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Abstract

We analyze the effect of inequality in the distribution of endowment of private inputs (e.g.,

land, wealth) that are complementary in production with collective inputs (e.g., contribution to

public goods such as irrigation and extraction from common-property resources) on efficiency

in a simple class of collective action problems. In an environment where transaction costs

prevent the efficient allocation of private inputs across individuals, and the collective inputs are

provided in a decentralized manner, we characterize the optimal second-best distribution of the

private input. We show that while efficiency increases with greater equality within the group of

contributors and non-contributors, in some situations there is an optimal degree of inequality

between the groups.
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1 Introduction

The recent growth literature has revived interest in the age-old question in economics on the

relationship between the initial inequality of the distribution of wealth and the pace and pattern

of economic development. While the empirical evidence on this question is mixed (see Benabou,

1996 and Banerjee and Duflo, 2000), several theoretical models have suggested inequality may

have a negative effect on economic performance. The main reasons that are advanced for this

connection are, first, inequality increases agency costs in the labor and credit markets (e.g., Galor

and Zeira, 1993; Banerjee and Newman 1993) and second, inequality encourages redistributive

policies that discourage capital accumulation (e.g., Alesina and Rodrik, 1994).1 This paper suggests

a possible link between asset inequality and economic efficiency that has been largely neglected in

this literature: inequality may help or hinder the resolution of certain types of collective action

problems.

While the literature on collective action in political science and economics is large, its interre-

lationship with economic inequality is a relatively underresearched area. Typical questions, taken

from a broad range of fields, for which our paper may be relevant are as follows:

(a) Does reduction of land inequality through, say, land reform affect agricultural productivity

by changing the voluntary provision of collective goods like irrigation?

(b) How does an increase in the inequality of ownership of different boat sizes of fishermen affect

their total catch and profits in an unregulated fishery?

(c) Does inequality in property holdings in an urban residential area affect the performance of

neighborhood crime watch groups?

(d) Does the inequality of prior assets that a husband and a wife bring to a marriage affect their

joint creation of public goods inside the family?2

(e) How does the expansion of NATO to poorer countries in Eastern Europe (thereby increasing

the inter-member inequality) affect the provision of collective defense?

While our paper will be relevant to most such cases, for the sake of a common concrete anchor we

shall often use the illustration of land reform in our subsequent exposition. Producers use as inputs

one private good (say, land) and one collective good (say, irrigation water) to produce a private

good (say, rice). The private and collective inputs are complements in the production function.

This collective good may be a public good (with positive externalities) like a public irrigation canal,

or a common property resource (henceforth, CPR), like a community pond or forest, with negative
1Agency costs refers to all costs that arise from monitoring, screening and contract enforcement when the owner

of an asset (land, capital, a machine) and its user are not the same person.
2See Browning and Lechene (2001) for a discussion on the relationship between inequality of earnings of family

members and the provision of public goods within a household.
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externalities.

The assumption of decreasing returns, a standard one in most economic contexts, implies that

the more scarce an input is in a given production unit, the higher is its marginal return. As a

result, one would expect a more equal distribution of this input across production units to improve

efficiency. If the market for this input operated well, then the forces of arbitrage would make sure

it is allocated equally to maximize efficiency. However there is considerable evidence that suggests

that the market for inputs such as land or capital does not operate frictionlessly and the private

endowment of an individual determines how much of that input she can use in her production

unit.3 There is a large literature showing that small farms are more efficient than large farms in

agricultural sector of developing countries. This is typically advanced as one of the main arguments

for land reform in terms of efficiency.4 Some authors (e.g., Bardhan, 1984, Boyce, 1987) have gone

one step further and argued that a more egalitarian agrarian structure is also more likely to solve

collective action problems, especially those related to irrigation.5

But in the presence of collective action problems inequality of private endowments such as land

or wealth may pull in the opposite direction. Indeed, in his pioneering work on collective action,

Olson (1965) makes the following case in favor of inequality:

“In smaller groups marked by considerable degrees of inequality – that is, in groups

of members of unequal “size” or extent of interest in the collective good – there is the

greatest likelihood that a collective good will be provided; for the greater the interest

in the collective good of any single member, the greater the likelihood that the member

will get such a significant proportion of the total benefit from the collective good that

he will gain from seeing that the good is provided, even if he has to pay all of the cost

himself.” (The Logic of Collective Action, p. 34).

We can interpret the “size” of a player with her endowment of the private input if it is comple-

mentary with the collective good in production.6 Olson considered pure public goods only, which

indeed have the property that only the largest (richest) player contributes. Our paper is concerned

with the following questions. Is this property pointed out by Olson true for a more general class of

collective goods that include both impure public goods and CPRs? If we look at welfare instead of
3Evans and Jovanovic (1989) analyzed panel data from the National Longitudinal Survey of Young Men (NLS),

which surveyed a sample of 4000 men in the US between the ages of 14-24 in 1966 almost every year between 1966-81,

and found that entrepreneurs are limited to a capital stock of no more than one and one-half times their wealth when

starting a new venture.
4According to Berry & Cline (1979) an equitable distribution of land could increase food production by 20-30%.
5Indeed, the limited evidence that is available on the effect of land tenure reform suggests that the productivity

gains can be large (Banerjee, Gertler and Ghatak, 2002).
6In Olson this is the share of the total benefit to the group that accrues to an individual player.
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the level of the provision of the collective good, is it possible that some degree of inequality may

yield a higher level of joint surplus than perfect equality? Furthermore, is it possible for the alloca-

tion under some degree of inequality to Pareto-dominate the allocation under perfect equality? If

more than one player is involved in the provision of the public good, how would inequality within

the class of contributors affect efficiency and how would inequality between the class of contributors

and non-contributors affect efficiency?

The public economics literature has addressed the question of inequality among contributing

players in some detail. A key finding is the surprising “distribution-neutrality” result for a par-

ticular class of collective action problems, namely the provision of pure public goods.7 These are

public goods where individual contributions are perfect substitutes in the production of the public

good and everyone gets the same benefit from the public good irrespective of the level of their con-

tributions. Then in a Nash equilibrium the wealth distribution within the set of contributors does

not matter for the amount of public goods provision. The intuition behind this result is explained

very clearly by Bergstorm, Blume and Varian (1986). Suppose after the redistribution every player

adjusts his contribution to the public good by exactly the same amount as his change in wealth and

leaves the consumption of the private good unchanged. In that case the amount of the public good

is the same as before and so the initial allocation is still available to all players. Those who have

lower wealth because of redistribution have a restricted budget set and would clearly prefer the

previous allocation if it is still available. The budget set of those who have higher wealth because of

redistribution expands, but not in the neighborhood of the original choice. In particular, now the

extra options available to the player which are not dominated by options in the previous budget

set involve a lower level of the public good compared to what she would receive if she did not

contribute before, and higher levels of the private good. But she did contribute before, and so she

is also better off with her previous choice.

Subsequent work has shown that the neutrality result depends crucially on the individual contri-

butions being perfect substitutes in the production of the public good, the linearity of the resource

constraints, the absence of corner solutions, and the “pureness” of the public good (i.e., the benefit

received by a player must depend only on the total level of contributions, but not on her own con-

tribution (see Cornes and Sandler, 1996, pp. 184-190 and p. 539; Bergstorm, Blume and Varian,

1986, Cornes and Sandler, 1994).8 In this paper we consider three points of departure from the

distribution-neutrality framework.
7Some of the contributions to the theoretical literature related to this result are Warr (1983), Cornes and Sandler

(1984), Bergstrom, Blume and Varian (1986), Bernheim (1986) and Itaya, de Meza and Myles (1997).
8Baland and Ray (1999) consider whether inequality in the shares of the benefit players receive from a public good

is good or bad for efficiency might depend on whether the contributions of the players are substitutes or complements

in the production function of the public good.
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First, we adopt the framework of a generalized collective good of which pure and impure public

goods with positive externality (e.g., roads, canal irrigation, law and order, public R&D, public

health and sanitation) are particular cases. We also analyze collective goods with negative exter-

nality (e.g., forestry, fishery, grazing lands, surface or groundwater irrigation).

Second, another point of departure from the standard literature on voluntary provision of public

goods is that we look not only at the level of provision of the collective good in question, but also

the total surplus from the good, net of costs.

Third, the distribution-neutrality result assumes that the contributions towards the public good

and the private input are fully convertible.9 In practice, particularly in the building of rural

infrastructure in developing countries, the contribution towards the public good often takes the

form of labor. To fix ideas, let us think of the private input as capital. Then this assumption

bypasses an important issue of economic inequality: labor is not freely convertible into capital.

