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Abstract

A popular two-step estimator of the intercept of a censored regression model is
compared with consistent asymptotically normal semiparametric alternatives. Using a
root mean squared error criterion, the semiparametric estimators perform better for a
range of bandwidth parameter choices for a variety of distributions of the errors and
regressors. For error distributions that are close to the normal, however, the two-step

parametric estimator performs better.
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1 Introduction

Censored regression models arise frequently in biostatistics, econometrics, and other areas of
statistics. Unlike in the standard linear regression model, standard parametric techniques
for estimating censored regression models give rise to inconsistent estimators when based
on incorrect distributional assumptions. As a result, semiparametric estimation of censored
regression models has received considerable attention in the last decade. Various estimates
have been shown to be y/n-consistent and asymptotically normal under distribution-free
assumptions. However, their finite sample performance is in doubt especially due to their
presumable sensitivity to a bandwidth or smoothing parameter.

The present paper compares the finite sample performance of a particular parametric

estimate, due to Heckman (1976, 1979), with consistent semiparametric alternatives, in the
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context of a particular censored regression or sample selection model. We focus in particular
on estimation of the intercept of the ‘outcome’ equation of this model when Heckman’s nor-
mality assumption does not hold. Given the potential sizeable magnitude of the inconsistency
of the parametric two step Heckman estimator of the intercept (e.g., see Goldberger (1983),
Arabmazar and Schmidt (1981, 1982), and Schafgans (1997)), this is a question well worth
considering. The semiparametric estimators of the intercept considered are those given by
Heckman (1990) and Andrews and Schafgans (1998). A proof of the consistency and as-
ymptotic normality of the Heckman estimator (1990) is given by Schafgans and Zinde-Walsh
(2000).

Both semiparametric estimators depend on a bandwidth or smoothing parameter. An
automated method for determining this bandwidth parameter has not yet been developed.
This study will evaluate the influence of choosing the bandwidth parameter on the estimates
obtained. For finite sample sizes, the root mean squared errors of the semiparametric es-
timators are compared with that of the parametric Heckman two-step alternative. Both
semiparametric estimators perform better for a range of bandwidth parameter choices for a
variety of distributions of the errors and regressors. For error distributions that are close to
the normal, however, the two-step parametric estimator performs better. Regarding the finite
sample performance of the semiparametric Heckman (1990) estimator and the Andrews and
Schafgans (1998) estimator the simulation results show that the Heckman estimator would
appear to be more efficient, while the bias of the Andrews Schafgans estimator for each given
bandwidth is lower in absolute value than for the Heckman estimator. Overall, our simula-
tions tend to favour the finite sampling behaviour of the Andrews-Schafgans (1998) estimator
over the Heckman estimator (1990). This is in line with findings in other nonparametric esti-
mation problems, which show that the trade-off between bias and variance is typically better
for smooth “kernels”. Schafgans and Zinde-Walsh (2000) compare the asymptotic proper-
ties of the Andrews-Schafgans (1998) and Heckman (1990) estimators for a wide class of
distributional assumptions and derive “optimal” bandwidth parameters.

The remainder of the paper is organized as follows: Section 2 discusses the censored
regression or sample selection model used briefly. Section 3 discusses the inconsistency of the
parametric two step estimator of the intercept. Section 4 gives the consistent, asymptotically
normal, semiparametric estimators of the intercept and Section 5 discusses the simulation

results. Section 6 concludes.

2 A Censored Regression Model

Because the presence of censored data are so common, econometricians and statisticians,
alike, have denoted much efforts to the analysis of censored data (Manski (1993)). Special

attention has been drawn to the censored regression or sample selection model. In latent



variable notation, the model can be written as

}/;* :M0+UZ )
D; =1(X/6o+¢€; >c), and (1)
Y, =YD, for i =1, .., n,

where (Y;, D;, X;) are observed random variable, and c¢ is some known truncation point. The
first equation is the outcome equation and the second equation is the participation equation.
The outcome equation only contains an intercept, implying that we are primarily concerned
with the estimation of the population mean g in this paper. In a more general setting, the
outcome equation would contain a regression function as well, for instance Z/6,. Theoretically,
the need for using the sample selection model when interested solely in the parameters of
the outcome equation, comes from the possible correlation between the outcome equation
error, U;, and the selection equation error, ;. This is sometimes referred to as the situation
where there is a ‘nonignorable nonresponse’ (see, for example, Rubin, 1987). The use of a
competing-risks model (Kalbfleisch and Prentice (1980)) as one statistical practice to deal
with nonignorable nonresponse has a related latent variable setup.

The discussion of the econometric implications of sample selectivity started in the early
seventies with the papers by Gronau (1974), Heckman (1974), and Lewis (1974). In their
studies, the problem of sample selection bias is discussed in the context of the decision by
women to participate in the labor force or not. The distribution of the wage offers sampled
is truncated by the ‘self-selection’ of women in the labor force, where women choose to be ‘in
the sample’ of workers if the offered wage exceeds their reservation wage. Sample selection
model have been used in a wide variety of other applications, e.g., see Maddala (1983) and
Amemiya (1984).

To express the model given in (1) in terms of the Gronau-Heckman-Lewis model, we note
that in their model Y;* is the latent offered wage and D; is a dummy variable indicating

1

whether the individual is employed, i.e., whether Y* — Y," exceeds zero, where Y;” denotes
the individual’s latent reservation wage. The observed wage is given by Y;. The variables
influencing the decision to participate in the labor market are given by X; and pg is the
population mean of the offered wage.

Standard parametric approaches in econometrics to estimating the parameters of this
model assume that (¢;, U;) have a bivariate normal distribution, independent of X, with zero
mean and unknown covariance matrix. With this assumption, the parameters can be esti-
mated by maximum likelihood or the more convenient but less efficient two-step estimator
of Heckman (1976, 1979). Nevertheless, from the Heckman estimate (or any v/N-consistent
semiparametric estimate) one Newton-step can be performed to match the efficiency of max-
imum likelihood estimation.

