ
· 1− δ · (1− s)

1− δ · (1− s) · [(1− n)/u]
.

If δ ≈ 1, then εd ≈ u/κ.

Proof. We differentiate equation (A33) with respect to f , keeping ∆vh constant:

0 =

{
[1− δ · (1− s)] · k

′′(e)

f
+ δ · (1− s) · [e · k′′(e) + k′(e)− k′(e)]

}
· ∂e
∂f
− [1− δ · (1− s)] · k

′(e)

f 2

f

e
· ∂e
∂f

= e · k
′′(e)

k′(e)
· 1− δ · (1− s)

1− δ · (1− s) · (1− e · f)

Given that κ = e · k′′(e)/k′(e) and 1− e · f = 1− (s · n)/u = (1− n)/u, we obtain

f

e
· ∂e
∂f

=
1

κ
· 1− δ · (1− s)

1− δ · (1− s) · [(1− n)/u]
.

If δ ≈ 1, 1− δ · (1− s) ≈ s and 1− δ · (1− s) · [(1− n)/u] ≈ [u− (1− s) · (1− n)] /u = s/u. Thus,
(f/e) · (∂e/∂f) ≈ u/κ.
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Fluctuations of εm and εM over the business cycle. Combining (A35) and (A34), we find an expres-
sion for the microelasticity εm:

εm =
1− τ
1− ξ

· n · u
1− n

· 1

κ
. (A36)

Next, we calculate an expression for the ratio εm/εM . The procedure is the same as that of Proposition 4
but for two steps. First, we replace the labor demand equation (18) by the labor demand in the steady-
state of the dynamic model

g′(n) =
w

a
+ [1− δ · (1− s)] · r

q(θ)
,

which derives from (A14). Second, we use a lemma that replaces Lemma A6 in a dynamic environment:

LEMMA A15. The derivative of equilibrium tightness θ(∆c, ce) with respect to ∆c is

∂θ

∂∆c

∣∣∣∣
ce

=
θ

∆c
· 1

1 + εd
· 1

1− η
· 1− n
u · n

·
(
εM − εm

)
.

If δ ≈ 1, we have the following approximation

∂θ

∂∆c

∣∣∣∣
ce
≈ θ

∆c
· κ

κ+ u
· 1

1− η
· 1− n
u · n

·
(
εM − εm

)
.

Proof. The equilibrium job-finding rate is f = f(θ(∆v(∆c, ce))) so Lemma A5 implies that

εM = εm +
∆c

1− n
·
(
1 + εd

)
· ∂ñ
∂f
· f ′(θ) · ∂θ

∂∆c
.

It is clear from (14) that ñ′(e · f) · e = (u · n)/f . By definition, f ′(θ)/f(θ) = (1− η)/θ. Thus,

εM = εm +
∆c

1− n
· (1 + εd) · u · n

θ
· (1− η) · ∂θ

∂∆c
.

Using the expression for εd given by Lemma A14, we infer that when δ ≈ 1,

εM = εm +
∆c

1− n
· u+ κ

κ
· u · n

θ
· (1− η) · ∂θ

∂∆c
.

We obtain expressions for ∂θ/∂∆c by rearranging the terms in these equations.

To conclude, the ratio εm/εM admits a simple expression in the steady state of the dynamic model:

εm

εM
= 1 + α · (1− α) · 1− η

η
· (1 + εd) · q(θ)

[1− δ · (1− s)] · r
· u · nα−1, (A37)

where εd is a function of u and n given by Lemma A14.

D Robustness
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D.1 Duration of unemployment benefits
This section studies a dynamic model in which unemployment benefits have finite duration. We introduce
three superscripts: e for Employed worker; u for unemployed worker eligible for Unemployment bene-
fits; a for unemployed worker whose benefits expired and who only receive social Assistance. The con-
sumptions of market good are cet , c

u
t , and cat ; the consumptions of home good for unemployed workers are

yut and yat ; the search efforts of unemployed workers are eut and eat . We define the following utility gains:
∆vu,et ≡ v(cet )− [v(cut + yut )−m(yut )], ∆va,et ≡ v(cet )− [v(cat + yat )−m(yat )] ∆va,ut ≡ ∆va,et −∆vu,et .