Typically, labor and capital are not perfect substitutes in the production technology, and because

of credit market imperfections capital does not flow freely from the rich to the poor to equate

marginal returns. We take this more plausible scenario as our starting point and examine the effect

of distribution of wealth among members of a given community on allocative efficiency in various

types of collective action problems (involving public goods as well as common property resources

or CPR) in the presence of missing and imperfect capital markets. This is particularly important

in less developed countries where the life and livelihood of the vast masses of the poor crucially

depend on the provision of above-mentioned public goods and the local CPR (particularly when it

is not under commonly agreed-upon regulations10), and where markets for land and credit are often

highly imperfect or non-existent. In poor countries where property rights are often ill-defined and

badly enforced, even usual private goods have sometimes certain public good features attached to

them, and due to ongoing demographic and market changes the traditional norms and regulations

on the use of CPR are often getting eroded. In such contexts inequality of the players may play a

special role.

Our work is also motivated by the growing empirical literature on the relationship between

inequality and collective good provision. For example, in an econometric study of 48 irrigation

communities in south India Bardhan (2000) finds that the Gini coefficient for inequality of land-

holding among the irrigators has in general a significant negative effect on cooperation on water
9The distribution neutrality literature is couched in the framework of a consumer choosing to allocate a given level

of income between her private consumption and contribution to a pure public good. We adopt the framework of a

firm using a private input and a public input to produce some good. While not exactly equivalent, formally these

frameworks are very similar and what we call the private input is similar to the private consumption good in the

distribution neutrality literature.
10Agreeing upon such regulations is itself a collective action problem.
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allocation and field channel maintenance but there is some weak evidence for a U-shaped relation-

ship. Similar results have been reported by Dayton-Johnson (2000) from his econometric analysis

of 54 farmer-managed surface irrigation systems in central Mexico. In a different context, using

survey data on group membership and data on U. S. localities, Alesina and La Ferrara (2000)

find that, after controlling for many individual characteristics, participation in social activities is

significantly lower in more unequal localities.

The plan of the paper is as follows. In the rest of this section we provide a brief preview of

our framework and the main results. In sections 2-3 we provide a formal analysis. In section 4 we

discuss the implications of relaxing some of our main assumptions. In section 5 we provide some

concluding observations. The appendix contains all formal proofs.

Since the private and collective inputs are complementary in our framework, the marginal return

from contributing to the public good is increasing in the amount of the private input an agent has

and which we are going to refer to as “wealth” in the rest of the paper. As a result, there will

exist a threshold level of the amount of the private input such that only agents who have a level of

wealth higher than this threshold will participate in providing the collective good while those with

a lower level will free ride on the former group.11 This means that redistributions that increase

the wealth of the richer players at the expense of non-contributing poorer players would achieve

a greater amount of the public good, and other things being constant, this should increase joint

surplus. In our framework this is how Olson’s original argument shows up. However, his argument

focuses only on the total amount of the public good and not on joint surplus. In particular, the

gain from increasing the size of the collective input has to be measured against the cost arising

from worsening the allocation of the private input in the presence of decreasing returns.

We show that the amount of contribution towards the provision (in the case of common property

resources this has to be interpreted as extraction) of the collective input is a concave function of the

endowment of the private input of the player for most well-known production functions (e.g., the

Cobb-Douglas and the CES) and also that the equilibrium level of joint surplus (of both contributing

and non-contributing players) is a concave function of the wealth distribution and hence displays

inequality aversion. In addition, the total amount of the collective input is a concave function

of the wealth distribution among contributing players. This means that initial asset inequality

lowers the total provision of (pure and impure) public goods, and lowers the total extraction from

the CPR. We provide a precise characterization of what the optimal distribution of wealth that

maximizes joint surplus is in the case of imperfect convertibility between the private input and
11Baland and Platteau (1997) provide some very interesting examples where richer agents tend to play a leading

role in collective action in a decentralized setting. For example, in rural Mexico the richer members of the populaton

take the initiative in mobilizing labor to manage common lands and undertake conservation measures such as erosion

control.
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contribution to the collective input. We show that the joint surplus maximizing wealth distribution

under private provision of the public good involves equalizing the wealth levels within the group

of all non-contributing players at some positive level and also within the group of all contributing

players. The contrast with the conclusions of both Olson and the distribution neutrality literature

is quite sharp. The key assumptions leading to our result are: market imperfections that prevent

the efficient allocation of the private input across production units, and some technical properties of

the production function that are shared by widely used functional forms such as Cobb-Douglas and

CES under decreasing returns to scale. With constant returns to scale, the joint surplus within the

group of contributors is independent of the distribution of wealth as in the distribution neutrality

theorem.

The above result takes the number of contributors to the collective input as given. It is difficult

to characterize the optimal distribution of wealth when the number of contributors can be chosen.

A key question of interest is: does perfect equality among all players maximize joint surplus? We

provide a limited answer to this question. It turns out that perfect equality among all players

(i.e., inter-group inequality in addition to intra-group inequality) is not always optimal. If wealth

was equally distributed among all players, the average wealth of contributing players is low and

this could reduce the level of the collective good. In contrast concentrating all wealth in the hand

of one player will maximize the average wealth of contributors, but will involve significant losses

due to the assumed decreasing returns in the individual profit function with respect to wealth.

The optimal distribution of wealth characterized above achieves a compromise between these two

different forces. Under constant returns to scale, where the latter factor is absent, we actually

provide an example where an allocation with some degree of inequality can Pareto-dominate the

allocation under perfect equality, i.e. it not only achieves higher joint surplus but also higher

individual surplus for each agent.

2 The Model

There are n > 1 players. Each player uses two inputs, ki and zi, to produce a final good. The

input ki is a purely private good, such as land, capital, or managerial inputs. We assume that

there is no market for this input and so a player is restricted to choose ki ≤ wi where wi is the

exogenously given endowment of this input of player i. While we will focus on this interpretation,

there is an alternative one which views wi as capturing some characteristic of a player, such as a

skill or a taste parameter.12 In contrast, zi is a collective good in the sense that it involves some
12The assumption that the market for the private input does not exist at all, while stark, is not crucial for our

results. All that is needed is that the amount a person can borrow or the amount of land she can lease in depends

positively on how wealthy she is. Various models of market imperfections, such as adverse selection, moral hazard,
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externalities, positive or negative. We assume that each player chooses some action xi which can be

thought of as her effort that goes into using a common property resource or contributing towards

the collective good. Let X ≡
∑n

i=1 xi be the sum total of the actions chosen by the players. The

individual actions aggregate into the collective input in the following simple way zi = bxi + cX.

The profit (surplus) function of player i is13:

πi = f(wi, zi)− xi

Note that the input xi appears twice in the profit function, once on its own as a private input, and

once in combination with the quantities used or supplied by other agents. This implies that the

private return to a player always exceeds the social return as long as b > 0. The input X can be a

good (e.g., R&D, education) or a bad (e.g., any case of congestion or pollution). This formulation

allows each player to receive a different amount of benefit from the collective input which depends

on the action level they choose. In contrast, for pure public goods every player receives the same

benefits irrespective of their level of contribution. This case, as well as many others (involving both

positive and negative externalities) appear as special cases of our formulation as we will see shortly.

Following the distribution neutrality literature we assume that the cost of supplying xi units of the

collective input, is simply xi and that the production function, f exhibits non-increasing returns

with respect to the private and the collective inputs xi and zi.

Let w = (w1, w2, .., wn) denote the vector of wealth levels of the players. Assume that the wi

are arranged in descending order of magnitude, i.e., w1 > w2 > .. > wn > 0 and let W ≡
∑n

i=1 wi

denote the total amount of wealth of the n players. 14 We make the following assumption about

the production function:

Assumption 1: f(w, z) is a strictly increasing, strictly concave function that is twice

continuously differentiable with respect to both arguments, f12 ≥ 0 for all (w, z) , lim
w→0

f2(w, z) =

0 and it satisfies the Inada endpoint conditions. In addition f(w, z) = −D for z < 0,

where D is a very large number.

We also make an assumption about the parameters b and c:

Assumption 2

b ≥ 0 and b + cn > 0 (A2)

Notice that we allow c to be positive, negative or zero. Only when c < 0 does the second

inequality in (A2) become relevant ensuring that |c| is not too large. This implies that if a social

costly state verification or imperfect enforcement of contracts will lead to this property.
13We will also refer to Π =

Pn
i=1 πi as joint surplus or joint profits later in the paper.

14Following the literature on distribution-neutrality, we are assuming linear costs.
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planner chooses the level of the collective input, she would choose a positive level of xi for at

least one player. In addition the same inequality also turns out to be a condition on the reaction

functions of the players which ensures the stability of the equilibrium. When c = 0 we have the

case of a pure private good - there are no externalities. For b = 0 and c > 0 we have the case of

pure public goods, i.e. the one on which most of the existing literature has focused. For b > 0 and

c > 0 we have the case of impure public goods as defined by Cornes and Sandler (1996). For b > 0

and c < 0 we have a version of the commons problem: by increasing her action relative to those of

the others an individual gains.