Unlike in the standard linear regression model, deviations from normality in the censored



regression model lead to biased and inconsistent estimators. For the Tobit model Gold-
berger (1983) and Arabmazar and Schmidt (1982) have documented the magnitude of this
inconsistency for a variety of symmetric distributions of the errors.

The present paper compares, in the context of the particular censored regression or sample
selection model given in (1), the finite sample performance of a popular parametric two-step
estimator with consistent asymptotically normal semiparametric alternatives. In particular,
we compare the parametric two-step estimator of Heckman (1976, 1979) with the semipara-
metric estimators given by Heckman (1990) and Andrews and Schafgans (1998). The popular
parametric two-step Heckman estimator is used rather than the maximum likelihood estima-
tor, since it is consistent for a more general class of dependence models discussed by Olson
(1980), i.e. where the errors of the outcome equation, U;, are linear in the errors of the

selection equation, ¢; and the &; are normally distributed.

3 The Inconsistent Two-Step Heckman Estimator of the Intercept

This paper is primarily concerned with the robustness of the estimator of the intercept to
deviations from normality. Expressions for the inconsistency of the two-step Heckman esti-
mator are derived for both the case where (3, is known and the case where it is not known.
Simulation results in Schafgans (1997) suggest that when applying the parametric Heckman
two-step estimation, particular care should be taken with (i) potential skewness in the distri-
bution of the outcome equation errors when there is much censoring, and (ii) high covariance
between the selection and outcome equation errors.

For the censored regression or sample selection model with truncation at ¢, we have:

= pto + h(c — XiBo),
where h(c — X[6o) = E(U; | X060 + €i > ¢, Xi).

Under the assumption that (U;, ¢;) have a bivariate normal distribution

(2)

h(C — X{ﬁo) =o.pF (82' ‘ €, > C— X;ﬁo,Xl)

X! 3
o Ry oo Xk = (e X !

where ¢*(-) is the inverse Mill’s ratio (Johnson and Kotz (1970, p. 278f.) give various
expansions of the inverse Mill’s ratio). The variance of the selection equation errors, o2, is
normalized to equal one. More generally, as Olsen (1980) pointed out, the above equality
holds when U, is linear in €; and ¢; is normally distributed.

The two-step Heckman procedure, for given [y, reduces to a least squares estimation on

the uncensored observations of
Y = po + ovg*(c — X! B) + v, foris.t. D; =1, (4)
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where
v; =U; — ovg™(c — X o). (5)

When (U, ¢;) have a bivariate normal distribution, or if U; is linear in ¢; and ¢; is normally
distributed, E(VZ | Dz = ]-’Xz) =0.

Equation (4) can also be written as
Y;D’l = (,uo_l_UEUg*(c_Xz(BO)_‘_Vi) Di; L= 17"'777" (6)

The two-step Heckman estimator i solves

fi= T (3 i DilYi — 6aug’ (e — XIfh)
n =1 2
5 5 2 (DiY; = DY )(Dig*(c — Xifo) — Dg*) (7)
OcUu = ,

% > (Dig* (c — XiBo) — D_g*)2

where DY = Y% | D;Y;/n and Dg* = Y% | Dig*(c — X!3y)/n. In the case in which o, is
known, we set 0.y equal to o.y and solve (7) only for fi.

This estimator of po (and o.y) is consistent if (U, €;) have a bivariate normal distribution
or if U; is linear in &; and ¢; is normally distributed. If (U;, ;) do not satisfy these conditions,
then the estimator fi (and /) is inconsistent, since, in general, E(v; | D; = 1, X;) # 0. Under

the true underlying distribution of (U, €;), we note that
v;D; = (h(c — XBo) — o-vg™(c — XiBo) + ;) Di, (8)

where E(v] | D; =1, X;) = 0 by construction.
The probability limit of fi is given by:

p* = plim fi = po + E(h(c — X{Bo)|Di = 1,X;) — oZy E(g"(c — X{Bo)|Di = 1,X,), (9)
where
Cov (h(c = Xijbh), g"(c = XiBo)|Di = 1, X;)

Var(g*(c — X )| Di = 1, X;) '
These probability limits exist, for instance, if {(U;,e;, X;)} is an i.i.d. sequence (or stationary
and ergodic), E (|Ui[* | & > ¢ — X{f, X;) < 00, and E (g*(c — X]f)* | & > ¢ — X[By, X;) <

.

oy =plimao.y =

(10)

Using (3), the inconsistency of the intercept can be written as follows

p—po=~E [h(c - X{ﬂo) - h*(c - X{50)|Dz’ = 1,X¢] -

(11)
(0ly — ov)E(g*(c — X{B)|Di = 1, X;).

The inconsistency depends on the truncation point ¢, h(z) = E(U;le; > z), the distribution of
X|Bo,0-v, and the inconsistency of the estimator of o.;. The inconsistency of the estimator

i reduces to the first term on the right hand side of (11) if 0.y is assumed to be known.
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When (5 is unknown, the inconsistency of the intercept has an additional term. This term

depends non-linearly on the inconsistency of the estimator of (3;. Specifically,

p—po =E[h(c— X[B) — h*(c = X{B)|Di = 1, Xi] —
(0Zy — o) E[g*(c — XiBo)| D = 1, X;] — (12)
oy Elg*(c — XiB) — g*(c — X{B)|D; = 1, Xi]

where §* = plim B The existence of this probability limit requires, additionally, that ¢; has a
distribution function. (Proof similar to Amemiya (1985)). In this case, the probability limit

of o,y is given by:

. _ Cov (h(c — X!6o), g*(c — X[6%)|D; = 1, X))

— 13
TeU Var(g*(c — X[6*)|D; = 1, X;) (13)

4 The Consistent Semiparametric Intercept Estimators

A consistent and asymptotically normal estimator for the intercept, o, was provided by

Andrews and Schafgans (1998). Their estimator is given by:

Y YDs(XIB e — v,
fin, = nl ( L i )’ (14)
i1 DiS(Xzﬂ —C— W’n)

where s(-) is a non-decreasing [0,1]-valued function that has three derivatives bounded over R

and for which s(z) = 0 for < 0 and s(z) = 1 for x > b for some 0 < b < co. The parameter
v is called the bandwidth or smoothing parameter. This bandwidth parameter is chosen
such that v, — oo as n — oo. Finally, B is a y/n-consistent preliminary estimator of 3;. The
literature on semiparametric estimation of censored regression or sample selection models
gives several root-n consistent and asymptotically normal estimators for the parameters, (3,
(up to some unknown scale) in (1). For instance, one could consider: Ichimura (1993), Powell,
Stock, and Stoker (1989), and Klein and Spady (1993).

Andrews and Schafgans’ (1998) estimator is an adaptation of the estimator suggested by

Heckman (1990)
- YL YiDA(XIB—c >,
[ = nl ( IAﬁ i ) (15)
Y Dil(X[B — ¢ > )

Both estimators make use of the idea of ‘identification at infinity’” mentioned by Cham-

berlain (1986). Only those observations for which the probability of selection in the censored
or truncated sample is close to one and in the limit as n — oo is one, are used for estimation
of the intercept. The justification of this approach is that the conditional mean of the errors
in the outcome equation for the observations having probability of selection close to one is
close to zero.

The estimator suggested by Andrews and Schafgans (1998) differs from Heckman’s (1990)

i, only in that it replaces the indicator function 1(-) with a smooth function s(-). The



introduction of this function facilitated them to provide the estimator with a distribution
theory. The smoothness imposed on this function, viz., differentiability of order three, is
used to show that the preliminary estimator B does not affect the asymptotic results. The
conjecture of Andrews and Schafgans that also Heckman’s estimator is asymptotically normal
was proven by Schafgans and Zinde-Walsh (2000).

Essentially, Heckman’s estimator [i,, is a sample average of the random variables U; + g
over a fraction of all observations, since Y; —, U; + o as n—oo for all ¢ > 1. The effective
sample size is equal to the number of observations used for the estimation of pg. Since AS
introduced a weighting scheme for these observations, viz., the smooth function s(-), the
estimator fi,, is a weighted sample average of the random variables U; + 119, where observations
with X/ 3 greater than -, and with X f close to the threshold v, are weighted less than those
further away.

The aim of the simulations presented in the next section is (a) to show that it is feasible to
improve (in terms of root mean squared error) on the parametric Heckman two-step estimator
using the semiparametric alternatives and (b) to reveal the sensitivity of the semiparametric
estimators to the choice of the bandwidth. In addition, it allows us to compare the Heckman
(1990) estimator with the Andrews and Schafgans (1998) estimator.

5 Simulation of the Semiparametric Estimator

In this section, simulation results are presented for the semiparametric estimator of py under
non-normality. The simulation results in this section are based on 1,000 random draws of the
censored regression or sample selection model given in (1) with 1,000 and 500 observations.
The amount of censoring considered is equal to 20, 50, and 80 percent. The true parameter
vector (uo, Bp) is given by (0,1,1)". For this purpose, c is chosen so that P(X, 3 < ¢) = 0.2,
0.5, and 0.8 as in Section 4.

The distributions of the selection equation errors considered are the Student t distribution
and the chi-squared distribution with degrees of freedom set low (specifically three and five,
each standardized to have zero mean and unit variance). In these instances, the parametric
two-step Heckman estimator gives rise to the largest deviations from the true population
mean (see, Schafgans (1997)). The standardization ensures that comparisons among these
distributions are not confused with differences in scale. The distribution of the outcome
equation errors are determined by the class of dependence models given by Olson (1980),
ie., U, = o.ye; + V;, where ¢; and V; are independent. In the results presented, V; has a
normal distribution with variance equal to o2 = o%(1 — p?;), where o2 is set equal to two.
Explorations with other choices of the distribution of V; seem to indicate that the results are
not very sensitive to the specific choice made for this distribution.

Lastly, two distributions of the selection index X, 3 are considered, the normal and the

chi-squared distribution. There are two regressors in X;, X;; and Xy;. In the first case



(X; 3, has a normal distribution) X1; and X5; are two independently drawn normal random
variables, and in the second case (XZ' Bo has a chi-squared distribution), X3; and Xy, are
two independently drawn chi-squared random variables with two degrees of freedom. The
regressors Xy; and Xy; are standardized in the following way: (i) both regressors have a
variance equal to a half (ii) the first regressor X;; has a mean equal to zero, and (iii) the
second regressor Xo; has a mean which varies in such a way that the amount of censoring is
equal to 20, 50, and 80 percent respectively. In each case, the variance of Xy = Xy; + X
equals one.

Both in the parametric and the semiparametric case the estimation of the true parameters
(10, Bo) follow a two step approach. In the parametric case, a probit regression precedes
the ordinary least square regression with the inverse Mill’s ratio as one of the explanatory
variables. In the semiparametric case, the average derivative estimator (Powell et al.(1989))
precedes the semiparametric estimation of the intercept described in detail in the previous
section. Following the suggestion in Andrews and Schafgans (1998), the function s(-) in (14)
is defined by:

1 —exp(—¢=)forz € (0,b)
s(z) = 0 forz <0 (16)
1 forx > b,
where we vary b from one, a half, and zero. When b is set equal to zero, we get the semipara-
metric estimator for the intercept given by Heckman (1990).