Labor market. At the beginning of period t there are xut eligible jobseekers exerting effort eut , and xat
ineligible jobseekers exerting effort eat . The number of matches ht made is given by ht = h(eat · xat +
eut · xut , ot), where eat · xat + eut · xut is aggregate search effort and ot is vacancy. We define labor market
tightness as θt ≡ ot/ (eat · xat + eut · xut ). After matching, zut eligible workers and zat ineligible workers
are unemployed. At the end of period t, a fraction λt of the zut eligible unemployed workers become
ineligible. The stocks of workers are related by

zut = xut · [1− eut · f(θt)] (A38)
zat = xat · [1− eat · f(θt)] (A39)
xut = zut−1 · (1− λt−1) + s · nt−1 (A40)
xat = zat−1 + λt−1 · zut−1 (A41)

Firms. The problem of the firm is as in the baseline model. Optimal hiring satisfies (A14).

Workers. Given government policy {cet , cut , cat , λt}
+∞
t=0 and tightness {θt}+∞

t=0 the representative worker
chooses efforts and home productions {eut , eat , yut , yat }

+∞
t=0 to maximize expected utility

E0

+∞∑
t=0

δt · {v(cet )− [xut · k(eut ) + xat · k(eat ) + zut ·∆v
u,e
t + zat ·∆v

a,e
t ]} , (A42)

subject to the laws of motion (A38), (A39) (A40), and (A41) of the unemployment probabilities {xut , xat , zut , zat }
+∞
t=0 .

Given {θt}+∞
t=0 , a choice of efforts {eut , eat }

+∞
t=0 determines labor supply {nst}

+∞
t=0 , which is the employment

rate in period t given by
nst = 1− (zat + zut ) . (A43)

We form the Lagrangian of the worker’s problem with multipliers At, Bt, Ct, Dt assigned to the laws
of motion (A38), (A39) (A40),and (A41). The first-order conditions with respect to home productions
yut and yat are

m′(yut ) = v′(cut + yut ) (A44)
m′(yat ) = v′(cat + yat ). (A45)

The first-order conditions with respect to efforts eut and eat are

k′(eut ) = f(θt) · At
k′(eat ) = f(θt) ·Bt.
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The first-order conditions with respect to unemployment probabilities xut and xat are

Ct = k(eut ) + At · (1− eut f(θt))

Dt = k(eat ) +Bt · (1− eat f(θt)) .

The first-order conditions with respect to probabilities zut and zat are

At = ∆vu,et + (1− s) · δ · Et [Ct+1] + λt · δ · Et [Dt+1 − Ct+1]

Bt = ∆va,et + (1− s) · δ · Et [Dt+1] + s · δ · Et [Dt+1 − Ct+1] .

Combining these equations we have

∆k′t
f(θt)

= ∆va,ut + (1− λt) · δ · Et [Dt+1 − Ct+1]

Et [Dt+1 − Ct+1] = Et
[

∆k′t+1

f(θt+1)
+ ∆kt+1 −∆Kt+1

]
,

where ∆kt = k(eat )− k(eut ), ∆k′t = k′(eat )− k′(eut ), and ∆Kt = eat · k′(eat )− eut · k′(eut ). Combining the
equations once more yields

k′(eut )

f(θt)
+ (1− s) · δ·Et

[
eut+1 · k′(eut+1)− k(eut+1)−

k′(eut+1)

f(θt+1)

]
= ∆vu,et + λt · δ · Et

[
∆k′t+1

f(θt+1)
+ ∆kt+1 −∆Kt+1

]
(A46)

k′(eat )

f(θt)
+ (1− s) · δ·Et

[
eat+1 · k′(eat+1)− k(eat+1)−

k′(eat+1)

f(θt+1)

]
= ∆va,et + s · δ · Et

[
∆k′t+1

f(θt+1)
+ ∆kt+1 −∆Kt+1

]
. (A47)

Labor market equilibrium. As in the baseline model, tightness {θt}+∞
t=0 equalizes labor demand{

ndt
}+∞
t=0

to labor supply {nst}
+∞
t=0 such that (A20) holds, defining employment {nt}+∞

t=0 .