We begin our analysis by the following result which shows how the choice of xi by player i

depends on how much wealth she has:

Lemma 1: γ(w) ≡ arg max
z≥0

{f(w, z) − z} is strictly positive for w > 0 and is an

increasing function.

This property follows directly from the complementarity between wi and zi and the diminishing

returns with respect to z. An increase in wi raises the marginal return of zi relative to its marginal

cost which is assumed to be constant and equal to 1. To restore equilibrium at the individual level,

the amount of the collective input must increase. This property is not satisfied if w and zi are

substitutes in the production function. We will discuss this case in section 4. Several widely used

in economics functional forms that display complementarity among the inputs satisfy the conditions

stipulated in this lemma. These include the following:

(a) the Cobb-Douglas production function, f(w, z) = wαzβ with α + β ≤ 1. In this case

γ(w) = β
1

1−β w
α

1−β which is clearly an increasing function;

(b) the generalized CES production function, namely, f(w, z) = (δwρ + (1 − δ)zρ)
k
ρ under

parameter restrictions that ensure non-increasing returns to scale (k ≤ 1), and complementarity

between w and z (ρ < k). We work out the details of this case in the appendix. For k = 1 (constant

returns to scale) it is possible to solve for γ(w) explicitly, which turns out to be
(

δ

{1−(1−δ)
1

1−ρ }

) 1
ρ

(1−

δ)
1

1−ρ w.

An important question from the economic point of view is that while clearly both a rich and

a poor individual would increase their contribution to the collective input if their wealth increases

by the same amount, who would want to expand their contribution to the collective input more?

The answer to this question is crucial for determining the effect of the distribution of wealth on

the total amount of the collective good, X and joint profits. This effect depends on the curvature

of γ, which in turn depends on the third-order properties of the production function. Intuitively,

the question is whether diminishing returns with respect to z would kick in at a faster or a slower

rate at a higher wealth level. This would determine whether for a richer person a relatively small
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or large increase in z would restore her individual optimum compared to a poorer person. It turns

out that all widely used functional forms in economics where the inputs are complements to each

other have the property that diminishing returns kick in at the same or faster rate the higher is

the wealth level. This implies that γ is linear or strictly concave. We make the following technical

assumption about the production function which we show is equivalent to γ having this property.

Assumption 3

h(w, z) ≡ ∂f(w, z)
∂z

is quasi-concave.

The following lemma proves that h being (weakly) quasi-concave is equivalent to γ being

(weakly) concave:

Lemma 2: Suppose Assumption 1 holds. γ(w) is concave if and only if h(w, z) ≡
∂f(w,z)

∂z is quasi-concave.

For the Cobb-Douglas and CES production functions, γ(w) is strictly concave under decreasing

returns to scale (α+β < 1 for Cobb-Douglas and k < 1 for CES) and linear under constant returns

to scale (α + β = 1 or k = 1). The following lemma provides additional characterization of the

class of production functions for which γ is linear:

Lemma 3: Suppose Assumption 1 holds. If f(w, z) is homogeneous of degree 1 then

γ(w) = Aw where A is a positive constant.

This result follows from the fact that if the production function is homogeneous of degree 1

then if both the wealth of a player and the amount of the collective input received by her are

increased proportionally, the marginal return from contributing remains unchanged. The Cobb-

Douglas production wαzβ with α+β = 1 and the CES production function (δwρ +(1−δ)zρ)
k
ρ with

k = 1 are examples of production functions that are homogeneous of degree 1 and we have already

verified that γ(w) is linear in these cases.

3 The Decentralized Equilibrium

We characterize the decentralized equilibrium in the following two steps. First, for a given distrib-

ution of the private input w = {wi}i=1..n, we solve for the optimal contributions of each agent, x̂i,

the total contribution X, and the joint surplus, Π. Second, we look for the distributions of wi, which

maximize the total contribution and joint profits to be able to analyze the effects of inequality on

these two variables.
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3.1 Characterization of the Nash Equilibrium for a Given Distribution of the

Private Input

Let us consider the decentralized Nash equilibrium allocation. Player i takes the contribution of

other players, X−i, as given and solves:

max
xi≥0

πi = f(wi, bxi + cX)− xi.

The first-order conditions are

f2(wi, bxi + cX)(b + c)− 1 ≤ 0

xi ≥ 0,

together with the standard Kuhn-Tucker complementary slackness condition. Let the function

g(wi) > 0 denote the solution to15

f2(wi, g(wi))(b + c) = 1.

Notice that under Assumptions 1-3 g(w) is increasing and concave in w.

Suppose m ≤ n players contribute in equilibrium. By the assumed complementarity between

wi and zi in the production function, for a given value of zi, f2(wi, zi) is increasing in wi. Therefore,

g(wi) is increasing. Also, by Assumption 1, ∂zi
∂xi

= b + c > 0. Therefore irrespective of the value of

c (in particular, even if it is negative) for a given level of contribution of other players, X−i, the

richest player has the greatest marginal profit from contributing, followed by the second richest and

so on. For the case of pure public goods, i.e., b = 0, the amount of the collective input enjoyed by

each player is the same, whether the player contributes or not. Therefore, only the richest player

will contribute, i.e., m = 1. So long as b > 0, the amount of the collective input enjoyed by each

player is different, i.e., bxi + cX 6= bxj + cX. Therefore, even if the second richest player’s marginal

return from contributing is less than that of the richest player, she can contribute less and enjoy a

lower level of the collective input and thereby attain an interior equilibrium. As a result the set of

contributing players will consist of the richest m ones, where n ≥ m ≥ 1.

Let us denote by x̂i the optimal contribution of player i and let X =
∑m

i=1 x̂i. We assume that

the wealth of the richest player exceeds some threshold level so that x1 > 0. Given z1 = g(w1) > 0

and Assumption 2, we will have x1 =
g(w1)
b + c

> 0.

The above inequality implies that m ≥ 1.Then, the equilibrium conditions for the optimal

individual contributions are as follows:

x̂i =







g(wi)− cX
b

, i = 1, .., m

0, i = m + 1, .., n.
(1)

15This function would be identical to γ(.) defined in the previous section if b + c = 1 and it obviously inherits the

properties of γ discussed above.
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X(m) =
∑m

i=1 g(wi)
b + mc

. (2)

g(wm) ≥
c
∑m

i=1 g(wi)
b + mc

> g(wm+1). (3)

Condition (1) states that, for all contributing agents, the first order condition must hold as

equality. Condition (2) is equivalent to X(m) =
∑m

i=1 x̂i. It states that the total contribution must

have a value that is consistent with the individual maximization problems of all m contributors,

and is obtained by adding up the m first-order conditions from (1). The third condition is the most

interesting one, as it determines the size of the contributing group, m. To see why it should hold,

note that the m+1-th agent would not contribute if f2(wm+1, cX(m))(b+ c) < 1, since any further

contribution has a marginal benefit that is lower than marginal cost. This condition is equivalent

to cX(m) > g(wm+1), which is exactly what the second inequality in (3) states. By the same logic,

the m-th agent would not be contributing if g(wm) < cX(m − 1) = c
Pm−1

i=1 g(wi)
b+(m−1)c , which can be

rearranged as g(wm) < c
Pm

i=1 g(wi)
b+mc . Thus, if she is to contribute, the condition g(wm) ≥ c

Pm
i=1 g(wi)
b+mc

must be satisfied. The number of contributing agents, m is the smallest integer for which (3) is

satisfied. If the left inequality in (3) holds for m = 1, 2..n, then all agents contribute.

The following lemma, together with the fact that g is increasing, ensures the existence of a

unique value of m that solves (3):

Lemma 4: If k + 1 ≤ m, then the function s(k) =
c
∑k

i=1 g(wi)
b + kc

is increasing in k. If

k > m the function s(k) is decreasing in k.

Several useful observations follow directly from (1)-(3):

Observation 1. For the case of a pure public good (b = 0, c ≥ 0) (3) cannot hold for m > 1

as that would imply

g(wm) ≥
∑m

i=1 g(wi)
m

which is impossible given that w1 > w2 > .. > wn by assumption and Lemma 1 showing that g(.) is

increasing. Thus for pure public goods only the richest player contributes. This has the implication

that even when the difference in the wealth between the richest player and second richest player is

arbitrarily small, the former provides the entire amount of the public good.

Observation 2. For the case of pure private goods (c = 0), there is no interdependence across

players and all of them will contribute.