The primary criterion used for comparison of the semiparametric and parametric estima-
tors is the root mean squared error. Below, the abbreviation RMSE is used for the root mean
squared error. The feasibility of finding a bandwidth parameter for which the semiparametric
estimator is better in terms of RMSE than the parametric alternative is evaluated by com-
puting the RMSE ratio (defined by RMSE of the semiparametric estimator over the RMSE
of the parametric Heckman two-step estimator) for a wide range of bandwidth choices. A
secondary criterion for comparison is the simulated probability of rejecting the null hypoth-
esis Hy : u = po against Hy : u # g at a five percent level of significance using t-tests based
on the parametric Heckman two-step and semiparametric estimators. For the computation
of the rejection rates of parametric Heckman two-step estimator, the bivariate normality as-
sumption is maintained. For the semiparametric estimators, the asymptotic normality results
given in Andrews and Schafgans (1998) and Schafgans and Zinde-Walsh (2000) are used. The
actual bandwidth chosen for the estimation of yy should coincide with a simulated probability
of rejection of the null hypothesis equal to five percent.

A wide range of bandwidth choices ~, is considered. The choices considered are based on

the percentage of the uncensored observations used in the estimation of the semiparametric



estimator fi,. In the simulations, this percentage is computed as
(P(X;ﬁo —c> ) /P(X, 8 — ¢ > O)) % 100 = % Uncensored Observations. (17)

The actual bandwidth declines with the proportion of uncensored observations. Note that
v indicating the use of 100% of the uncensored observations for the estimation of fi,, i.e.,
¥» = 0, does not coincide with the naive truncated regression model. For the naive truncated
regression model, we need to set v, equal to —oo. For consistency, the bandwidth parameter
is required to approach infinity as the number of observations, n, goes to infinity. This means
that the probability of X3, — ¢ exceeding v, needs to approach zero as n goes to infinity.
This will guarantee that the estimation of pg is based on only those values of X; for which
P(D; = 1]X;) is close to one and in the limit is equal to one.

The simulation results are presented in Graphs 1 through 6. The horizontal lines in
all graphs correspond to the parametric Heckman two-step estimator (since this estimator
does not depend on the bandwidth), the remaining lines correspond to the semiparametric
estimators.

With the exception of Graph 6, all graphs are based on simulations with 1,000 observations
and 1,000 replications.

Distribution of the Selection Equation Errors.

Graph 1 presents the results for the parametric Heckman two-step estimator and the semi-
parametric estimators of the intercept for a range of bandwidth choices. In part A of the
graph, the average bias (in absolute terms) and the standard deviation of the estimators are
graphed against the bandwidth. The bandwidth is reported in terms of the percentage of
uncensored observations used for the semiparametric estimation of . In each graph, the
results for different choices of the parameter b in the s(-) function are presented for different
distributions of the selection equation errors. In part B of the graph, the results from part
A are combined to give the RMSE ratio against the bandwidth. Together with this criterion
to compare the parametric with the semiparametric estimators, part B of the graph also
reports the simulated rejection rate of the t test for the null hypothesis Hy : = po against
Hi : o # g at a five percent level of significance against the bandwidth.

As expected, the bias of the parametric Heckman two-step estimator decreases as the
selection equation errors are closer to the normal distribution. The bias of the semiparametric
estimators of o decreases when the bandwidth parameter is increased (or similarly a lower
proportion of the uncensored observations are used in the estimation). On the other hand, the
standard deviation of the semiparametric estimators rises when a larger ~,, is chosen. This is to
be expected since the sample size on which the estimator of pg is based decreases with ~,,. For
bandwidth choices that are based on using a large proportion of the uncensored observations
for the semiparametric estimator, the standard deviation of the semiparametric estimator

actually is smaller than that of the parametric estimator. As the proportion of uncensored



observations used declines, the standard deviation of the semiparametric estimators surpasses
that of the parametric alternative.

When the selection equation errors have a chi-squared distribution, the simulation results
indicate that the semiparametric estimators are better than the parametric Heckman two-
step estimator for a large range of bandwidth choices. This can be seen by looking at the
range of bandwidth choices for which the RMSE ratio is less than one. The improvement
in the RMSE of the semiparametric estimator over the parametric estimator is not general.
This becomes particularly clear when one considers the simulation results where the selection
equation errors have a Student t distribution.

Graph 1 also allows us to compare the different semiparametric estimators, i.e., with b
set equal to zero, a half, and one. Panel A shows that for any bandwidth choice the semi-
parametric Heckman estimator (b = 0) has the lowest standard deviation (with the difference
increasing with the bandwidth parameter), a finding supported by Schafgans and Zinde-Walsh
(2000). In fact, the standard deviation for a given bandwidth parameter decreases with b.
In addition, in order to achieve the same level of bias, the bandwidth parameter needs to
be based on a smaller proportion of the uncensored observations as b decreases (with the
difference decreasing with the bandwidth parameter). This clear dependence between the
choice of b and the selection of the bandwidth parameter is further supported by Panel B.
First, the RMSE ratio graphs reveal that a larger selection of b should be accompanied by a
lower bandwidth parameter (the RMSE curves are shifted to the left). Second, the range for
which in addition the simulated rejection rate equals five percent shifts also to the left when
b increases.

When the selection equation errors have a chi-squared distribution with three degrees of
freedom and censoring equal to 50 percent, the range of bandwidth choices for which the
RMSE ratio is less than one is 18-100 percent when b is equal to one, with b equal to a half
and zero the range is 16-85 and 10-70 percent respectively. The RMSE ratio does appear to
be less sensitive to the choice of the bandwidth parameter for higher values of b (the RMSE
curves are flatter). As a result, the range of bandwidth parameters for which the Andrews-
Schafgans estimator does better in terms of RMSE than the parametric two-step Heckman
estimator widens with b.

