The Value of Unemployment Insurance

Camille Landais (LSE) and Johannes Spinnewijn (LSE)

October, 2018

- Key for social insurance design:
 - Large literature on labour supply responses = cost of social insurance
 - Much less work on corresponding value of social insurance
- Conceptually easy; value of transferring dollar from good to bad state
- *Challenge:* how to evaluate in practice especially when social insurance is mandated?

Unemployment and Consumption Drops

- Large literature studies consumption response to income shock and tests for presence of (partial) insurance
- "Consumption-Based Implementation" (Baily-Chetty, Gruber '97)
 - Consumption response to U sufficient for value of UI
 - Overcomes challenge to observe means used to smooth consumption
 - But conditional on knowing preferences
- How well do consumption responses capture value of insurance?
 - Can we simply translate Δ consumption in Δ marginal utility?
 - Lack of smoothing: low value? or price high?
 - Huge debate \Rightarrow Unresolved

We have a unique setting in Sweden:

- **I** rich admin data on income, wealth, unemployment, etc
- voluntary UI coverage

We implement three alternative approaches in same setting/sample:

- Revisit **CB** approach using admin data
 - Study different margins and heterogeneity in consumption responses
- Propose novel MPC approach
 - State-specific MPCs reveal price of smoothing consumption
- Implement RP approach based on UI choices
 - Study heterogeneity in valuations (conditional on unemployment risk)

We have a unique setting in Sweden:

- **1** rich admin data on income, wealth, unemployment, etc
- **voluntary** UI coverage

We implement three alternative approaches in same setting/sample:

- Revisit CB approach using admin data
 CB indicates low value of UI (< MH costs)
- Propose novel MPC approach
 - MPCs indicate high value of UI (\gtrsim MH costs)
- S Implement RP approach based on UI choices
 - RP confirms high value of UI and reveals large dispersion

Related Literature

- Recent literature on value of UI:
 - CB approach using admin data (Ganong and Noel '16, Gerard and Naritomi '18) rather than surveyed consumption (Browning and Crossley '01, Stephens '01)
 - 'optimization methods' (Chetty '08, Landais '15, Hendren '17)
 - other social insurance settings (Finkelstein et al. '15,'17, Low and Pistaferri '15, Cabral '16, Autor et al. '17, Fadlon and Nielsen '17)
- Our new approaches relate to:
 - heterogeneity in MPCs (e.g., Kreiner et al '16, Kekre '17, ...)
 - RP vs. choice frictions (e.g., Abaluck and Gruber '11, Handel '13, Handel and Kolstad '15, ...)
- Building on own previous work:
 - use CB approach to study optimal dynamics of UI (Kolsrud et al. '18)
 - use UI choices to study adverse selection in UI (Landais et al. '18)

< ロト < 同ト < ヨト < ヨト

Outline

Introduction

- 2 Conceptual Framework
- 3 Context & Data
- 4 Consumption-Based Approach
- 5 MPC Approach
- 6 Revealed Preference Approach

∃ ⊳

< 17 b

Stylized Model of Unemployment

• Worker maximizes:

$$\pi(z) u_u(c_u, x_u) + (1 - \pi(z)) u_e(c_e, x_e) - z$$

subject to

$$c_s = y_s + rac{1}{p_s} x_s$$
 for $s = e, u$

• Consumption smoothing behavior:

$$u_{s}^{\prime}\left(c_{s}
ight)=p_{s}v_{s}^{\prime}\left(x_{s}
ight)$$

- Model can capture different types of resources used to smooth consumption:
 - household labor supply: $p_s v'(x_s) = \frac{1}{w_s} c'(x_s)$
 - savings/credit: $p_s v'(x_s) = R_s \beta V'_s(a_s x_s)$
 - insurance/securities: $p_{s}v'\left(x_{s}\right) = p_{s}V_{0}'\left(a_{0}\right)/\pi_{s}$

• UI value depends on MRS btw employment and unemployment consumption:

$$MRS = \frac{u'_{u}\left(c_{u}\right)}{u'_{e}\left(c_{e}\right)}$$

MRS "sufficient" to evaluate value of (marginal) changes to UI design
Baily-Chetty formula:

$$W'(b) \propto MRS - [1 + \varepsilon_{\frac{\pi}{1-\pi},b}]$$

- Envelope conditions are key
 - consumption smoothing responses to change in UI have only SO impact on welfare

Context & Data

- Data from tax registers on all earnings/income, transfers/taxes, debt & assets (balance & transactions), some durables
 - Consumption as a residual expenditure measure (Kolsrud et al. '17)

```
consumption_t = income_t - \Delta assets_t
```

Consistency with survey data Details

- Sources of income variation (UI benefits, transfers, asset price shocks)
- Data on UI coverage choices [2002-2008] Institutional details
 - workers can opt for comprehensive coverage ($\sim 80\%$ replacement rate)
 - alternative is a flat minimum benefit level
 - uniform price (subsidized): 4 out of 5 take comprehensive coverage
- Data on unemployment outcomes:
 - On unemployment spells & benefit receipt
 - On determinants of U risk Predicted Risk Model
 - On elicited unemployment risk (surveys)

イロト イボト イヨト

- 2 Conceptual Framework
- 3 Context & Data
- 4 Consumption-Based Approach
 - 5 MPC Approach
 - 6 Revealed Preference Approach

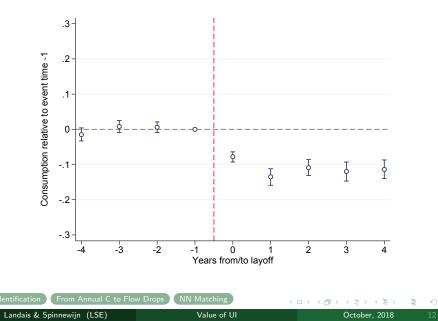
 $\exists \rightarrow$

< 47 ▶

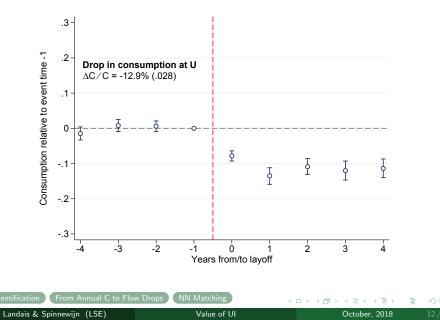
CB Approach

MRS is determined by consumption drop and risk aversion:

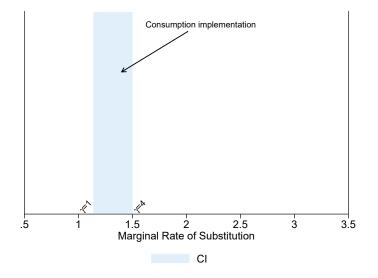
$$\frac{u_{u}'\left(c_{u}\right)}{u_{e}'\left(c_{e}\right)} \cong 1 + \gamma \times \frac{c_{e} - c_{u}}{c_{e}}$$

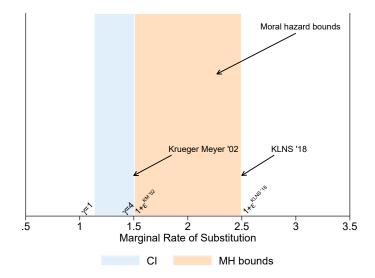

where $\gamma = c_e \cdot u''(c_e) / u'(c_e)$

• Approximation ignores state-dependent preferences and relies on Taylor expansion


$$u'(c_u) \cong u'(c_e) + u''(c_e) [c_e - c_u]$$

• Remarkably easy to implement if preferences are known...


Yearly Consumption Relative to Year of Displacement


Yearly Consumption Relative to Year of Displacement

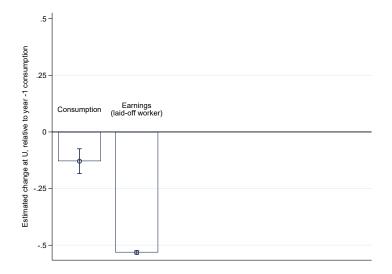
Comparing Value vs. Cost of UI Baily-Chetty



Comparing Value vs. Cost of UI Baily-Chetty

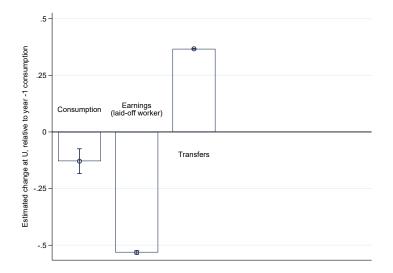
Landais & Spinnewijn (LSE)

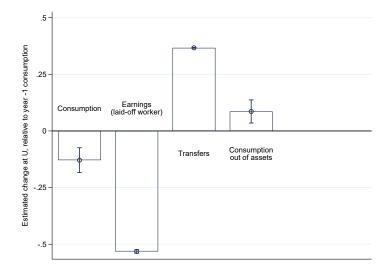
Decomposition of Cons. Responses: HH Consumption



∃ ⊳

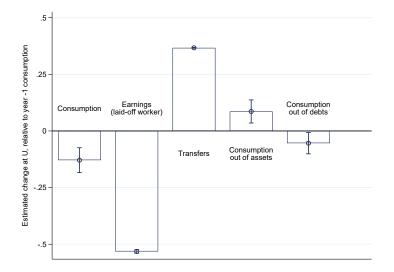
- ∢ ⊢⊒ →


Decomposition of Cons. Responses: Labor Income


< 47 ▶

Decomposition of Cons. Responses: Transfers

Decomposition of Cons. Responses: - Δ Assets



 $\exists \rightarrow$

< □ > < 同 >

Decomposition of Cons. Responses: Δ Debt

< ∃ >

Decomposition of Cons. Responses: Spousal Earnings

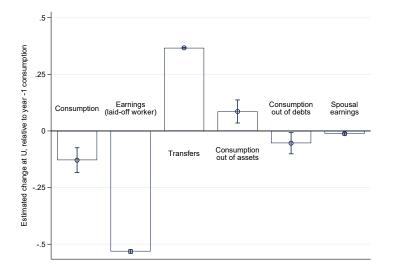
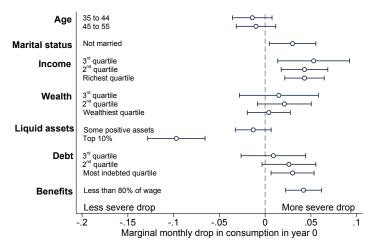



Image: A matched and A matc

Heterogeneity in Consumption Responses

< ロト < 同ト < ヨト < ヨト

Can we translate Δ consumption in Δ marginal utility?

- Consumption drops are endogenous:
 - Large ΔC relative to ΔY at displacement \Rightarrow low γ ? or high p_u/p_e ?
 - Large ΔC for liquidity or debt-constrained \Rightarrow high p_u/p_e ?
- Other challenges:
 - State-dependent Expenditures
 - State dependent utility
 - Anticipation (e.g. Hendren [2017, 2018])
 - Heterogeneity (e.g. Andrews & Miller [2013])

Can we translate Δ consumption in Δ marginal utility?

- Consumption drops are endogenous:
 - Large ΔC relative to ΔY at displacement \Rightarrow low γ ? or high p_u/p_e ?
 - Large ΔC for liquidity or debt-constrained \Rightarrow high p_u/p_e ?
- Other challenges:
 - State-dependent Expenditures

Using consumption surveys, we find: Expenditure Categories

- committed expenditures (e.g., rent) drop very little
- durable good consumption (e.g., furniture) drops early on in the spell
- employment-related, but also leisure expenditures drop substantially
- increase in home production
- 2 State dependent utility
- Anticipation (e.g. Hendren [2017, 2018])

Heterogeneity (e.g. Andrews & Miller [2013]).

Can we translate Δ consumption in Δ marginal utility?

- Consumption drops are endogenous:
 - Large ΔC relative to ΔY at displacement \Rightarrow low γ ? or high p_u/p_e ?
 - Large ΔC for liquidity or debt-constrained \Rightarrow high p_u/p_e ?
- Other challenges:
 - State-dependent Expenditures
 - 2 State dependent utility
 - Complementarities btw C & L, reference-dependence, etc.

$$\frac{u'_{u}(c_{u})}{u'_{e}(c_{e})} \cong 1 + \gamma_{e} \times \frac{c_{e} - c_{u}}{c_{e}} + \theta$$

•
$$\theta = \frac{u'_u(c_u) - u'_e(c_u)}{u'_e(c_e)}$$

- Anticipation (e.g. Hendren [2017, 2018])
- 4 Heterogeneity (e.g. Andrews & Miller [2013])

Can we translate Δ consumption in Δ marginal utility?