Equilibrium with unemployment insurance. Given government policy {λt, cet , cut , cat }+∞
t=0 , an equi-

librium with unemployment insurance is a collection of stochastic processes {yut , yat , eut ,eat , nt, θt}+∞
t=0

that satisfy equations (A38), (A39), (A40), (A41), (A14), (A43), (A44), (A45), (A46),and (A47).

Steady state. In steady state there are no aggregate shocks: at = a for all t. The stocks of workers
are constant over time. We can recombine the laws of motion of employment and unemployment prob-
abilities to express {zu, xu, za, xa, n} as a function of {λ, θ, ea, eu}. These steady-state relationships are
useful to solve steady-state equilibria numerically.

In steady state the outflows into and outflows from social assistance are equal.

xa · ea · f(θ) = λ · xu · [1− eu · f(θ)]

xa = xu · λ ·
1− eu · f(θ)

ea · f(θ)
.
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The outflows from and inflows into employment are equal.

s · n = xa · ea · f(θ) + xu · eu · f(θ)

n =
1

s
· xu · [eu · f(θ) · (1− λ) + λ] .

We write the stock of unemployment at the beginning of the period in two different ways.

1− (1− s) · n = xa + xu

1− 1− s
s
· xu · [eu · f(θ) · (1− λ) + λ] = xu

[
1 + λ · 1− eu · f(θ)

ea · f(θ)

]
.

Combining our previous results, we get the following relationships:

xu =

[
1 + λ · [1− eu · f(θ)]

[
1

ea · f(θ)
+

1− s
s

]
+

1− s
s
· eu · f(θ)

]−1

xa =

[
1 +

1− s
s
· ea · f(θ) ·

{
1 +

1

λ
·
[

1

eu · f(θ)
− 1

]−1
}]−1

zu =

[
1 + λ ·

[
1

ea · f(θ)
+

1− s
s

]
+

1

s
·
[

1

eu · f(θ)
− 1

]−1
]−1

za =

[
1 +

[
1

ea · f(θ)
− 1

]−1

· 1

s
·

{
1 +

1

λ
·
[

1

eu · f(θ)
− 1

]−1
}]−1

n =

[
1 + s ·

[
1

ea · f(θ)
− 1

]
+

s

(1− λ) · eu · f(θ) + λ
·
[
1− eu

ea

]]−1

.

Optimal unemployment insurance. We assume that the generosity of the system of transfers is con-
stant: there exists τu,e ∈ (0, 1), τa,e ∈ (0, 1) such that for all t, cut = τu,e · cet and cat = τa,e · cet . The
government chooses a government policy {λt, cet}

+∞
t=0 to maximize social welfare (A42) over all equilibria

with unemployment insurance subject to the budget constraint

nt · wt = cet · [nt + zut · τu,e + zat · τa,e] . (A48)

The constraint arises because the government must balance its budget each period. An equilibrium with
optimal unemployment insurance is a solution to the problem of the government.

To determine numerically the optimal arrival rate λ(a) in a steady state with technology a, we perform
a grid search over a range of arrival rates {λi} and pick the λi that maximizes social welfare. Once we
have picked λ, consumption ce is given by budget constraint (A48). We repeat the computation for a
sequence of technology {aj} to plot the graphs in Figure 3.

D.2 Recessions caused by aggregate demand shocks
This section characterizes optimal UI in a model in which recessions are caused by the combination of
low aggregate demand and nominal wage rigidity. After a negative demand shock, prices fall. The fall
in prices, combined with nominal wage rigidity, increases the real wage and the marginal cost of labor,
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which reduces hiring and increases unemployment.33

Wage. Assume that nominal wages are rigid. The real wage w follows a simple wage rule

w =
µ

p
, (A49)

where p is the aggregate price level and µ is a parameter. The rule says that the wage is constant in
nominal terms: w · p = µ.