Observation 3. For those player who contribute in equilibrium, the condition (1) can be

rewritten in the form of a reaction function:

x̂i =
1

b + c
{g(wi)− cX−i}, i = 1, ..,m
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where X−i ≡
∑m

j=1,j 6=i x̂j .We show in the appendix that the condition for stability of the Nash

equilibrium is b + cm > 0 which is ensured by Assumption 2. The contributions of players are

strategic complements for c < 0 and strategic substitutes for c > 0. Formally, this follows from

the fact that ∂2πi

∂xi∂X−i
= cf22(wi, bxi + cX)(b + c). Intuitively, the reason is that the contributions

of various players are perfect substitutes in the payoff function, and in the case of public goods

(commons) an increase in the contribution of others is similar to an increase (decrease) in the

player’s own contribution, which reduces (increases) the marginal return of her contribution due to

diminishing returns in the collective input (i.e., z).

3.2 Effect of Wealth Inequality on Total Contributions and Joint Profits

From (2),

X =
∑m

i=1 g(wi)
b + mc

≡ g̃(w).

Under Assumptions 1-3 X = g̃(w) is the sum of m concave functions and as such is a concave

function itself. Moreover, as these functions are identical and receive the same weight, if we hold

the number of contributors constant the total contribution is maximized when all contributing

agents have equal amounts of the private input. Therefore we have:

Proposition 1: Suppose Assumptions 1-3 are satisfied. If g(wi) is strictly concave in

wi then X is strictly concave in w and is maximized when all contributing agents have

equal amounts of the private input. If g(wi) is linear in wi then X is linear in w.

Recall that Assumption 3 implies that diminishing returns with respect to the collective input

used by the i-th individual set in at a faster rate at a higher wealth level, and so the optimal level

of the collective input is a concave function of the wealth level (Lemma 2). Proposition 1 follows

from this assumption, and the fact that the collective input used by the i-th individual is a linear

function of the individual’s own contribution and the contribution of other players.

To see this more clearly consider the two player version of the game where player 1 has wealth

w + ε and player 2 has wealth w− ε where ε > 0. From the first order condition of the two players:

g(w + ε) = (b + c)x1 + cx2

g(w − ε) = cx1 + (b + c)x2.

Therefore, the reaction functions are:

x1 =
1

b + c
{g(w + ε)− cx2}.

x2 =
1

b + c
{g(w − ε)− cx1}.

13



Consider the effect of an increase in ε. The direct effect is to increase x1 and reduce x2. For the case

of positive externalities (c > 0) the indirect effects move in the same direction, while for the case

of negative externalities, the indirect effects move in the opposite direction. For example, in the

former case, a reduction in x2 stimulates a further increase in x1 and an increase in x1 leads to a

further decrease in x2.The stability condition ensures that indirect effects in the successive rounds

shrink in terms of size. Linearity of the reaction functions implies that the total effects of a change

in ε on x1 and x2 are linear combinations of the direct effects on the two players. The fact that

the reaction functions of both players have the same slope in our set up implies additionally that

the direct effects of redistribution on the contribution of the two players receive the same weight

in dX
dε and so it follows directly from the concavity of g(.) that X is decreasing in ε.

The effect of wealth inequality on X has implications which are quite different from those

available so far in the public economics literature. Our analysis shows that greater equality among

those who contribute towards the collective good will increase the value of X. Therefore a more equal

wealth distribution among contributors will increase the equilibrium level of the collective input.

In addition, any redistribution of wealth from non-contributors to contributors that does not affect

the set of contributors will also increase X.16 In terms of the two-player example, this implies that

as long as both players contribute, any inequality in the distribution of wealth reduces X. But

with sufficient inequality if one player stops contributing then any further increases in inequality

will increase X.

Let us now turn to the normative implications of changes in the distribution of wealth. Under the

first-best, which can be thought of a centralized equilibrium where players choose their contributions

to maximize joint surplus, the first-order condition for player i is:

f2(wi, bxi + cX)(b + nc) ≤ 1.

The difference with the decentralized equilibrium is that now individuals look at the social marginal

product of their contribution to the collective input, i.e., f2(wi, bxi + cX)(b+nc) as opposed to the

private marginal product, i.e., f2(wi, bxi + cX)(b + c). Then it follows directly that those who will

contribute will contribute more (less) than in the decentralized equilibrium if c > 0 (c < 0). Also,

the number of contributors will be higher (lower) than in the decentralized equilibrium if c > 0

(c < 0).

Therefore, for the case of positive externalities, the total contribution in a decentralized equilib-

rium is less than the efficient (i.e., joint surplus maximizing) level. Conversely, for the case c < 0,

total contributions exceed the socially efficient level. From this one might want to conclude that

greater inequality among contributors increases efficiency in the presence of negative externalities
16In the above formula for X, holding m constant a redistribution from non-contributors to contributors will

increase wi (i = 1, 2, .., m) with the increase being strict for some i.
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and reduces efficiency if there are positive externalities.17 Indeed, the literature on the effect of

wealth (or income) distribution on collective action problems have typically focussed on the size of

total contributions. However, that is inappropriate as the correct welfare measure is joint profits.

In the presence of decreasing returns to scale the distribution of the private input across firms

will have a direct effect on joint profits irrespective of its effect on the size of the collective input.

In particular, greater inequality will reduce efficiency by increasing the discrepancy between the

marginal returns to the private input across different production units. In the case of negative

externalities, these two effects of changes in the distribution of the private input work in different

directions, while in the case of positive externalities, they work in the same direction. Now we

proceed to formally analyze this issue.

Using the conditions (1)-(3) agent i’s surplus is:

πi(wi, xi, X) = f(wi, g(wi))−
g(wi)− cX

b
, i = 1..m (contributors)

πi(wi, xi, X) = f(wi, cX), i = m + 1..n (non-contributors)

Joint surplus is given by:

Π =
n

∑

i=m+1

f(wi, cX) +
m

∑

i=1

f(wi, g(wi))−
∑m

i=1 g(wi)
b + mc

.

Let us denote the joint surplus of contributing players by Πc ≡
∑m

i=1 f(wi, g(wi))−
Pm

i=1 g(wi)
b+mc and

that of non-contributors by Πn ≡
∑n

i=m+1 f(wi, cX).

First consider the effect of distribution of wealth among non-contributors. This is trivial, since

f(wi, cX) is concave, and hence
∑n

i=m+1 f(wi, cX) is concave as well. Therefore perfect equality

of wealth among non-contributors will maximize their joint profits. Note that even if f(w, z) is

homogeneous of degree 1, this is still true.

Next, let us consider the effect of distribution of wealth among contributors. Let

π̃(w) ≡ f(w, g(w))− g(w)
b + mc

.

Notice that Πc =
∑m

i=1 π̃(wi). The following lemma helps characterize the effect of wealth inequality

on Πc :

Lemma 5: Suppose Assumptions 1-3 hold and c ≥ 0, or c < 0 but |c| small. If g(w) is

concave then π̃(w) ≡ f(w, g(w))− g(w)
b+mc is concave. If f(w, z) is homogeneous of degree

one then π̃(w) is linear in w.
17Note however that a sufficiently large degree of inequality among contributors may reduce X below the first-best

level in the c < 0 case.
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The intuition behind this result is the following. In the absence of externalities (i.e., c = 0) if

we want to find the effect of a change in w on the profit of a player, we can focus only on the direct

effect and ignore the indirect effect via the envelope theorem. As a result, the second derivative of

the profit function also depends only on the direct effect through w. In the presence of externalities,

we must take into account the indirect effect of w on X that affects other players. This residual

term, which is a fraction of X (namely, 1
b+c −

1
b+mc = (m−1)c

(b+c)(b+mc)) increases joint profits for c > 0

and reduces them for c < 0 compared to the case where c = 0. Since we already know that X is

concave, in the former case this reinforces the concavity of the joint profit function but in the latter

case the effect goes the other way. As a result, for c < 0 a sufficient condition to ensure concavity

of π̃(w) is |c| to be small.

Lemma 5 implies immediately that for c ≥ 0 and for c < 0 but |c| small, Πc =
∑m

i=1 π̃(wi) is

concave in the wealth of contributors so that greater equality will increase joint profits. As a result,

perfect equality of wealth among contributors maximizes their joint surplus. For the special case

where f(w, z) is homogeneous of degree one Πc is linear in the wealth of the contributors. In this

case a redistribution of wealth among contributors will not affect joint surplus. However, equalizing

wealth among non-contributors will still maximize Πn. For c < 0 but |c| large (while continuing to

satisfy Assumption 1) we cannot determine the curvature of Πc in general.

It turns out that for the Cobb-Douglas case, with decreasing returns, π̃(w) is strictly concave

even if c < 0 and |c| not necessarily very small. In this case, π̃(w) = w
α

1−β [(b+c)β]
1

1−β

(

1
β(b+c) −

1
b+mc

)

.

In order for total contribution to be positive, we need π̃(w1) > 0. This inequality holds if and only

if b(1− β) > (β −m)c, which holds for c ≥ 0 or c < 0 and |c| < b(1−β)
m−β . We assume this to be true

- otherwise no player ever contributes. Hence π̃(w) is concave in w for α + β < 1. In the case of

constant returns, i.e., α + β = 1, π̃(w) is linear.