When the degrees of freedom are increased, the range of bandwidth choices for which
the RMSE ratio is less than one diminishes and moves to the right, indicating the use of a
smaller fraction of the uncensored observations. The bandwidth ranges for which, in addition,
the simulated rejection rate equals five percent are smaller. Specifically, when the selection
equation errors have a chi-squared distribution with three degrees of freedom and censoring
equal to 50 percent, the range becomes 18-50 when b is equal to one, with b equal to a half
and zero the range becomes 16-40 and 10-35 respectively.

When the selection equation errors are normal and censoring is equal to 50 percent, the
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Heckman semiparametric estimator (b = 0) can at best be 70 percent worse than Heckman’s
parametric estimator using 20 percent of the uncensored observations. The same relative
efficiency can be reached for the other semiparametric estimators, with b equal to a half
and one, but is reached at a higher proportion of the uncensored observations, 27 percent
and 35 percent respectively. At these bandwidth choices, however, the rejection rates of the
semiparametric estimators still exceed five percent. At a bandwidth choice which is more
consistent with the asymptotic normality result of the semiparametric estimator (using only
10 percent of the uncensored observations), the semiparametric estimators only do twice as
bad as the parametric alternative when b = 0, two and a quarter as bad when b = 1/2 and
two and a half as bad when b = 1.

Amount of Censoring.

Graph 2 presents the results for the parametric Heckman two-step estimator and the semi-
parametric estimator of the intercept for a range of bandwidth choices and levels of censoring.
In this graph as in the graphs which are to follow, only the RMSE ratio and simulated rejection
rates are reported since these are the primary tools with which to compare the parametric and
semiparametric estimators. The separate graphs for the average bias and standard deviation
are available upon request. In part A of the graph, the semiparametric Heckman estimator
(b =0) is compared with the parametric Heckman estimator, in part B, the semiparametric
Andrews—Schafgans estimator with b = 1 is considered.

Although not separately shown, the bias of the parametric Heckman two-step estimator
decreases when the amount of censoring decreases, as expected. We also see a decrease in
the bias of the semiparametric estimators when the amount of censoring decreases, using
a given percentage of the uncensored observations for the semiparametric estimation of the
intercept. In addition, the variance increases with the level of censoring, both parametrically
and semiparametrically.

The simulation results indicate that the semiparametric estimator improves relative to the
parametric Heckman two-step estimator when the amount of censoring increases. When we
keep the bandwidth parameter choice in terms of the percentage of uncensored observations
used in the estimation of the intercept constant, the RMSE ratio generally decreases as the
amount of censoring increases. The range of bandwidth choices for which the RMSE ratio
is less than one, therefore increases as the amount of censoring increases when the selection
equation errors have a chi-squared distribution. When the selection equation errors have a
student t distribution, increasing the amount of censoring increases the feasibility for the
semiparametric estimators to do better in terms of RMSE than the parametric Heckman
two-step estimator. It appears therefore that the semiparametric estimators are better than
the parametric estimator in particular in cases where the inconsistency of the parametric

Heckman two-step procedure is most severe. As discussed in Schafgans (1997) this is true for
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the chi-squared distribution and for the Student t distribution at high levels of censoring.

For example, in the comparison of the semiparametric Heckman estimator (b = 0) with
the parametric estimator the following result emerge. When the selection equation errors have
a chi-squared distribution with three degrees of freedom and censoring equal to 20 percent,
the range of bandwidth choices for which the RMSE ratio is less than one is 3575 percent,
with censoring equal to 50 and 80 percent the range is 10-70 and 10-100 percent respectively.
When the degrees of freedom are increased, the range of bandwidth choices for which the
RMSE ratio is less than one diminishes and moves to the right, indicating the use of a smaller
fraction of the uncensored observations for the estimation of the intercept. The bandwidth
ranges for which, in addition, the simulated rejection rate equals five percent indicate that
a smaller proportion of the uncensored observations should be used for the semiparametric
estimator. In this case, with censoring equal to 20 percent, the range becomes 35-60, with
censoring equal to 50 and 80 percent the range becomes 10-35 and 10-25 respectively. When
we repeat this comparison for the Andrews-Schafgans estimator with b set equal to 1, the
same tendencies are revealed. The only difference is that the range of bandwidths for which
the Andrews-Schafgans estimator (b = 1) outperforms the parametric two-step Heckman
estimator is somewhat wider than the range of bandwidths for which the semiparametric
Heckman estimator (b = 0) outperforms it.

When the selection equation errors are normal, the Heckman semiparametric estimator
(b = 0) can at best be 50 percent worse than Heckman’s parametric estimator in terms of
RMSE when there is 20 percent censoring in the data. With higher amounts of censoring, the
semiparametric estimator is relatively worse off. At best, the semiparametric estimator (b =
0) can be 70 percent worse than the parametric estimator when censoring is 50 percent, and
90 percent worse when censoring is 80 percent. At a bandwidth choice where the simulated
rejection rate equals five percent (using only 10 percent of the uncensored observations), the
semiparametric estimators at best do twice as badly as the parametric alternative in terms

of RMSE when the amount of censoring is either 20, 50 or 80 percent.

The Selection Index.
In Graph 3, the impact of changing the distribution of the selection index on the semipara-
metric Heckman estimator can be seen. The two distributions of X;3, considered are the
standard normal (part A), and the chi-squared distribution with four degrees of freedom
(part B). In addition, the graph reveals what impact the availability of the selection equation
parameters, 3, has on the relative performance of the semiparametric Heckman estimator
versus the parametric estimator.