- Consumption drops are endogenous:
 - Large ΔC relative to ΔY at displacement \Rightarrow low γ ? or high p_u/p_e ?
 - Large ΔC for liquidity or debt-constrained \Rightarrow high p_u/p_e ?
- Other challenges:
 - State-dependent Expenditures
 - ② State dependent utility
 - S Anticipation (e.g. Hendren [2017, 2018])
 - $\bullet~$ Drop at U = drop conditional on U risk already revealed at U
 - Individuals who end up unemployed were also more risky
 - $\bullet\,$ Anticipation reduces drop in C at U
 - Solution: Rescale changes in C at job loss by risk revealed Or rescale change in C before U by amount of risk revealed before U Implementation

Landais & Spinnewijn (LSE)

Can we translate Δ consumption in Δ marginal utility?

- Consumption drops are endogenous:
 - Large ΔC relative to ΔY at displacement \Rightarrow low γ ? or high p_u/p_e ?
 - Large ΔC for liquidity or debt-constrained \Rightarrow high p_u/p_e ?
- Other challenges:
 - State-dependent Expenditures
 - ② State dependent utility
 - S Anticipation (e.g. Hendren [2017, 2018])
 - Heterogeneity (e.g. Andrews & Miller [2013])
 - Heterogeneity in MRS important for policy design
 - Mapping btw heterogeneity in Δc & in MRS is tricky!
 - Need to account for $\mathit{Cov}(\gamma,\Delta c)$

Introduction

- 2 Conceptual Framework
- 3 Context & Data
- 4 Consumption-Based Approach
- 5 MPC Approach
 - 6 Revealed Preference Approach

H 14

< 17 ▶

Approach II: State-Specific MPC's

MPC approach

Under 'regularity conditions', MRS is bounded by:

$$\frac{u_{u}'\left(c_{u}\right)}{u_{e}'\left(c_{e}\right)} \geq \frac{MPC_{u}/(1-MPC_{u})}{MPC_{e}/(1-MPC_{e})}$$

with $MPC_s \equiv dc_s/dy_s$.

 Idea: smoothing behavior depends on state-specific price of increasing consumption, p_s:

$$\frac{u'_{u}\left(c_{u}\right)}{u'_{e}\left(c_{e}\right)} = \frac{p_{u}}{p_{e}} \times \frac{v'_{u}\left(x_{u}\right)}{v'_{e}\left(x_{e}\right)}$$

• In 'standard' models:
$$\frac{v'_u(x_u)}{v'_e(x_e)} \ge 1 \Rightarrow \frac{u'_u(c_u)}{u'_e(c_e)} \ge \frac{p_u}{p_e}$$

• **Challenge:** what is p_u/p_e ? what is binding margin of adjustment?

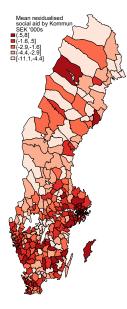
Approach II: State-specific MPC's (cont'd)

- Solution: state-specific MPCs reveals state-specific price ps
 - MPC is higher when price of increasing consumption is higher

$$\frac{dc_s}{dy_s} = \frac{p_s \times \frac{\sigma_s^x}{\sigma_s^c}}{1 + p_s \times \frac{\sigma_s^x}{\sigma_s^c}}$$

- Mitigated by curvature over consumption c vs. used resource x
- 'Trick': rescaling of MPC_u vs. MPC_e
 - Takes out impact of relative curvature (e.g., CARA prefs)
 - Overcomes challenges to CB approach (e.g., work exps, home prodn)
- Builds on 'optimization approaches':
 - See Chetty 2008, Landais 2015, Hendren 2017
 - Choices (e.g., spousal labor, precautionary savings) reveal value of UI...
 - ... but requires the studied margin of adjustment to be binding

Further Details

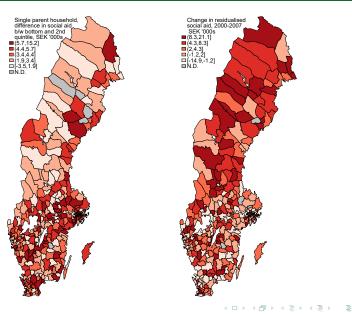

MPC: Variation in Local Transfers

- Challenge: need comparable exogenous variation in income when employed vs. unemployed
- Use variation in local transfers
 - Local transfers = large fraction of HH transfers
 - Means-tested/categorical transfers, housing benefits, ...
 - Regulated at national level, large discretion at municipality level
 - Large variation across municipalities / over time / across HH types Examples
 - Use interaction of sources of transfer variation in FD approach

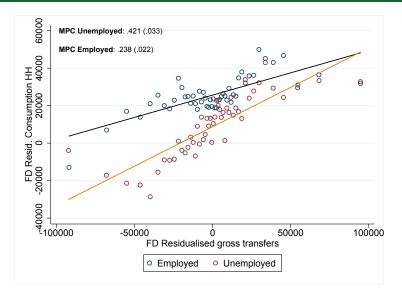
$$C_{ijt} = \alpha_i + \eta_j + \delta_t + \gamma h_{ijt} + X'_{it}\beta$$

- X: rich vector of characteristics determining transfers Details
- Estimate on sample of individuals who become unemployed
 - Compare them when employed vs unemployed

Variation in Local Transfers:

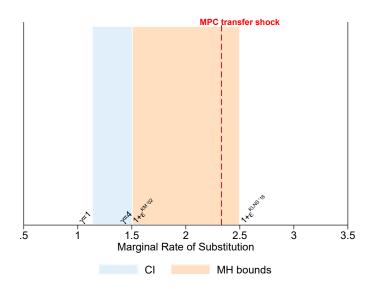

Landais & Spinnewijn (LSE)

October, 2018 21 / 6


э

イロト イボト イヨト イヨト

Variation in Local Transfers:


MPC: Transfer

Landais & Spinnewijn (LSE)

October, 2018

Estimates of MRS: CB vs. MPCs

1 Introduction

- 2 Conceptual Framework
- 3 Context & Data
- 4 Consumption-Based Approach
- 5 MPC Approach

 $\exists \rightarrow$

< 4 → <

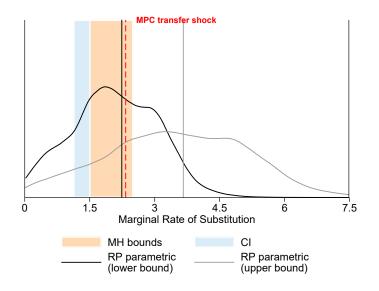
RP approach

When offered insurance, choice reveals MRS given *expected* price per unit of coverage:

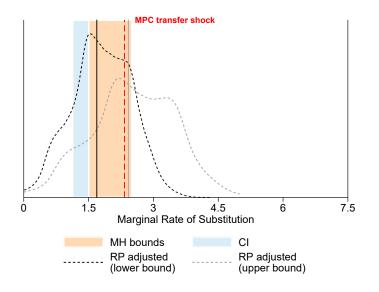
$$\frac{u_{u}'\left(c_{u}\right)}{u_{e}'\left(c_{e}\right)} \gtrless \frac{p_{u}}{p_{e}} \times \frac{\left[1-\pi\right]}{\pi}$$

- Most direct approach?
 - When prices are known, could infer value from insurance choice
 - But ex-ante choice: need to account for unemployment risk $\pi!$
- Challenges:
 - Requires data on choices and unemployment risk
 - Need variation in 'expected' price to tighten bounds
 - Tackle potential choice frictions: e.g., risk misperception, inertia

RP Approach: Implementation


- Swedish Context:
 - Basic plan (b_0, τ_0) vs comprehensive plan (b_1, τ_1)
 - Expected price $E[P] = \frac{[1-\pi_i] \times [\tau_1 \tau_0]}{\pi_i \times [b_1 b_0]}$
- Use non-parametric approach to put bounds on MRS (Example)
- Use parametric approach to estimate MRS distribution:
 - Estimate random effect logit model:
 - 'insured' if $\underbrace{\mathsf{MRS}}_{\alpha_i + X'\beta} E[P]_{it} + \varepsilon_{it} \ge 0$
 - X: vector of observables affecting MRS (age, education, income, etc.)
 - Predict unemployment risk π_i based on X + Z:
 - Z: risk shifters $(\perp X)$ (relative tenure rank, layoff notifications)
 - account for MH: estimate separately on 'insured' and 'uninsured'
 - account for frictions: (i) salient risk shifters, (ii) elicited beliefs

Predicted Risk Model) (> Moral Hazard)


ard 🔪 🕨 Frictions

イロト 不得 トイヨト イヨト 二日

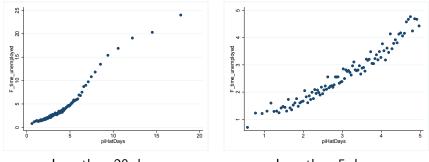
RP Parametric: MRS distributions

Adjusted RP Parametric: MRS distributions

Conclusion

- Revisited consumption-implementation using registry-based measure
 - find 'small' consumption drops which translate in low value of UI for standard preferences
 - limited consumption smoothing beyond (generous) social transfers
- Alternative approaches suggest high mean and variance in the value of UI
 - high mean: generous UI is desirable
 - high variance: allow for choice or differentiate UI policy
 - need caution when using CB approach to guide policy
- State-specific MPCs seem robust alternative to CB approach & extendible to other social insurance settings when no choice is available

DETAILS


Ξ

< ロト < 回 ト < 三 ト < 三 ト</p>

- Using a **Zero-Inflated Poisson** model to predict the number of days unemployed in *t* + 1.
 - Logit part of the model predicts excess zeroes using layoff history (layoff dummies in t − 1 and t − 2), notifications (in t, t − 1 and t − 2), average firm layoff probability by year, union membership, individual's tenure in firm, tenure×notification, firm layoff probability×tenure, year×industry fixed effects and firm size.
 - **Poisson count** part of the model predicts length of unemployment spell based on income history (ln(income) in t, t 1 and t 2), family type, age bins, gender, education level, region of residence and industry of activity in t

Back

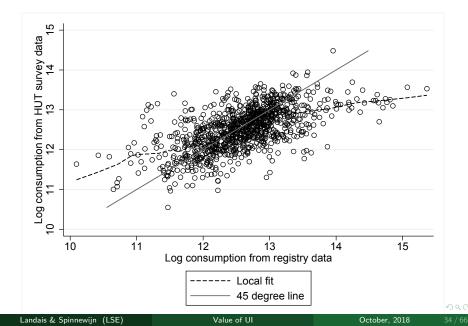
Predicted risk model: Fit

Less than 20 days

Less than 5 days

Back

Registry-based Measure of Consumption


• Simple idea: consumption as a residual expenditure measure,

 $consumption_t = income_t - \Delta assets_t$

- We use admin data (from tax registers) on earnings y, transfers T, bank savings b, outstanding debt d, other financial assets v and real assets h.

 - Majority starts unemployment with no financial nor real assets Table
- We construct annual household consumption C for panel of Swedish workers and analyze how it evolves around job loss using event-study
 Details
- Note that we check consistency with consumption survey data

Consistency with survey data

$$c_t = y_t + T_t + \tilde{c}_t^b + \tilde{c}_t^d + \tilde{c}_t^v + \tilde{c}_t^h$$

• Bank savings: $\tilde{c}_t^b = y_t^b - \Delta b_t$

• y_t^b : earned interests ; Δb_t : change in bank savings

• Debt:
$$\tilde{c}_t^d = -y_t^d + \Delta d_t$$

• y_t^d : paid interests ; Δd_t : change in debt

• Other financial assets: $\tilde{c}_t^v = y_t^v - \Delta v_t$

- y_t^v : interests, dividends, price change $\Delta p_t^v \times q_{t-1}^v$
- Δv_t : change in stock value $p_t^v q_t^v p_{t-1}^v q_{t-1}^v$