Firms. The production function is linear: g(n) = n. The firm starts with 1 − u workers. Given real
wage w and labor market tightness θ, the firm chooses employment n maximizes real profits

π = n− w · n− r

q(θ)
· [n− (1− u)] .

The first-order condition implies
1 = w +

r

q(θ)
. (A50)

Money. The firm’s production is sold in a perfectly competitive goods market. The firm takes the
market price p as given. The firm’s production n at a given price p determines the aggregate supply of
goods. The aggregate demand for goods market takes the simple form m/p, borrowed from the quantity
theory of money, where the parameter m characterizes the level of aggregate demand. Fluctuations in m
drive the business cycle. In equilibrium, the price clears the goods market:

m

p
= n. (A51)

Equilibrium. The equilibrium price is p = m/n so the equilibrium real wage is

w =
µ

p
=
µ

m
· n.

When aggregate demand m falls, the real wage w tends to rise. Inserting the equilibrium real wage into
the labor demand equation (A50) yields a labor demand curve

nd(θ,m) =
m

µ
·
[
1− r

q(θ)

]
. (A52)

The labor supply ns(f(θ),∆v) retains the same structure as in the model in the text. Equating labor
demand with labor supply curve defines implicitly equilibrium labor market tightness θ(∆v,m) and
employment n(∆v,m) as a function of aggregate demand m and utility gain from work ∆v. The labor
market equilibrium, depicted in Figure A1, shares the same structure as the equilibrium in the text,
depicted in Figure 1.

Jobs are also rationed in recessions. Higher employment implies more production, lower prices in
the goods market, higher real wages because of nominal wage rigidity, and requires a lower tightness for

33The model loosely captures one story of the Great Depression: contractionary monetary policy lead to deflation, which
raised real wages above trend in presence of nominal wage rigidity, which in turn depressed employment.
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Figure A1: Labor market equilibrium in presence of demand shocks

firms to be willing to hire: the aggregate labor demand curve is downward sloping in a price θ-quantity n
plane. If demand is low enough (m < µ), the labor demand falls below zero for n < 1: jobs are rationed.

Business cycle fluctuations. We focus on the case with log utility: v(c) = ln(c). Since ∆v = ln(1/τ),
we parameterize the equilibrium of the model with (τ,m). We have the following comparative statics
for equilibrium variables:

∂θ

∂m

∣∣∣∣
τ

> 0,
∂n

∂m

∣∣∣∣
τ

> 0.

The proof is identical to that of Lemma A7 because, even if the labor demand is different here from the
labor demand in the text, it remains true that ∂nd/∂θ < 0, ∂nd/∂m > 0.

Optimal UI formula. Real wages respond to UI. In equilibrium, UI affects search effort, tightness,
employment, price, and eventually, because of nominal wage rigidity, real wage. The optimal UI formula
must account for the impact of UI on the government’s budget through wages. For instance if UI raises
wages, then UI has an additional beneficial effect because it increases the tax base. Of course the wage
increase is partly at the cost of firm’s profits. For consistency, we account for profits: we assume that the
government taxes profits and uses them to finance UI. Thus, the government faces budget constraint (23).
Even if wages respond to ∆v as here, the appropriate optimal UI formula remains (27). The influence of
∆v onw and on equilibrium employment is simply captured by the macroelasticity εM . Note that g′′ = 0.
Also note from Lemma A1 that with g(n) = n, (1/n) · τ/(1− τ) = (w−∆c)/∆c+{[1− (h/n)] /∆c} ·
r · a/q(θ). If n ≈ 1 and r � 1, then τ/(1− τ) ≈ (w −∆c)/∆c. Note from Lemma A2 that εd = 1/κ.
Assume that n ≈ 1 and that the third and higher order terms of v are small. The formula simplifies to

τ

1− τ
≈ ρ

εM
· (1− τ) +

1

1 + εd
·
(
εm

εM
− 1

)
·
[
1 +

ρ

2
· (1− τ)

]
. (A53)

Elasticities. We study how microelasticity εm and macroelasticity εM fluctuate over the business cycle
to determine whether the optimal replacement rate is procyclical or countercyclical. We first examine
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the elasticity wedge εm/εM . We differentiate the labor demand equation (A52):

∂n

∂∆c

∣∣∣∣
ce

= −m
µ
· η · r

q(θ)
· 1

θ
· ∂θ
∂∆c

∣∣∣∣
ce
.