In discussing the impact of changing the distribution of the selection index on the semi-
parametric Heckman estimator, we restrict our attention to the solid lines (i.e., the more likely

case where the selection equation parameters are unknown to the researcher). In the case that
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the selection equation errors have a chi-squared distribution, the graph seems to indicate that
the range of bandwidth choices for which the semiparametric estimator is better in terms of
RMSE than the parametric estimator decreases when the distribution of the selection index
is skewed compared to the normal distribution. The range of bandwidth choices for which
the estimator is not subject to over-rejection, on the other hand, seems to be invariant to
the specific distribution of the selection index. Little or no difference is seen for the other
choices of the distribution of the selection equation errors, suggesting that the distribution
of the selection index plays a less important role in the selection of the bandwidth parameter
than the amount of censoring.

The estimation of the selection parameters has an important impact on the relative per-
formance of the semiparametric Heckman estimator compared to the parametric two-step
Heckman estimator. When the selection errors are non-normal, we notice that for any choice
of the bandwidth, the RMSE ratio is higher in the case where the selection parameters are
unknown compared to the case where they are known. In contrast, when the selection errors
are normal, the reverse is true. The impact on the RMSE ratio arising from the estimation
of the selection parameters is the strongest for the case where the selection errors have a
distribution with thicker tails than the normal.

The explanation of the findings for non-normal choices of the selection errors, lies primarily
in the difference in the bias of the estimates when the true coefficients are used rather than the
inconsistent preliminary estimates. For non-normal distributions of the selection index, we
know (i) that probit estimation will give us inconsistent preliminary estimates, and (ii) that
the inverse Mill’s ratio is the inappropriate correction for the selection bias. The simulations
show that applying the inverse Mill’s ratio with the true coefficients generates a bigger bias
in the parametric estimation of the intercept than applying the inverse Mill’s ratio with the
inconsistent parameter estimates. This effect is stronger for the student t distribution where
the bias is reduced from —0.14 to —0.02 when we use the inconsistent preliminary estimates
rather than the true coefficients compared to the case of the chi-squared distribution where
the bias is reduced from —0.20 to —0.15. The semiparametric estimates are much more
robust to the estimation of the selection parameters, also because the average derivative
estimator applied will give consistent estimates of the selection parameters regardless of the
true distribution of the selection equation errors.

For the normal distribution of the selection errors, the parametric two-step Heckman es-
timator is consistent, and as expected we do not see a large change in the bias as a result
of estimation of the selection parameters. More important here, in explaining the downward
move of the RMSE ratio curve when preliminary estimates are used rather than the true
coefficients, is the relative stronger increase in the variance of the parametric estimator com-
pared to the semiparametric estimators (the variance-covariance matrix of the intercept and

the preliminary estimator is block diagonal in the semiparametric case).
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The feasibility of the semiparametric estimators to perform better in terms of RMSE
than the parametric estimator when the selection errors have a distribution with thicker tails
appears more promising in Schafgans (1997). The use of the inconsistent preliminary probit
estimates make it that the parametric estimator ends up performing better in terms of RMSE
after all. When the selection errors have a student t distribution it is still feasible for the
semiparametric estimator to perform better in terms of RMSE as shown in Graph 2, but than

only at much higher levels of censoring.

Correlation of the Errors.

In Graph 4, the effect can be seen of varying the correlation of the selection and outcome
equation errors. The close link between the covariance of the errors o.; and the magnitude
of the inconsistency of the parametric Heckman two-step estimator is discussed in Schafgans
(1997). In this graph, the correlations of (e;, U;) considered are 1, 1/4/2, 1/2y/2, and 0 with
0% = 2. This corresponds to covariances, o.r7, equal to V2, 1, 0.5, and 0 respectively. Al-
though not shown separately, to achieve the same bias for the semiparametric estimators
with varying correlations of the errors, one needs to use a lower proportion of the uncensored
observations for the estimation of the intercept when the correlation increases. The bias of
the semiparametric estimators and the parametric estimator is, as expected, zero when the
correlation of the errors equals zero. When we evaluate the impact of the correlation of the
errors on the comparison of the semiparametric estimators with the parametric Heckman
two-step estimator we notice a difference depending on whether the selection equation errors
have a more skew distribution or a more thick tailed distribution than the normal. In the
first case (e; has a chi-squared distribution), the semiparametric estimators perform better
when the correlation of the errors increases. The range of bandwidth choices for which the
RMSE ratio is less than one increases with the correlation of (e;, U;). The bandwidth choices
for which the hypothesis testing criterion is satisfied simultaneously shifts to the right as p.¢s
rises. This points to the desire to use a lower proportion of the uncensored observations for
the estimation of the intercept when the correlation is higher. In the second case (g; has a stu-
dent t distribution), the semiparametric estimator does not improve with higher correlations
relative to the parametric Heckman two-step estimator. This result contrasts to findings in
Schafgans (1997) and arises from the fact that the simulation results given in Graph 4, incor-
porate the estimation of the selection parameters whereas they do not in Schafgans (1997).
In Graph 5, the simulations results are shown which assume that the selection parameters
are known for the case where the selection errors have a student t distribution. From Graph
5 we learn that, the negative impact on the relative performance of the semiparametric es-
timator vis-a-vis the parametric Heckman estimator due to the preliminary estimates of the
selection parameters (also seen in Graph 3) in fact is stronger when the correlation between

the selection and outcome equation errors rises.
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Sample Size.