• Real assets: $\tilde{c}_t^h = y_t^h - \Delta h_t$

- y_t^h : rent, imputed rent, price change
- Δh_t : change in stock value

Back

(1) マン・ション・ (1)

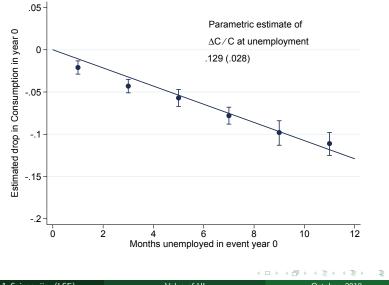
Identifying Dynamic Consumption Responses to U

• Event Study Methodology:

$$Y_{it} = \alpha_i + \nu_t + \sum_{j=-N_0}^{N_1} \beta_j \cdot \mathbb{1}[J_{it} = j] + \varepsilon_{it}$$
(1)

•
$$[-N_0; N_1]$$
: window of dynamics effects

•
$$J_{it} = t - E_{it}$$
: event time


- Potential concern: only identifies β_j up to a trend (cf. Borusyak & Jaravel [2017])
- Solution: control group to fully identify ν_t
 - NN matching based on pre-characteristics

Back

From Annual to Flow Drops in Consumption

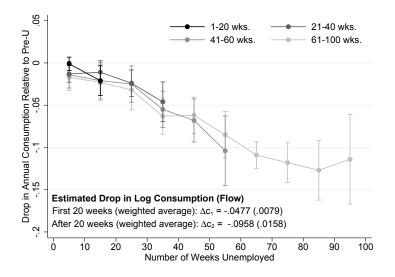
- How to re-cover consumption wedge from yearly aggregates mixing employment and unemployment consumption, c_e and c_u ?
- Focus on spells ongoing in December, and compute drop by time spent unemployed during the year

From Annual to Flow Drops in Consumption

Landais & Spinnewijn (LSE)

October, 2018

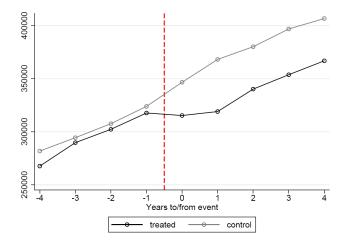
37 / 66


From Annual to Flow Drops in Consumption

- How to re-cover consumption wedge from yearly aggregates mixing employment and unemployment consumption, c_e and c_u ?
- Focus on spells ongoing in December, and compute drop by time spent unemployed during the year
- Parametric approach nicely fits the non-parametric estimates

$$\frac{c_e - c_u}{c_e} = \frac{12}{N} \cdot \frac{\Delta C}{C} = .129(.028)$$

- Fully non-parametric approach gives similar results (KLNS [2018])
- Similar estimates (but 10 times less precise!) using consumption surveys (KLNS [2018])


From Annual to Flow Drops in Consumption: Selection

October, 2018

38 / 66

Event Study: Treated vs. NN

Back

∃ ⊳

< □ > <

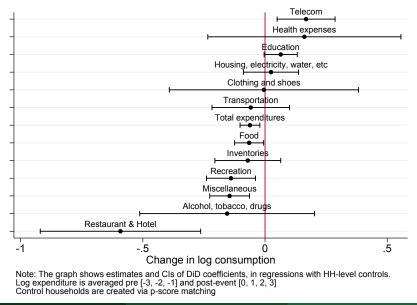
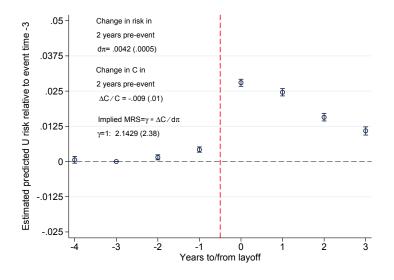

	Mean	P25	P50	P75	P90
Gross earnings	151	43	134	229	296
Capital Income	0	0	0	.2	2.5
Disposable Income	148	91	140	186	236
Net worth (A+B-C)	162	-52	0	124	617
% of disp. income	110	-39	0	123	420
Financial assets (A) % of disp. income Bank holdings % of disp. income Mutual funds % of disp. income Stocks % of disp. income	75 65 27 20 25 27 14 9	0 0 0 0 0 0 0	4 0 0 0 0 0 0	48 47 12 8 10 9 0 0	170 162 63 49 55 65 8 65
Real Estate (B)	267	0	0	267	888
% of disp. income	178	0	0	159	511
Debt (C)	181	0	50	236	519
% of disp. income	132	0	37	161	326

Table: SUMMARY STATISTICS PRE-UNEMPLOYMENT - 2003KSEK


Notes: From Kolsrud et al. (2016): sample of individuals observed in December of year t starting unemployment spellin first 6. (*)

Landais & Spinnewijn (LSE)	Value of UI	October, 2018	
----------------------------	-------------	---------------	--

Consumption surveys: estimated expenditure drops

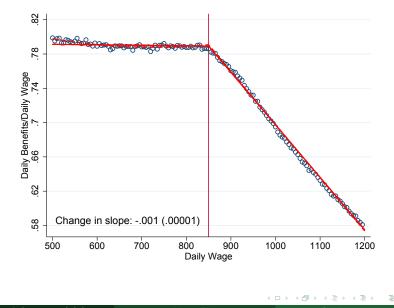
Anticipation: Predicted Risk Over Event Time

Back

< - 1 →

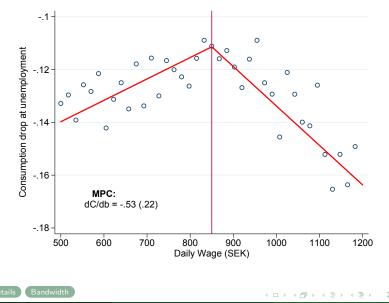
10.0

MPC: Transfer

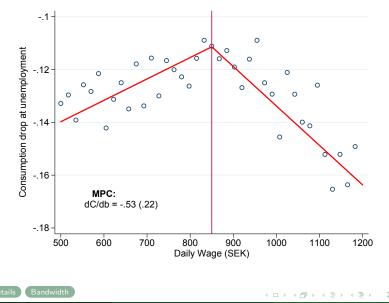

- Residualise transfers wrt rich vector X:
 - Age, Year, Gender, Education, Family type, # HH members dummies
 - HH level: decile dummies of: net wealth + lag, labour income (ForvInk), lag of disposable income, FKURTA (debt), real estate wealth + lag, capital income
 - Dummies for municipality of residence j
 - Dummy for no of earners in HH (1 earner or more than 1 earner)
- First-difference model:

$$\Delta C_{ijt} = \gamma_E \Delta h_{ijt} \cdot \mathbf{1}[E=1] + \gamma_U \Delta h_{ijt} \cdot \mathbf{1}[U=1] + \Delta X'_{ijt} \beta$$