Given the initial wealth distribution w, there is some m ≥ 1 such that players with wealth

w ≥ wm contribute and those with w ≤ wm+1 do not. For this value of m, it is clear by the

concavity of Π, that the wealth distribution maximizing joint surplus should have wi = ŵ for all

i = 1, .., m and wj = w̃ < ŵ for all j = m + 1,..,n. subject to the following two conditions:

(n−m)w̃ + mŵ = W

g(ŵ) ≥ cmg(ŵ)
b + mc

> g(w̃).

The first of the above conditions can be rewritten as:

w̃ =
W −mŵ
n−m

Using this, the expression for joint profits becomes:

Π = (n−m) f(
W −mŵ
n−m

,
cmg(ŵ)
b + mc

) + m
[

f(ŵ, g(ŵ))− g(ŵ)
b + mc

]

. (4)
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Also, the total contribution is X = m g( bw)
b+mc . The following result characterizes the joint surplus

maximizing wealth distribution for a given m.

Proposition 2: Suppose Assumptions 1-3 are satisfied, c ≥ 0 and if c < 0, |c| is small.

For a given m the joint profit maximizing wealth distribution under private provision of

the public good involves equalizing the wealths of all non-contributing players to w̃ > 0

and also those of all contributing players to ŵ > w̃.

This result shows that maximum joint surplus is achieved for both contributors and non-

contributors, if there is no intra-group inequality. This is a direct consequence of joint profit

of each group being concave in the wealth levels of the group members. The contrast with the

conclusions of both Olson and the distribution neutrality literature is quite sharp. The key as-

sumptions leading to the result are, market imperfections that prevent the efficient allocation of

the private input across production units, and some technical properties of the production function

that are shared by widely used functional forms such as Cobb-Douglas and CES under decreasing

returns to scale. With constant returns to scale, the joint profits within the group of contributors

are independent of the distribution of wealth as in the distribution neutrality theorem.

In the above result we did not talk about inter-group inequality. Formally, we took m as given

while considering alternative wealth distributions. An obvious question to ask is, what is the joint-

profit maximizing distribution of wealth when we can also choose the number of contributors, m.

For example, does perfect equality among all players maximize joint surplus? This turns out to be

a difficult question. Below we provide a partial answer to this question for the case of both positive

and negative externalities. Let us first look at the case of positive externalities (c > 0). Suppose all

players are contributing when wealth is equally distributed. Then from Proposition 2 we know that

limited redistribution that does not change the number of contributors cannot improve efficiency.

This immediately suggests the following result:

Corollary to Proposition 2: Suppose all players contribute under perfect equality.

Then if after a redistribution all players continue to contribute joint profits cannot in-

crease.

But suppose we redistribute wealth from one player to the other n− 1 players up to the point

where this player stops contributing. Recall that when the group size is m < n, X = m g( bw)
b+mc . It

is obvious that an increase in the average wealth of contributing players keeping the number of

contributors fixed will increase X. It turns out that an increase in m holding the average wealth of

contributors constant will always increase X.18 However, if we simultaneously decrease m from n to
18Formally, this is because m

b+mc is increasing in m. The intuition is, the new entrant to the group of contributor

will contribute a positive amount, which would reduce the incentive of existing contributors to contribute due to
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n−1 and increase the average wealth of contributors, it is not clear whether X will go up or not. If

X goes down then we can unambiguously say that joint profits are lower due to this redistribution

(for c > 0) since the effect of this policy on the efficiency of allocation of the private input across

production units is definitely negative. However, if X goes up then there is a trade off: the increase

in X benefits all players (since c > 0), including the player who is too poor to contribute now, but

this has to be balanced against the greater inefficiency in the allocation of the private input.

To analyze the effect of wealth distribution on joint profits when some players do not contribute

we restrict attention to the comparison between joint profits under perfect equality (i.e., when all

players have wealth w ≡ W
n ) and the wealth distribution that is obtained by a redistribution that

leads to k contributing and n−k non-contributing players. From the discussion above, we know that

under our assumptions all players contribute under perfect equality. We focus on studying only the

efficient wealth distributions, i.e. ones which achieve maximum joint surplus. Since any intra-group

inequality among the contributors and non-contributors reduces joint surplus we assume that all

k contributors have wealth w + ε
k and all n − k non-contributors have wealth w − ε

n−k after the

redistribution. Let us denote by ΠE the joint surplus under perfect equality and with ΠI(ε) the

one under the unequal wealth distribution of the above type. Let also total wealth be normalized

to nw. A player stops contributing if

g(w − ε
n− k

) < cX =
kcg(w + ε

k )
b + kc

(5)

Let ε∗ be defined as the indifference point between contributing and not contributing, i.e. the

solution to

g(w̄ − ε∗

n− k
) =

kcg(w̄ +
ε∗

k
)

b + kc
(6)

Let ε̃ denote the degree of inequality maximizing ΠI(ε) subject to ε ≥ ε∗, i.e. when there are

non-contributors in equilibrium19. The level of joint surplus when there are k contributors each

with wealth w + ε
k and (n− k) non-contributors each with wealth w − ε

n−k is:

ΠI(ε) = kf
(

w +
ε
k
, g(w +

ε
k
)
)

+ (n− k)f
(

w − ε
n− k

,
kc

b + kc
g(w +

ε
k
)
)

−
kg(w + ε

k )
b + kc

.

Differentiating with respect to ε we get:

dΠI(ε)
dε

=
[

f1

(

w +
ε
k
, g(w +

ε
k
)
)

− f1

(

w − ε
n− k

,
kc

b + kc
g(w +

ε
k
)
)]

+f2

(

w − ε
n− k

,
kc

b + kc
g(w +

ε
k
)
)

(n− k)c
b + kc

g′(w +
ε
k
) +

+g′(w̄ +
ε
k
)
[

1
b + c

− 1
b + kc

]

(7)

diminishing returns. However, in the new equilibrium X must go up, as otherwise the original situation could not

have been an equilbrium.
19Clearly, if ε < ε∗ (5) cannot hold (since g is an increasing function and all players contribute).
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where we used the fact that f2(w̄ +
ε
k
, g(w̄ +

ε
k
)) =

1
b + c

by the definition of g. The following

lemma helps us characterize the optimal degree of inequality:

Lemma 6:
∂ΠI(ε∗)

∂ε
< 0 implies that

∂ΠI(ε)
∂ε

< 0 for all ε ≥ ε∗ and so ε̃ = ε∗.

Conversely, if
∂ΠI(ε∗)

∂ε
> 0 then ε̃ > ε∗.

The above lemma implies that if
∂ΠI(ε∗)

∂ε
< 0 then we have a corner solution, i.e. ΠI(ε) is

maximized at ε̃ = ε∗. Now we are ready to prove:

Proposition 3

(a) For pure public goods (b = 0 and c > 0) perfect equality among the agents is never

joint profit maximizing.

(b) For pure private goods (b > 0 and c = 0) perfect equality is always joint profit

maximizing.

We noted a special property of pure public goods in the previous section ( Observation 1),

namely, even if the difference in the wealth between the richest player and the second richest player

is arbitrarily small, the former provides the entire amount of the public good with everyone else free

riding on her. This property is the key to explain why perfect equality is not joint profit maximizing

in this case. Start with a situation where all players except for one have the same wealth level, and

this one player has a wealth level which is higher than that of others by an arbitrarily small amount.

As a result this player is the single contributor to the public good. A small redistribution of wealth

from other players to this player, keeping the average wealth of the other players constant, will have

three effects on joint profits: the effect due to the worsening of the allocation of the private input,

the effect of the increase in X on the payoff of the non-contributing players, and the effect of the

increase in X on the payoff of the single contributing player. The result in the proposition follows

from the fact that the first effect is negligible since by assumption the extent of wealth inequality

is very small, the second effect is positive, and the third effect can be ignored by the envelope

theorem. It should also be noted that this result goes through for both constant and decreasing

returns to scale. The second part of Proposition 3 follows from the fact that when c = 0 a player

will always choose xi > 0 however small her wealth level. Then all players are contributors so long

as they have non-zero wealth and it follows directly from Proposition 2 that perfect equality will

maximize joint profits.

For the case of impure public goods (b, c > 0 under decreasing returns to scale we can provide

only a local characterization:
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Proposition 4

Consider the case of impure public good subject to decreasing returns to scale, i.e. c > 0

and suppose that Assumptions 1-3 hold. Then:

(a) Given c, n there exist some b1, b2 > 0 such that for all b ∈ [b̄2,∞) perfect equality

is always joint profit maximizing, whereas for b ∈ [0, b̄1] perfect equality is never joint

profit maximizing.

(b) Given b, n there exists some c̄ > 0 such that for all c ∈ (0, c̄] perfect equality is always

joint profit maximizing.