In Graph 6, the effect can be seen of using different sample sizes. Two sample sizes, n, are
considered: 500 and 1,000. The number of replications is set equal to 1,000 in both instances.
Again the results are presented separately for the semiparametric Heckman estimator (panel
A) and the Andrews—Schafgans estimator (panel B). In order for the semiparametric estimator
to achieve the expected five percent rejection rate of the null hypothesis Hy : 1 = po against
Hy : p # po, one needs to choose the bandwidth parameter -, larger as the sample size
increases. Similarly, the range of bandwidth choices for which the RMSE ratio is lower than
one, in the case where the selection errors have a chi-squared distribution, lies somewhat to
the right for larger sample sizes. As expected, there is little effect on the bias for any given
bandwidth. The standard deviation of the estimators naturally decreases as the sample size
increases for given bandwidth since the estimator is based on a larger number of observations.
The last two results suggest that one should choose the bandwidth higher as the sample size
increases. Recall that for consistency the bandwidth parameter needs to approach infinity as

n — oQ.

6 Conclusions

In this paper, the finite sample properties of parametric and semiparametric estimates of
a censored regression model or sample selection model are compared. The semiparametric
estimation techniques of censored regression models, were introduced to deal with the fact
that standard estimation techniques for censored regression models based on incorrect dis-
tributional assumption were inconsistent. Of concern, however, remains their finite sample
performance especially due to the presumable sensitivity of the semiparametric techniques to
a bandwidth or smoothing parameter. We focus in particular on estimation of the intercept
of the ‘outcome’ equation of this model when Heckman’s normality assumption does not hold.

The finite sample properties of the parametric and semiparametric estimates are com-
pared over a wide range of bandwidth choices, in the hope that the simulations can assist
the empirical researcher in choosing a bandwidth or smoothing parameter to ‘optimize’ the
finite sample performance of the semiparametric estimator relative to that of the parametric
estimator. The results we find are: (1) For symmetric distributions of the selection equation
errors, one can only expect to do better in terms of RMSE than the parametric alternative
when the tails of the selection equation errors are very thick relative to the normal distribu-
tion and censoring is very large. The bandwidth should be chosen in such a way that only a
small proportion of the uncensored observations are used for the estimation of ug. For skew
distributions of the selection equation errors, the semiparametric estimator is better than
the parametric Heckman two-step estimator for a large range of bandwidths and levels of
censoring. The estimation of po should be based on a smaller proportion of the uncensored

observations when the amount of censoring increases, more so the further away the distribu-
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tion of the selection equation errors is from the normal. (2) The higher the correlation of the
errors the larger the range of bandwidth choices for which the RMSE of the semiparametric
estimator outperforms the parametric Heckman two-step estimator when the selection errors
are skewed. In order for the estimator not to over-reject, however, one needs to base the
estimation of g on a smaller proportion of the uncensored observations when the correlation
of the errors is larger. (3) The improvement of the semiparametric estimator over the para-
metric estimator when the selection errors are skewed holds for a variety of distributions of
X; 3. The bandwidth choices for which the simulated rejection rate of the null hypothesis
equals five percent however seem to vary little with the actual distribution of X 3. And (4)
The larger the sample size the smaller the proportion of uncensored observations that should
be used in the estimation of pqg.

For any application, however, an empirical researcher only has the actual sample size and
the amount of censoring to his or her avail. Given that the bivariate normal distribution
underlying the MLE and the parametric Heckman two-step estimator has been rejected by
our empirical researcher (e.g., Lee (1984)), in order to choose the ‘best’ bandwidth for the
semiparametric estimator, the researcher will need to do some model pretesting to form an
idea about the ‘true’ distribution functions of X; Bp and &; and the correlation between the
selection and outcome equation errors, p.;;. One simple approach would be as follows. First,
one estimates the selection index X; B using a semiparametric estimation technique, e.g.,
Klein and Spady (1993). Inference about the actual distribution of the selection index, X/,
could be made by evaluating the statistical properties of this consistently estimated selection
index, e.g., variance, skewness, kurtosis, and upper tail index. Second, one estimates the
generalized residuals of the selection equation, & = D; — E(D;|X,3), where E(D;|X,3)
is a nonparametrically estimated conditional mean function. Similar calculations on these
residuals would give the researcher an indication of the actual distribution of the selection
equation errors. To obtain a consistent estimate of the correlation between the selection
equation errors and the outcome equation errors one could consider imposing Olsen’s (1980)
class of dependence models: U; = o.py €; + V;, where ¢; and V; are independent, and estimate
the appropriate second Heckman step. Naturally, more elaborate and robust model pretesting
could be suggested.

The importance of the simulation study is to realize that it is feasible to select a band-
width parameter at which the semiparametric estimator outperforms the Heckman’s two-step
estimator, and that its feasibility is particularly revealed in cases where the inconsistency of
the Heckman’s two-step estimator under non-normality is most severe. For error distributions
that are close to the normal, on the other hand, the two-step parametric estimator performs
better.

Regarding the relative performance of the semiparametric Heckman (1990) estimator and

the Andrews and Schafgans (1998) estimator the simulation results show that the variance
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of the Andrews Schafgans estimator increases with the choice of b, for a given bandwidth
parameter 7,; the Heckman estimator (b = 0) would appear to be more efficient. Never-
theless, the bias of the Andrews-Schafgans estimator is lower in absolute value than the
Heckman estimator. Overall, our simulations tend to favour the finite sampling behaviour of
the Andrews-Schafgans (1998) estimator over the Heckman estimator (1990). This is in line
with like findings in other nonparametric estimation problems, which show that the trade-off

between bias and variance is typically better for smooth “kernels”.
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Graph 1
The semiparametric Heckman estimator (b = 0) and the Andrews—Schafgans estimator
vis-a-vis the parametric two-step Heckman estimator.

A comparison using various distributions for the selection errors, ;.