Using Lemma A6 (which remains valid here) and the definition of the elasticity εM , we obtain

(1− n) · εM = −m
µ
· r

q(θ)
· κ

κ+ 1
· 1− n

h
· η

1− η
·
(
εM − εm

)
[
εm

εM
− 1

]
=
µ

m
· q(θ)
r
· κ+ 1

κ
· h · 1− η

η
.

Under Assumption 6 we can write [
εm

εM
− 1

]
= ℵ · q(θ)

r
· n · µ

m
,

where, under Assumption 5, ℵ is a constant defined by

ℵ ≡ 1− η
η
· κ+ 1

κ
· s > 0.

Finally, using the labor demand equation (A52),[
εm

εM
− 1

]
= ℵ ·

[
q(θ)

r
− 1

]
> 0.

There is an elasticity wedge (εm/εM) − 1 > 0, as in the text. The wedge widens in recessions: since
∂θ/∂m

∣∣
τ
> 0 and q is a decreasing function, ∂

[
εm/εM

]
/∂m

∣∣
τ
< 0.

We turn to the macroelasticity εM . The expression (A6) for εm remains valid so, since ∂n/∂m
∣∣
τ
> 0,

∂εm/∂m
∣∣
τ
> 0. We can conclude that ∂εM/∂m

∣∣
τ
> 0 because εM = εm/(εm/εM).

Optimal replacement rate over the business cycle. Using optimal UI formula (A53) and the results
that ∂

[
εm/εM

]
/∂m

∣∣
τ
< 0 and ∂εM/∂m

∣∣
τ
> 0, we infer that dτ/dm < 0. Therefore, the optimal

replacement rate is also countercyclical in a model in which recessions are driven by aggregate demand
shocks.

D.3 Recessions caused by preference shocks
This section characterizes optimal UI in a model in which recessions are caused by preference shocks
that affect the disutility from job search.

Workers. A worker’s utility is v(c)− ψ · k(e), where ψ is a parameter that characterizes the disutility
of search. Fluctuations in ψ drive the business cycle. Given job-finding rate f and consumptions ce and
cu, a jobseeker chooses effort e to maximize expected utility v(cu) + e · f · [v(ce)− v(cu)] − ψ · k(e).
The optimal search effort satisfies the first-order condition

k′(e) = f · ∆v

ψ
, (A54)
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Figure A2: Labor market equilibrium in presence of preference shocks

where ∆v = v(ce)− v(cu) is the utility gain from work. As the disutility from search k(e) is convex, the
effort supply e(f,∆v, ψ) increases with f and ∆v, but decreases with ψ.

Equilibrium. The labor market equilibrium is depicted in Figure A2. It shares the same structure as
the labor market equilibrium in the text, depicted in Figure 1. The only difference is the response of
the labor market to a macroeconomic shock. When ψ increases, search becomes more costly, effort
supply e(f(θ),∆v, ψ) diminishes for a given θ, and the labor supply curve ns(f(θ),∆v, ψ) = 1 −
u + u · e(f(θ),∆v, ψ) · f(θ) shifts left. Equilibrium employment falls, unemployment increases, and
labor market tightness increases. Periods with higher disutility from search ψ are recessions because
they are periods with higher unemployment. But these periods are unrealistic because they combine
high unemployment with hight labor market tightness. In reality tightness falls when unemployment
increases.

Business cycle fluctuations. We focus on the case with log utility: v(c) = ln(c). Since ∆v = ln(1/τ),
we parameterize the equilibrium of the model with (τ, ψ). We have the following comparative statics for
equilibrium variables:

∂θ

∂ψ

∣∣∣∣
τ

> 0,
∂n

∂ψ

∣∣∣∣
τ

< 0.