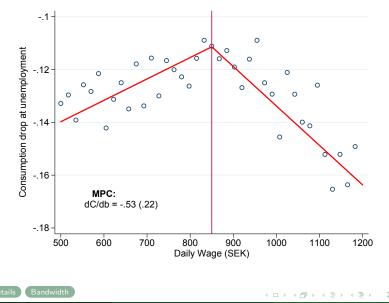
- Exploit both variation across municipalities over time, and within municipality across individuals over time
- IV:
 - Instrument FD T_{ijt} by FD residualized $h_i jt$
 - Ideally: grouping instrument (FD of average local transfers *h_ijt* in bin of Xs)


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

RKD: UI Benefits As Function of Daily Wage



October, 2018 44


RKD: Drop in Consumption vs Daily Wage

RKD: Drop in Consumption vs Daily Wage

RKD: Drop in Consumption vs Daily Wage

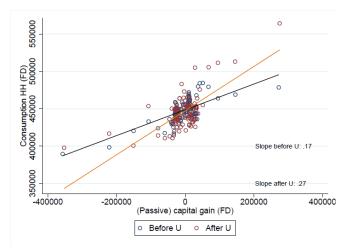
RKD: Estimation

- Validity of RKD setting: see KLNS [2018]
- RKD specification:


$$\Delta C_i = \beta_0 \cdot (w - k) + \beta_1 \cdot (w - k) \cdot \mathbf{1}[w > k] + \sum_j \mathbf{1}[D = j] + X'\beta$$

- ΔC : drop in yearly consumption at U (btw event years -1 and 0)
- UI schedule kinked function of daily wage at w = k
- Control function approach
 - D: duration of U spell in months

$$\frac{dC}{db} = \frac{\Delta_{w^-,w^+}(\partial\Delta C/\partial w)}{\Delta_{w^-,w^+}(\partial b/\partial w)} = \frac{\hat{\beta}_1}{.8 \cdot 30 \cdot \bar{D}}$$


• Multiply .8 by $30 \cdot \overline{D}$ to translate into yearly benefit variation

RKD Robustness: Bandwidth

Back

MPC: K gain shocks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Table: Response of Annual Consumption to Capital Income Shocks

	Pre U shock IV	After U shock IV	Implied MRS
Stock returns	0.165*** (.00414)	0.276*** (.00491)	1.87
Dividends	0.123*** (.0268)	0.216*** (0.0165)	1.95
Ν	884,736	164,707	

Image: A matched and A matc

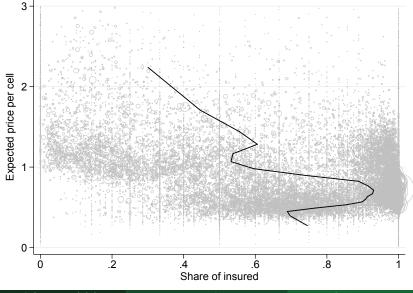
MPC approach: Details

• Combining and implicitly differentiating FOC's:

$$\frac{u_{u}'\left(c_{u}\right)}{u_{e}'\left(c_{e}\right)} = \frac{p_{u}}{p_{e}} \times \frac{v_{u}'\left(x_{u}\right)}{v_{e}'\left(x_{e}\right)} \& \frac{dc_{s}}{dy_{s}} = \frac{p_{s} \frac{v_{s}''/v_{s}'}{u_{s}''/u_{s}'}}{1 + p_{s} \frac{v_{s}''/v_{s}'}{u_{s}''/u_{s}'}}$$

• 'Regularity' conditions:

- Note that bound may be uninformative
 - e.g., insurance setting: $\frac{v_u'(x_u)}{v_e'(x_e)} = \frac{\pi_e}{\pi_u} >> 1$
 - in fact, insurance lowers p_u/p_e below $1 \Rightarrow$ simple test for insurance!

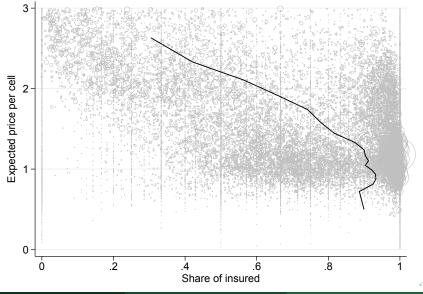


• Well-known idea: individuals' choices reveal their value for insurance

- Most obvious/direct case: UI choices
- Other margins of adjustment: labour supply, search effort, savings, reservation wage, etc.
 - Extend CB approach to wedges in other behavior (Fadlon and Nielsen 2017, Hendren 2017, Finkelstein et al. 2017)
 - Extend CB approach to changes in anticipation of unemployment (Hendren 2017)
 - Study response in unemployment to unemployment benefits vs. other sources of income (Chetty [2008], Landais [2015])
- Optimization approaches require the studied margin of adjustment to be binding or even unique
 - Consumption is encompassing all potential margins of self-insurance
 - MPC reflects the price of the binding margin of self-insurance

< ロ > < 同 > < 回 > < 回 >

RP non-param: Expected price vs UI Coverage


Landais & Spinnewijn (LSE)