A. Absolute bias and standard deviation.

2 2
e ~ x*(3) g; ~ x*(5) g; ~ N(0,1)
Bias
7n(% Uncensore d O;i;rva(\ons)
Standard
Deviation )
Ya(% Uncensore. o Observa tions) Ya(% Uncensore 4 Observa tions) 3a(% Uncensare o Observe tions)
g; ~ t(3) g; ~ t(5)
Bias
s 3a(% Uncensare o Observe tions) 3a(% Uncensare o Observe tions)
Standard ;
Deviation
b ¥n(Z Uncensore d Observa tions) DX«/,‘U Uncensore d Observa tions)
....... b=1 ____b=05 b=20

Notes: (1) The bandwidth parameter of the semiparametric estimator is given by 7,,. All horizontal
lines correspond, therefore, to the parametric Heckman two-step estimator, the remaining lines to
the semiparametric estimators. (2) The average bias and standard deviation of the two estimators
over 1,000 replications are given. The simulation results are based on 1,000 observations (3) The
distribution of the selection index X' is assumed to be N (0, 1), and the correlation between the

selection and outcome equation errors (p.y) is equal to 1/1/2. (4) Censoring is 50%.
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Graph 1 (Continued)

B. RMSE and rejection rates of the null hypothesis p = uy against p # py.

g~ x"(3) ei ~ x*(5) ei ~ N(0,1)
RMSE Ratio . / ~ / Tl
Hy Rejec-
tion %
RMSE Ratio :\‘?:‘\\1?:::,::?:/ / e
Hy Rejection %
....... b= ____b=05 b=0

Notes: (1) The RMSE is the abbreviation of the root mean squared error. The RMSE ratio is
defined by the RMSE of the semiparametric estimator over the RMSE of the parametric Heckman
two-step estimator. (2) The Hj rejection rates are the simulated rejection rates of the t test for
the null hypothesis Hy : it = po against Hy : pu # g at the five percent level of significance. The
actual bandwidth chosen for the estimation of pg should coincide with a simulated probability of

rejection of the null hypothesis equal to five percent.
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Graph 2
The semiparametric estimators and the parametric two-step Heckman estimator.
A comparison by various distributions for the selection errors, g;, and

the amount of censoring.

A. The semiparametric Heckman estimator (b = 0)

gi ~ x2(3) gi ~ x2(5) g ~ N(0,1)

RMSE ratio [~ T

Hy Rejection % :

,,,,,,,,,,,,,,,,,,,,

7(% Uncensored Obserations) 72(% Uncansored Observations) 7% Uncensored Observations)

Eq t(?))
RMSE Ratio . RSN
T
Hy Rejection %
....... 20% Censoring - - _ - 50% Censoring 307% Comsoring

Note: The distribution of the selection index X’f; is assumed to be N(0,1), and the correla-
tion between the selection and outcome equation errors (p.y) is equal to 1/4/2. The amount

of censoring defined to equal Pr(X’f, < ¢) is obtained by choosing an appropriate c.
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RMSE Ratio

Hy Rejection %

Graph 2 (Continued)

B. the Andrews—Schafgans estimator (b =1)

€ ~ X2(3)

ei ~ X*(5) i~ N(0,1)

........................

.... 20% Censoring

- - - - 50% Censoring 80% Censoring
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Graph 3
The semiparametric estimator (b = 0) and the parametric two-step Heckman estimator.

A comparison by selection index distribution and availability of the selection parameters.

A. Distribution selection index: X'y ~ N(0,1).

ei ~ X*(3) ei ~ (3) i~ N(0,1)

RMSE Ratio . ) )

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Hy Rejection % ****** \\ 77777777777
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B. Distribution selection index: X', ~ x*(4).

ei ~ X*(3) ei ~ (3) i~ N(0,1)

RMSE Ratio . e / j :

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Hy Rejection % 3 . \ ,,,,,,,,,,

7(% Uncensored Observations)

G unknown _ __ _ 3 known

Note: The selection equation errors are denoted by €; and 3 are the selection parameters. The
correlation between the selection and outcome equation errors (p.y) is equal to 1/ \/5, and the

amount of censoring is 50%.
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Graph 4
The semiparametric estimators and the parametric two-step Heckman estimator.

A comparison by correlation of the errors and distribution of the selection errors.

A. The semiparametric Heckman estimator (b = 0)

ei ~ X*(3) ei ~ (3) i~ N(0,1)
RMSE Ratio | e R

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Hj Rejection %
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B. the Andrews—Schafgans estimator (b= 1)

ei ~ X*(3) ei ~ (3) i~ N(0,1)
RMSE Ratio 7 N R E g B N i
Hj Rejection %
e per =0 ... pev = 1/21/2 per =1/V2 ____pu=1

Note: The selection equation errors are denoted by €; and p.y is the correlation between the
selection and outcome equation errors. The distribution of the selection index X’f, is assumed to

be N(0,1), and the amount of censoring is 50%.
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Graph 5
The semiparametric estimator (b = 0) and the parametric two-step Heckman estimator.

A comparison by p.y and the availability of the selection parameters, (3.

Distribution selection equation error, ¢; ~ t(3).

£ unknown (G known

RMSE Ratio | B Lo

Hy Rejection %

7u% Uncensored Observations)

pev = 1/21/2

anZl/\/§ ————PsUZl

Note: The distribution of the selection index X[y is assumed to be N(0, 1), and the amount of

censoring is 50%.
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Graph 6
The semiparametric estimators and the parametric two-step Heckman estimator.

A comparison by sample size and distribution of the selection errors, &;.

A. The semiparametric Heckman estimator (b = 0)

ei ~ X*(3) ei ~ (3) i~ N(0,1)

RMSE Ratio . e T j
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Hj Rejection %

ei ~ X*(3) ei ~ (3) i~ N(0,1)

RMSE Ratio ,

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Hj Rejection % \

7(% Uncensored Observations)

_ — _ _ 500 Observations 1000 Observations

Note: The distribution of the selection index X'[3 is assumed to be N(0,1), and the correlation
between the selection and outcome equation errors (p.rr) is equal to 1/ v/2. The amount of censoring

is 50%.
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