The proof exploits the labor market equilibrium condition

nd(θ(τ, ψ)) = 1− u+ u · e(f(θ(τ, ψ)), ln(1/τ), ψ) · f(θ(τ, ψ)).
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Figure A3: Optimal unemployment insurance over a business cycle driven by preference shocks

We differentiate this condition with respect to ψ, keeping τ constant:

∂nd

∂θ
· ∂θ
∂ψ

= u · f · ∂e
∂ψ

+ u ·
[
f · ∂e

∂f
+ e

]
· f ′(θ) · ∂θ

∂ψ

∂θ

∂ψ
= −u · f · ∂e

∂ψ︸︷︷︸
−

·

 u︸︷︷︸
+

·

 f︸︷︷︸
+

· ∂e
∂f︸︷︷︸
+

+ e︸︷︷︸
+

 · f ′(θ)︸︷︷︸
+

− ∂nd

∂θ︸︷︷︸
−


−1

.

because under Assumptions 3 and 4, ∂nd/∂θ < 0. So ∂θ/∂ψ
∣∣
τ
> 0. We show that ∂n/∂ψ

∣∣
τ
< 0 using

n(τ, ψ) = nd(θ(τ, ψ)).

Optimal unemployment insurance formula. Formulas (10) and (12) remain valid in this model.

Elasticities. We study how microelasticity εm and macroelasticity εM fluctuate over the business cy-
cle to determine whether the optimal replacement rate is procyclical or countercyclical. Proposition 4
remains valid and under Assumptions 4, 5, and 6, the elasticity wedge is

εm

εM
= 1 + χ · q(θ) · nα−1,

where χ = α · (1 − α) · [(1 − η)/η] · [(1 + κ)/κ] · (s/r) is constant. The labor demand equation (18)
implies

q(θ) · nα−1 =
w

α
· q(θ) +

r

α
.

When ψ increases in recessions, the wage w remains constant but q(θ) decreases (because θ increases) so
the right-hand side of the equation decreases. Hence q(θ) · nα−1 decreases. The elasticity wedge εm/εM

therefore decreases. While the elasticity wedge was countercyclical in the model in the text, the wedge is
procyclical here. In general, we cannot conclude on the cyclicality of εM and of the optimal replacement
rate. Hence, we resort to simulations to study the cyclicality of the optimal replacement rate.
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Simulations. The simulation results are displayed in Figure A3. All computations are based on the
dynamic model calibrated in Table 2 (the calibration does not need to change even if the source of
shock is different). The optimal replacement rate is procyclical: it increases from 58% to 71% when
the unemployment rate decreases from 10% to 4%. But this model of the business cycle is unrealistic
because labor market tightness increases sharply in recessions.

D.4 Optimal unemployment insurance and wage subsidy
We start by describing the labor market equilibrium under technology a, when the replacement rate is
τ = ce/cu and the normalized wage is w̃ = w/a. The firm’s first-order condition (18) can be written as

g′(n) = w̃ +
r

q(θ)
,

which implicitly defines a labor demand nd(θ, w̃). Under Assumption 5, v(c) = ln(c). The equilibrium
condition (21) becomes

ns(f(θ), ln(1/τ)) = nd(θ, w̃),

which implicitly defines equilibrium labor market tightness θ(τ, w̃). Furthermore, we define equilibrium
employment n(τ, w̃) ≡ ns(f(θ(τ, w̃)), ln(1/τ)). Lemma A16 establishes how equilibrium variables
respond to a change in the wage w̃:

LEMMA A16. Under Assumptions 3 and 4, if v(c) = ln(c), we have the following comparative statics
for equilibrium tightness θ(τ, w̃) and equilibrium employment n(τ, w̃):

∂θ

∂w̃

∣∣∣∣
τ

< 0,
∂n

∂w̃

∣∣∣∣
τ

< 0.

Proof. Similar to the proof of Lemma A7.