Two opposing forces are at work in this case - the “decreasing returns to scale” effect calling

for equalizing the wealth of agents and the “dominant player” effect due to the positive externality

calling for re-distribution towards the richest players as there is a positive effect on the payoffs of

the non-contributing players. Each of the two effects can dominate the other depending on the

parameter values. The direct effect of an increase in the richer player contribution on her own

payoff can once again be ignored by the envelope theorem.

While we cannot provide a full characterization of the case of decreasing returns, due to the

existence of two opposing forces, we can provide some illustrative examples using the Cobb-Douglas

production function f(w, z) = wαzβ for a two player game. In Figures 1 and 2 we plot how the

difference between joint profits under perfect equality and under inequality (where the degree of

inequality is chosen to maximize joint profits given than only one player contributes) vary with b

and c for several alternative sets of values of α and β. As we can see from the figures: (a) there is

a unique b̄ such that ΠE ≥ ΠI(ε̃) for b ≥ b̄ and ΠE < ΠI(ε̃) for b < b̄; and (b) there is a unique c̄

such that ΠE ≥ ΠI(ε̃) for c ≤ c̄ and ΠE < ΠI(ε̃) for c > c̄.

Under constant returns to scale, we know from Lemma 5 that joint profits are linear in the total

wealth of contributors. Given that joint profits are higher under some degree of inequality for pure

public goods compared with joint profits under perfect equality, in this particular case one would

expect this property to be true for c > 0 and b > 0. This conjecture turns out to be correct:

Proposition 5: If the production function displays constant returns to scale then:

(a) In the pure private good case (c = 0) joint profits are independent of the wealth

distribution.

(b) Perfect equality is never joint profit maximizing for impure public goods (i.e., c > 0).

Moreover, it is possible to have inequality Pareto-dominate perfect equality.

The first part of the proposition follows from the fact that under constant returns to scale joint

profits are linear in total wealth (see Lemma 5). The logic of the result in (b) is similar to that of the
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pure public goods case. In that case the richest person is the only contributor even when the wealth

difference between him and the second richest player is very small and therefore a small amount of

inequality does not result in large losses due to the inefficient allocation of the private input. With

constant returns to scale and for impure public goods, the difference between the wealth level of the

contributors and non-contributors need not be very small. However, joint profits of contributors

depend only on their total wealth and not how it is distributed. As a result, creating some inequality

from the point where only player is exactly indifferent between contributing and not, to the point

where she strictly prefers not to contribute, involves a small loss due the inefficient allocation of

the private input. Unlike the pure public goods case, this could involve a significant amount of

inequality with respect to the perfectly equal wealth distribution. The second part of Proposition

5 (b) demonstrates the striking possibility that under some circumstances it is possible to have

some degree of inequality among agents Pareto-dominate the allocation under perfect equality. If

we think of a two player set up, starting with perfect equality if we redistribute wealth from one

player to the other, the poorer player is initially strictly better off than the rich player because she

is free-riding on the rich player who contributes most of the good and bears a large share of the

costs. This is the starkest possible demonstration of what Olson called the “exploitation of the

great by the small”. However, if we continue increasing inequality eventually the loss of the private

input offsets the gain from free riding on the provision of the public good for the poorer player.

This makes it possible that the two players get the same level of surplus at some positive level of

inequality and that this surplus is higher than the level they get at perfect equality.

Finally, we turn to the case of negative externalities, i.e., c < 0. We show that:

Proposition 6

Consider the case of commons, i.e. c < 0 and suppose that Assumptions 1-3 hold.

Then there exist two critical values of c, c1 < c0 < 0 such that:

(a) For c ∈ [c0, 0) perfect equality is a local maximum of the joint profit function.

(b) For c ∈ (− b
n

, c1) perfect equality is never joint profit maximizing.

In this case, Assumption 1 implies that all agents contribute. Notice that then we can write

the joint profits function as:

Π = kπ̂(w1) + (n− k)π̂(w2) +
(n− 1)c
(b + c)

X

where π̂(w) ≡ f(w, g(w))− g(w)
b + c

, w1 is the wealth of rich players and w2 is the wealth level of poor

players. Notice also that π̂′(w) = f1(w, g(w))+
(

f2(w, g(w))− 1
b + c

)

g′(w) = f1(w, g(w)) from the

definition of g(w). Therefore given the definition of g(w) and the concavity of f, π̂ is strictly concave.
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On the other hand, the term
(n− 1)c
(b + c)

X is convex given that c < 0 and Proposition 1. Intuitively,

joint profits is the sum of individual profits ignoring the externality of a player’s action on others,

and the sum total of the externality terms. The former is concave in the wealth distribution but in

the case of negative externalities, the latter is convex. For c small enough (in absolute value) the

decreasing returns to scale effect dominates, i.e. joint profits are maximized at perfect equality but

for c large (in absolute value) the “cost of negative externality” term, which is convex, dominates

and so greater inequality leads to higher joint profits.

4 Extensions

4.1 Convertibility Between the Private Input and the Contribution to the Col-

lective input

It is important for our result that xi and wi are different types of goods and one cannot be freely

converted into the other. Suppose the individual can freely allocate a fixed amount of wealth

between two uses, namely, as a private input and as her contribution to the collective input. This

is the formulation chosen by the literature on distribution-neutrality (e.g., Warr (1983), Bergstrom,

Varian and Blume (1986), Cornes and Sandler (1996) and Itaya et al (1997)). This literature focuses

on pure public goods, i.e., where zi = cX. For ease of comparability, let us consider this case first.

Let ki denote the amount of the private input chosen by player i. Then player i’s decision problems

is to maximize f(ki, cX) with respect to ki and xi subject to the budget constraint ki + xi ≤ wi.

The first-order condition of an individual who contributes a positive amount in equilibrium is

f1(ki, cX) = cf2(ki, cX), i = 1, 2, .., m.

As ki = wi−xi from the budget constraint of the individual, and xi +X−i = X for all i = 1, 2, .., m,

this condition implicitly defines the following function:

wi − xi = h(X).

Summing across all players who contribute in equilibrium, we get X +mh(X) = W. This equation

can be solved for X which therefore depends only on total wealth, W and not on its distribution.

Joint profits will also be independent of the distribution of wealth.

The above formulation is similar to that of a consumer allocating a fixed amount of money to

alternative goods in order to maximize utility. An alternative formulation to capture free convert-

ibility between ki and xi is to pose the problem as that of a firm maximizing profits by choosing

inputs which can be sold or purchased from the market at a given price. One could think of ki as

capital which has a given price r such that a firm that has an excess of it (relative to its endowment
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wi) can sell it to other firms, and a firm that has a shortage of it can buy it at the same price, say r.

Similarly, one can think of xi as labor that can be used to contribute towards the collective input,

or sold in the labor market at price w.20 Now the first order condition of a contributing player, i, is

f1(ki, cX) =
r
w

cf2(ki, cX), i = 1, 2, ..,m.

This condition is the same as in the previous formulation, except for the multiplicative constant r
w

and so the distribution neutrality result goes through.

Turning now to impure public goods, i.e., where b > 0, the first order condition for player i

according to the first formulation is:

f1(ki, bxi + cX) = (b + c)f2(ki, bxi + cX), i = 1, 2, .., m.

It is clear that in general the distribution neutrality result will not go through now. It will go

through for some special cases, such as the case where f(w, z) is homothetic. In this case, the

values of ki and zi at a point of individual optimum satisfies the condition

ki

bxi + cX
= A

where A is a positive constant. It is readily verified that the distribution neutrality result holds in

this case. Our analysis shows that in this case, relaxing the assumption of perfect convertibility of

the private input and the contribution to the collective input implies that the distribution neutrality

result no longer holds. Specifically, greater equality among contributors always improves efficiency

for impure public goods (i.e., c > 0) while for collective inputs subject to negative externalities,

the effect of inequality on efficiency is ambiguous. In the latter case, we characterize conditions

under which we can sign the effect of inequality on efficiency. Our results do not depend on

the production functions being homothetic, but in the general case even with free convertibility,

distribution neutrality can break down if the collective input is not a pure public good, as is well

recognized in the literature (see for example, Bergstrom, Varian and Blume (1986) and Cornes and

Sandler (1996)).

4.2 Substitutability Between the Private and the Collective Input

Above, we assumed that the private input and the public good are complements in the production

function. In this section we examine the implications of these two inputs being substitutes. For

simplicity, we examine the case where w and z are perfect substitutes: π(wi, xi, X) = f(w + bxi +
20In our framework labor is not directly used in production. We can think of another sector which uses labor.