Value of UI

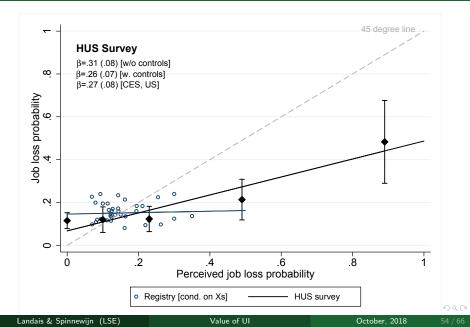
October, 2018 52 /

52 / 66

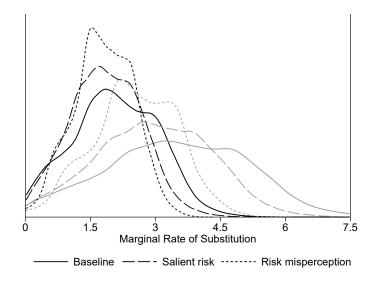
RP non-param: Expected price vs UI Coverage

Landais & Spinnewijn (LSE)

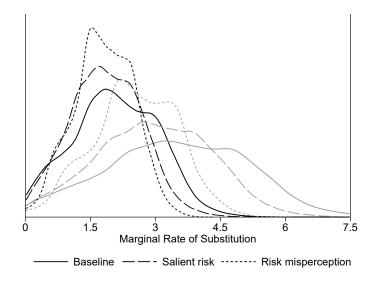
October, 2018 52


52 / 66

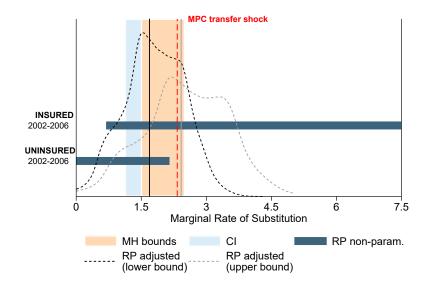
RP Approach: Role of Frictions?


- RP approach relies on EU optimization
 - Assume absence of choice and information frictions
 - e.g., Abaluck and Gruber '11, Barseghyan et al. '13, Handel and Kolstad '15, ...
- Predicted risk π_i = perceived risk $\tilde{\pi}_i$?
 - Private info vs. imperfect info, biased beliefs, salience, etc.
 - Study elicited risk belief in survey matched with our data
 - Little bias on average, but $Corr(\pi_i, \tilde{\pi}_i) << 1$
- Account in structural estimation for wedge $\pi_i \neq \tilde{\pi}_i$:
 - **①** Correct for misperception $\hat{\beta}[\pi_i \bar{\pi}_i]$ in calculation of expected price
 - Use salient risk 'shifters' (firm layoff rate and worker's unemployment) to predict risk

Back


Evidence from Elicited Risk Perceptions

Adjusted RP Parametric: MRS distributions



Adjusted RP Parametric: MRS distributions

5 / 66

Adjusted RP Parametric: MRS distributions

RP approach: Envelope Conditions - Details

• Setup:

- consider contract $z_1 = (b_1, \tau_1)$ and contract $z_0 = (b_0, \tau_0)$
- denote agent's behavior for contract z_i by $x(z_i)$
- denote agent's resulting unemployment risk by $\pi(z_i)$ and consumption by $c(z_i)$
- Incremental value:

$$Eu(z_1) - Eu(z_0) = \int_{z_0}^{z_1} Eu'(z) dz$$

Envelope condition:

$$Eu'(z) dz = \pi(z) \frac{\partial u_u(c_u(z), x(z))}{\partial c_u} db - (1 - \pi(z)) \frac{\partial u_e(c_e(z), x(z))}{\partial c_e} d\tau$$

using

$$\frac{\partial \pi}{\partial x} \left[u_u - u_e \right] + \pi \frac{\partial u_u}{\partial x} + (1 - \pi) \frac{\partial u_e}{\partial x} = 0$$

Approximation:

$$\mathsf{Eu}(z_1) - \mathsf{Eu}(z_0) \cong \pi(\bar{z}) \, u'_u(c(\bar{z})) \, [b_1 - b_0] - (1 - \pi(\bar{z})) \, u'_e(c(\bar{z})) \, [\tau_1 - \tau_0]$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Self-insurance / Savings:
 - presence of alternative means to smooth consumption reduces value of UI
 - social insurance may crowd-out private insurance
 - conditional on consumption, private insurance responses have only SO impact
- Liquidity constraints:
 - liquidity or borrowing constraints tend to increase value of UI
 - however, value is still entirely captured by $u'_{u}(c_{u})$
 - only when consumption cannot respond (e.g., commited expenditures), $u'_u(c_u)$ will under-estimate value of UI
- Moral hazard:
 - envelope conditions again apply; individual unaffected by fiscal externality
 - using $\pi(z_1) > \pi(\bar{z})$ for approximation, we overestimate insurance value and thus RHS provides a (weaker) lower bound
 - using $\pi(z_0) < \pi(\bar{z})$ for approximation, we underestimate insurance value and thus RHS provides a (weaker) upper bound

▶ Back

- 4 同 1 4 回 1 4 回 1

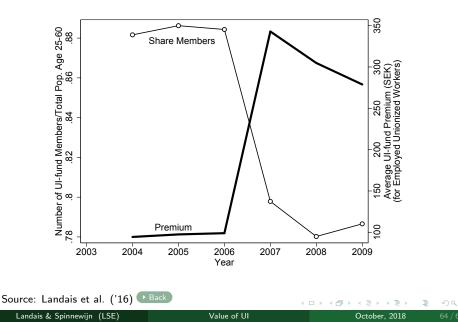
- How do approximations for two methods interact?
 - $\bullet~$ CI approach provides estimate of $MRS|_{z_1}$ and $MRS|_{z_0}$ for insured and uninsured respectively
 - RP approach provides estimates of $MRS|_{\bar{z}}$ for both groups
 - Under risk-aversion, $MRS|_{z_1} \leq MRS|_{\bar{z}} \leq MRS|_{z_0}$
 - Hence, for the insured:
 - RP approach provides a (weaker) lower bound for $MRS|_{z_0}$ (> MRS_z), but not necessarily for $MRS|_{z_1}$
 - BUT CI approach indicates that $MRS|_{z_0} \leq MRS|_{z_1} + \gamma \frac{\Delta b}{c} \leq 1 + \gamma \left| \frac{\Delta c + \Delta b}{c} \right|$
 - Using Δb as the upper bound on the additional consumption drop when unemployed under z_0 rather than z_1 , we find conservative lowerbound on $\gamma : \left[\frac{1-\pi}{\pi} \frac{\tau_1 \tau_0}{b_1 b_0} 1\right] / \left[\frac{\Delta c + \Delta b}{c}\right]$
 - Differences in consumption under the two contracts seem small though. So assuming $MRS|_{z_1} \cong MRS|_{\bar{z}} \cong MRS|_{z_0}$ We will investigate this further.
- Selection into unemployment:
 - We estimate the revealed value of insurance for all workers, but the consumption drops only for displaced workers.
 - If expected consumption drops for non-displaced workers would be lower (higher), we are underestimating (over-estimating) γ