The government chooses unemployment benefit rate B, tax rate T imposed on the salary w∗ received
by employees, and subsidy rate σ imposed on the salary w∗ paid by employers. Effectively, firms pay a
wage w = (1−σ) ·w∗, employed workers consume ce = (1−T ) ·w∗, and unemployed workers consume
cu = B · w∗. The government is subject to the budget constraint

(1− n) ·B · w∗ + n · σ · w∗ = T · n · w∗

(1− n) ·B · w∗ + n · w∗ − n · T · w∗ = n · w∗ − n · σ · w∗

(1− n) · cu + n · ce = n · w.

The budget constraint remains the same as in the baseline model even though the labor tax is collected
from workers and partly redistributed to firms as a wage subsidy. The budget constraint defines a function
that gives the consumption of employed workers in equilibrium: ce(τ, w̃, a) ≡ a · c̃e(τ, w̃) where

c̃e(τ, w̃) ≡ n(τ, w̃)

n+ [1− n(τ, w̃)] · τ
· w̃.

In equilibrium, the expected utility of a worker is

ln (ce(τ, w̃, a)) + [1− n(τ, w̃)] · ln(τ)− u · k (e(τ, w̃)) = ln(a) + SW (τ, w̃) ,
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where we define the function

SW (τ, w̃) ≡ ln (c̃e(τ, w̃)) + [1− n(τ, w̃)] · ln(τ)− u · k (e(τ, w̃)) .

In Section 2, we maximized SW (τ, w̃) over τ ∈ (0, 1) for w̃ = w̃(a) ≡ ω · aγ−1 (because we made
Assumption 4). The result from Proposition 6 in Section 2 tell us something about the properties of SW .
Let τ ∗ (w̃) be the function implicitly defined by

∂SW (τ, w̃)

∂τ
= 0.

Furthermore, we define the replacement rate τ(a) ≡ τ ∗ (w̃(a)). Under some conditions, Proposition 6
shows that dτ/da < 0. Since dw̃/da < 0 and

dτ

da
=
dτ ∗

dw̃
· dw̃
da
,

we infer that dτ ∗/dw̃ > 0 (under the assumptions of Proposition 6).
Let us consider the problem of the government when the government chooses optimally both the

wage w̃ and the replacement rate τ . To capture the various costs of implementing a wage subsidy, we
assume that setting a wage w̃ when the technology is a imposes a welfare cost C (w̃, a) > 0. If the
salary is a function w∗(a) of a, a possible welfare cost could be an increasing convex function C(σ) of
the subsidy rate σ. The reason is that σ = [w − w∗(a)] /w∗(a) = [a · w̃ − w∗(a)] /w∗(a) so σ is only a
function of w̃ and a. A critical assumption is that the welfare cost C does not depend on the replacement
rate τ . The government chooses jointly τ and w̃ to maximize

ln(a) + SW (τ, w̃)− C (w̃, a) .

The first-order condition with respect to τ is

∂SW (τ, w̃)

∂τ

∣∣∣∣
w̃=w̃†

= 0

where w̃† is the optimal wage. Therefore the optimal replacement rate is τ † = τ ∗(w̃†), where τ ∗(·) is
the function defined above. Our study of the government problem in Section 2 tell us that τ ∗(w̃) has the
property that dτ ∗/dw̃ > 0.

Note that the optimal wage w̃†(a) is defined implicitly by the first-order condition

∂SW (τ, w̃)

∂w̃

∣∣∣∣
τ=τ∗(w̃)

− ∂C
∂w̃

∣∣∣∣
a

= 0.

Assume that the replacement rate τ † is fixed. There is a technology shock from a to a′ such that em-
ployment decreases after the optimal wage is adjusted from w̃†(a) to w̃†(a′). Lemma A16 implies
that w̃†(a) < w̃†(a′). Since the optimal replacement rate is solely a function of the optimal wage:
τ † = τ ∗(w̃†) with dτ ∗/dw̃ > 0, τ † must increase. Therefore after an adverse shock that increases unem-
ployment, the optimal replacement rate increases. The substantive conclusion of Proposition 6 is robust
to the presence of wage subsidies: optimal UI is more generous when unemployment is high.
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