Alternatively, we can extend the basic model by adding labor as a third input. The distribution neutrality result will

go through.
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cX) − xi, where f is increasing and strictly concave and b and c satisfy Assumption 2. The first

order conditions for the agent’s problem is:

(b + c)f ′(wi + bxi + cX) ≤ 1

with strict equality when xi > 0. Let us denote by w∗ the solution to f ′(w) = 1
b+c , which exists and

is unique given the above assumptions. In contrast to the complements case, it is now the poorest

player who has the highest marginal product of contributing. In the pure public good case (b = 0)

the poorest player will be the only contributor if wn < w∗ and if wn ≥ w∗ the public good will not

be provided at all.

As before, joint surplus goes up if wealth is equally distributed among non-contributors. Also,

we cannot say for sure whether the optimal distribution of wealth involves perfect equality, or some

inequality among the contributor (the poorest agent) and the rest. This is clearly seen for the case

of the pure public good (b = 0). For simplicity, suppose there are two players with wealth levels

w1 = w + ε and w2 = w− ε and, in addition assume for simplicity that c = 1. Now joint profits are:

Π(ε) = f(w∗)− {w∗ − (w − ε)}+ f(w + ε + w∗ − (w − ε)) = f(w∗)−w∗ + w + f(2ε + w∗)− ε and

so Π′(ε) = 2f ′(2ε + w∗) − 1. We know that f ′(2ε + w∗)− 1 ≤ 0 since by definition f ′(w∗) − 1 = 0

but whether 2f ′(2ε + w∗)− 1 ≤ 0 or > 0 cannot be determined a priori. For the intuition behind

this, notice that, those who choose xi > 0, i.e., the poorest players, use the efficient amount of

the input. Other players have more than the efficient level of the input in their production units.

Any redistribution from the poor to the rich players does not affect the profit of the former as they

exactly compensate for this by increasing their contribution. Since rich players have more than the

efficient level of the input in their firms, normally a transfer of an additional unit of wealth would

reduce joint profits since the marginal gain to the rich player is less than the marginal cost to the

poor player. But every extra unit of wealth received by the rich player increases the input received

by her firm by twice the amount because of the increase in the effort by the poor player and as a

result it is not clear whether joint profits increase or decrease.

4.3 Complementarity Between the Individual Relative Contribution and the

Total Contribution

Above we studied the case where the player’s own contribution and the total contribution of all

players are perfect substitutes in determining the benefit from the collective input enjoyed by a

player, zi. In this section we consider an alternative formulation where they can be complements:

zi =
(xi

X

)θ
Xγ

where 0 ≤ θ ≤ 1 and 0 ≤ γ ≤ 1. According to this specification, each player not only gains from

the total contribution, but her gains are greater, the her contribution is relative to the total. This
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induces people to choose a higher level of xi which benefits others through the term Xγ . But it also

reduces how much others can enjoy the collective good by a congestion effect captured by the term
(xi

X

)θ . If the latter effect is unimportant compared to the former, then we have a public good and

indeed for θ = 0 we have the textbook case of a pure public good. But if it is the other way round

then the congestion effect dominates the beneficial externality effect and in the limit, for θ = 1 we

have the textbook case of the commons. When these two effects exactly balance each other out

(θ = γ), we have the case of the a pure private good.

Analytically, this case turns out to be quite hard to characterize even when we assume a specific

form of the production function, namely Cobb-Douglas, and consider a two player game. We show

that if we compare the allocations under perfect equality (both players have the same level of wealth)

and perfect inequality (one player has all the wealth and the other player has nothing) joint surplus

is always higher under perfect equality for non-negative externalities (i.e., θ ≥ γ). However, if

there are substantial negative externalities then under some parameter values joint surplus will be

higher under perfect inequality. The intuition for this result lies in the fact that when the negative

externality problem is very severe then under perfect equality the players choose their actions

related to the collective input at too high a level relative to the joint surplus maximizing solution.

Perfect inequality converts the model to a one player game and hence eliminates this problem. On

the other hand due to joint diminishing returns to the private input and the collective input, joint

surplus is lower under perfect inequality compared to perfect equality if there were no externalities.

What this result tells us is that perfect inequality is desirable only when the negative externality

problem is severe and when the extent of diminishing returns is not too high.

If, instead of comparing the allocations under perfect equality and perfect inequality, we consider

the effects of a continuous change in inequality on total contributions and joint profits, the results

are not clear-cut. We prove that in the case of commons its total use (X) decreases with increasing

wealth inequality and joint profits per unit of total contributions (i.e., Π/X), or what one may call

the average rate of return on the collective input, increases with inequality. But the absolute level

of joint profits may increase or decrease with inequality. Numerical simulations suggest that joint

profits in general decrease with inequality, except for the case of substantial negative externalities.

In the case of public goods (pure and impure), we prove that the average rate of return on the

public good input decreases with inequality. But as the extent of positive externalities become

large (approaching the pure public goods case) the total amount of public good provision (and the

absolute amount of the joint profits) may increase with inequality. However there exists a range

of moderate presence of positive externalities such that total contributions as well as joint profits

decrease with inequality.
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5 Concluding Remarks

In this paper we analyze the effect of inequality in the distribution of endowment of private inputs

that are complementary in production with collective inputs (e.g., contribution to public goods such

as irrigation and extraction from common-property resources) on efficiency in a simple class of col-

lective action problems. In an environment where transaction costs prevent the efficient allocation

of private inputs across individuals, and the collective inputs are provided in a decentralized man-

ner, we characterize the optimal second-best distribution of the private input. We show that while

efficiency increases with greater equality within the group of contributors and non-contributors, in

some situations there is an optimal degree of inequality between the groups.

The limitations of our model suggest several directions of potentially fruitful research. Our

model is static. It is important to extend to the case where both the wealth distribution and

the efficiency of collective action are endogenous. For example, it is possible to have multiple

stationary states with high (low) wealth inequality leading to low (high) incomes to the poor

due to low (high) level of provision of public goods, which via low (high) mobility can sustain an

unequal (equal) distribution of wealth. Also, in the dynamic case it will be interesting to analyze the

effects of inequality on the sustainability of cooperation in a situation of repeated games. Second,

technological non-convexities and differential availability of exit options seriously affect collective

action in the real world, and our model ignores them.21 For example, the public good may not

be generated if the total amount of contribution is below a certain threshold. This is the case for

renewable resources like forests or fishery where a minimum stock is necessary for regeneration,

or in the case of fencing a common pasture. Third, the empirical literature suggests that even

when the link between inequality and collective action is consistent with the results in our model,

the mechanisms involved may be quite different in some cases. For example, transaction costs

in conflict management and costs of negotiation may be higher in situations of higher inequality.

Fourth, following the public economics literature in this paper we focus mainly on the free-rider

problem arising in a collective action setup. Here, the issue is the sharing of the costs of collective

action. But there is another problem, often called the bargaining problem, whereby collective action

breaks down because the parties involved cannot agree on the sharing of the benefits.22 Inequality

matters in this problem as well. For example, bargaining can break down when one party feels

that the other party is being unfair in sharing the benefits (there is ample evidence for this in

the experimental literature on ultimatum games). More generally, social norms of cooperation and
21The model of Dayton-Johnson and Bardhan (1999) examines the effect of inequality on resource conservation

with two periods and differential exit options for the rich and the poor in the case when technology is linear. Baland

and Platteau (1997) discuss the effect of non-convexities of technology in a static model.
22See for example, Elster (1989).
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group identification may be difficult to achieve in highly unequal environments. Putnam (1993) in

his well-known study of regional disparities of social capital in Italy points out that “horizontal”

social networks (i.e., those involving people of similar status and power) are more effective in

generating trust and norms of reciprocity than “vertical” ones. Knack and Keefer (1997) also find

that the level of social cohesion (which is an outcome of collective action) is strongly and negatively

associated with economic inequality. Finally, we focus only on the voluntary provision of public

goods and do not consider the possibility that the players might elect a decision maker who can

tax them and choose the level of provision of the collective good. The role of inequality in such a

framework is an important topic for future research.23

6 Appendix

Proof of Lemma 1: Consider the first order condition, f2(w, z) − 1 = 0. By Assumption 1,

f2(w, z) > 0 for all w > 0 and limw→0 f2(w, z) = 0. Therefore γ(w) > 0 for all w > 0. By concavity,

a global maximum exists and f22(w, z) < 0.By definition, f2(w, γ(w)) − 1 = 0. Notice that under

our assumptions γ(w) is differentiable, and hence continuous. In particular, dγ(w)
dw = −f12

f22
> 0.�

Proof of Lemma 2: By the definition of h(w, z), h(w, γ(w)) = 1. Totally differentiating with

respect to w we get h1 + h2
dγ(w)

dw = 0, or, dγ(w)
dw = −h1

h2
. Notice that h1 = ∂2f(w,z)

∂z∂w > 0 (as w and

z are complements) and h2 = ∂2f(w,z)
∂z2 < 0 (by strict concavity). Differentiating once again with

respect to w we get:
d2γ(w)

dw2 = −h2
1h22 + h2

2h11 − 2h1h2h12

h3
2

.