イロト 不得 トイヨト イヨト

Combining CI and RP (cont'd): Details

- Within-group heterogeneity:
 - CI approach over-estimates MRS if corr (γ, Δc/c) is negative. Evidence that the uninsured (with lower γ) have smaller consumption drops goes in the other direction
 - RP approach would be robust to heterogeneity if we had info on individual risk types *π_i*. Instead, we are using risk-realizations to get average group risks.
 - That is, by using $\frac{E(1-\pi)}{E(\pi)}$ we are overestimating $E\left(\frac{1-\pi}{\pi}\right)$ and more so if heterogeneity within-group is important
- Eligibility and ex-post risk realizations:
 - individuals can switch in and out of UI, but need to be contributing for 12 months to be eligible
 - ullet we consider unemployment risk in t+1 for individuals making UI choice in t
 - we restrict sample to individuals who would be eligible when becoming unemployed in t + 1 (i.e., sufficient earnings and no unemployment in t)
 - this sample restriction + choice of outcome variable reduces estimated unemployment risk relative to average unemployment risk
 - e.g., unemployment risk for our sample is higher in *t* + 2, so when they factor in inertia when deciding at *t*, we would be underestimating the decision-relevant unemployment risk and thus overestimate the MRS

イロト 不得 トイラト イラト 二日


The Swedish UI System: Details (I)

- Eligibility rules for displaced workers:
 - Work requirement to be eligible to any UI coverage (minimum or supplemental):
 - Within the past 12 months have worked more than 6 calendar months at least 80h per month
 - To be eligible to supplemental UI coverage:
 - Fulfill work requirement + have been contributing to a UI-fund for 12 mths prior to layoff
- Quits
 - Cannot receive UI benefits for first 10 weeks of U spell
 - In our data, we can identify quits to control for potential extra moral hazard from quits vs layoffs
- Basic coverage:
 - Fixed daily amount of 320 SEK (\approx 20% of median daily wage)
- Supplemental coverage:
 - Identical for all UI funds
 - 80% of daily wage up to cap
 - Daily benefit = Max(320, min(.8*daily wage, 680))

- Premia determination:
 - Government controls formula for premia of supplemental coverage
 - No price discrimination (by gender, age, etc.)
 - No price differentiation across UI funds (until 2007, limited differentiation after 2007)
- Link between Kassas and Unions:
 - UI funds were historically linked to Unions
 - But not necessary to be member of Union to be member of Kassa
 - Being member of Kassa does not buy Union membership
 - We observe and always control for Union membership in regressions

Back

Price Variation: the 2007 Reform

	Mean	P10	P50	P90
	I. Unemployment			
Layoff probability	2.41%	-	-	-
Unemployment probability	2.41%	-	-	-
Unemployment spell (days)	1.88	0	0	0
Duration of spell (days)	223.7	28	126	529
	II. Union and UI Fund Membership			
Union membership	0.76	-	-	-
UI fund membership	0.88	-	-	-
	III. Demographics			
Age	40,99	29	41	53
Fraction men	0.52	-	-	-
Fraction married	0.46	-	-	-
	IV. Income and Wealth, SEK 2003(K)			
Gross earnings	261	118.4	240.5	399.5
Net wealth	354	-181.2	100	1065.8
Bank holdings	47	0	0	114.9

Table: SUMMARY STATISTICS

Note: Sample consists of 23,535,839 distinct person-year observations,

ages 25-55, years 2002-2006. Back

Landais & Spinnewijn (LSE)

э

イロト 不得 トイヨト イヨト

	Mean	P10	P50	P90	
		I. Unemployment			
Layoff probability	2.57%	-	_	-	
Unemployment probability	2.57%	-	-	-	
Unemployment spell (days)	2	0	0	0	
Duration of spell (days)	224.84	27	126	533	
	II. Union and UI Fund Membership				
Union membership	0.85	-	-	-	
UI fund membership	1	-	-	-	
	III. Demographics				
Age	41.25	30	41	53	
Fraction men	0.5	-	-	_	
Fraction married	0.47	-	-	-	
	IV. Income and Wealth, SEK 2003(K)				
Gross earnings	259.1	126.7	241.2	392.4	
Net wealth	315.4	-171.6	102.8	1003.2	
Bank holdings	42.5	0	0	110.6	

Table: SUMMARY STATISTICS: INDIVIDUALS WITH SUPPLEMENTAL UI

Note: Sample consists of 23,535,839 distinct person-year observations,

ages 25-55, years 2002-2006. Back

Landais & Spinnewijn (LSE)

October, 2018

イロト 不得下 イヨト イヨト

э

	Mean	P10	P50	P90
	I. Unemployment			
Layoff probability	1.31%			
Unemployment probability	1.31%			-
Unemployment spell (days)	1.02	0	0	0
Duration of spell (days)	207.98	35	137	455
	II. Union and UI Fund Membership			
Union membership	0.14	-	-	-
UI fund membership	0	-	-	-
	III. Demographics			
Age	39.17	27	39	52
Fraction men	0.67	-	-	-
Fraction married	0.4	-	-	-
	IV. Income and Wealth, SEK 2003(K)			
Gross earnings	275.6	79.7	232.9	463.3
Net wealth	645.1	-249.6	69.4	1723.5
Bank holdings	80.5	0	0	159.5

Table: SUMMARY STATISTICS: INDIVIDUALS WITHOUT SUPPLEMENTAL UI

Note: Sample consists of 23,535,839 distinct person-year observations,

ages 25-55, years 2002-2006. Back

Landais & Spinnewijn (LSE)

October, 2018

イロト 不得下 イヨト イヨト

э