The condition d2γ(w)
dw2 ≤ 0 is equivalent to the determinant

∣

∣

∣

∣

∣

∣

∣

∣

0

h1

h2

h1

h11

h12

h2

h12

h22

∣

∣

∣

∣

∣

∣

∣

∣

being ≤ 0 which in turn

is equivalent to h(w, z) being quasi-concave (see Theorem 21.20 of Simon and Blume (1994)).�

Proof of Lemma 3: Since f(w, z) is homogeneous of degree 1, f2(w, z) is homogeneous

of degree 0. If λ > 0, f2(λw, λγ(w)) = f2(w, γ(w)). Since by definition f2(w, γ(w)) = 1, so

f2(λw, λγ(w)) = f2(w, γ(w)) = 1. Then it must be true that γ(λw) = λγ(w) which means

γ(w) = Aw where A > 0 is a constant.�

Proof of Lemma 4: Since agent k+1 contributes a positive amount by assumption, g(wk+1) >
c
∑k

i=1 g(wi)
b + kc

. Straightforward algebra shows that this is equivalent to the inequality
c
∑k+1

i=1 g(wi)
b + (k + 1)c

>

23Olszewski and Rosenthal (1999) address this question for pure public goods within the framework of the distrib-

ution neutrality literature.
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c
∑k

i=1 g(wi)
b + kc

. The second part of the lemma can proved in the same way.�

Proof of Lemma 5: Totally differentiating with respect to w we get:

∂π̃(w)
∂w

≡ f1(w, g(w)) +
(

f2(w, g(w))− 1
b + mc

)

g′(w).

From the definition of g(w) and the first-order condition of a contributing player, f2(w, g(w)) = 1
b+c .

Substituting in we get

∂π̃(w)
∂w

≡ f1(w, g(w)) +
(m− 1)c

(b + c)(b + mc)
g′(w).

Totally differentiating once again with respect to w :

∂2π̃(w)
∂w2 ≡ f11(w, g(w)) + f12(w, g(w))g′(w) +

(m− 1)c
(b + c)(b + mc)

g′′(w).

From the proof of Lemma 1, g′(w) = −f12
f22

. Therefore f11 f11 + f12g′(w) = f11f22−f2
12

f22
< 0 since

f(w, z) is concave. Therefore ∂2π̃(w)
∂w2 is negative if one of the following holds: (i) g(w) is concave

and c > 0; (ii) c = 0 or (iii) c < 0 and |c| small. The second part of the lemma follows from the fact

that if f(w, z) is homogeneous of degree one then g(.) is linear and π̃(w) = f(λw, λg(w))− g(λw)
b+mc =

λ
[

f(w, g(w))− g(w)
b+mc

]

is linear as well.�

Proof of Lemma 6: From Lemma 5, we know that the joint profit of contributing players is

concave in ε. Also, it can be directly verified that the joint profit of non-contributors is concave in

ε. Differentiating the terms in (7) that relate to non-contributing players and using the superscript

n to denote these players we get

1
n− k

fn
11 −

c
b + kc

g′(w +
ε
k
)fn

12 +

fn
2

(

w − ε
n− k

,
kc

b + kc
g(w +

ε
k
)
)

1
k

(n− k)c
b + kc

g′′(w +
ε
k
)

+
(n− k)c
b + kc

g′(w +
ε
k
)
{

− 1
n− k

fn
21 + fn

22
c

b + kc
g′(w +

ε
k
)
}

.

This expression is negative since all the terms are negative. Therefore ΠI(ε) is concave in ε and so

∂ΠI(ε)
∂ε

Q 0 as ε R ε̃.

The claim in the lemma follows directly from the above.�

Proof of Proposition 2: For a given value of m it follows from the concavity of the profit

functions of both contributors and non-contributors that there should not be any intra-group het-

erogeneity. Also, ŵ > w̃ given that contributors must be richer than non-contributors (see (1)-(3)).
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It is never optimal to set w̃ at a very low level given the Inada endpoint conditions, namely,

limw̃→0 f1(w̃, cX) = ∞. Since ŵ > w̃, it would never be optimal to make ŵ arbitrarily small, since

that would mean w̃ would be even smaller and almost all of W would be left unused.�

Proof of Proposition 3:

(a) If b = 0 (6) implies that ε∗ = 0 i.e. any degree of inequality can be sustained in an

equilibrium with non-contributors. Consider the derivative in (7) evaluated at ε = 0 (i.e. around

the point of perfect equality). We have that:

dΠI(0)
dε

=
dΠI(ε∗)

dε
= f2

(

w,
kc

b + kc
g(w)

)

(n− k)c
b + kc

g′(w)+

+g′(w̄)
[

c(k − 1)
(b + c)(b + kc)

]

> 0

as all the terms are positive. Then by Lemma 6, ε̃ > ε∗ = 0, i.e., perfect equality is never joint

profit maximizing in the case of pure public goods.

(b) In the case of pure private goods (c = 0), (3) is clearly satisfied for any redistribution of

wealth among the agents, i.e. all of them always contribute. But then it follows directly from

Proposition 2 that greater inequality reduces joint profits.

Proof of Proposition 4:

(a) Differentiating both sides of (6) with respect to b we get:

g′(w̄ − ε∗

n− k
)(− 1

n− k
)
∂ε∗

∂b
=

kcg′(w̄ +
ε∗

k
)
1
k

∂ε∗

∂b
(b + kc)− kcg(w̄ +

ε∗

k
)

(b + kc)2

i.e.

∂ε∗

∂b
=

kcg(w̄ +
ε∗

k
)

cg′(w̄ +
ε∗

k
)(b + kc) + g′(w̄ − ε∗

n− k
)

1
n− k

(b + kc)2
> 0

Therefore, w1 ≡ w̄+
ε∗

k
is increasing in b and w2 ≡ w̄− ε∗

n− k
is decreasing in b. Given the definition

of ε∗, and the fact that f2(z, g(z)) =
1

b + c
we get

f2

(

w − ε∗

n− k
,

kc
b + kc

g(w +
ε∗

k
)
)

= f2

(

w − ε∗

n− k
, g(w − ε∗

n− k
)
)

=
1

b + c

Therefore (7) evaluated at ε∗ can be written as:

dΠI(ε∗)
dε

=
(n− 1)c

(b + c)(b + kc)
g′(w1) + f1(w1, g(w1)− f1(w2, g(w2)). (8)

Note that when b → ∞, ε∗ → (n − 1)w̄. Therefore, w1 →
n
k

w̄ and w2 → 0. From the Inada

conditions f1(w2, g(w2)) →∞ and thus
dΠI(ε∗)

dε
= −∞ < 0 while the other two terms in the above
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expression are finite and non-negative. Since the function ΠI(ε∗) is continuous, this proves that

there exists some b̄2 > 0 (which would, in general, depend on n, k and c) such that for b ∈ [b̄2,∞),
dΠI(ε∗)

dε
< 0, implying that ΠI(ε) is maximized at ε∗ (the minimum degree of inequality needed to

have non-contributing agents in equilibrium), i.e. the problem has a corner solution. Let

ΠC(w̄ +
ε
k
, w̄ − ε

n− k
) ≡ k[f(w̄ +

ε
k
, g(w̄ +

ε
k
))−

g(w̄ + ε
k )

b + nc
] +

+(n− k)[f(w̄ − ε
n− k

, g(w̄ − ε
n− k

))−
g(w̄ − ε

n−k )
b + nc

]

denote joint profits when there are k agents with wealths w̄ +
ε
k

and n − k agents with wealths

w̄− ε
n− k

, all of whom contribute. From the definition of ε∗, ΠC(w̄ + ε∗
k , w̄− ε∗

n−k ) = ΠI(ε∗). Also,

ΠE > ΠC(w̄ + ε∗
k , w̄ − ε∗

n−k ) from Proposition 2. Thus perfect equality maximizes joint surplus

for large enough values of b. From Proposition 3, part (a) and the continuity of the joint profit

function, we know that there exists b1 > 0 such that if b ∈ [0, b̄1] such that perfect equality is never

joint profit maximizing.

(b) The proof is very similar to that of part (a). Differentiating both sides of (6) with respect

to c we get:

g′(w̄ − ε∗

n− k
)(− 1

n− k
)
∂ε∗

∂c
=

[kcg′(w̄ +
ε∗

k
)
1
k

∂ε∗

∂c
+ kg(w̄ +

ε∗

k
)](b + kc)− k2cg(w̄ +

ε∗

k
)

(b + kc)2

i.e.

∂ε∗

∂c
=

−bkg(w̄ +
ε∗

k
)

kcg′(w̄ +
ε∗

k
)(b + kc) + g′(w̄ − ε∗

n− k
)

1
n− k

(b + kc)2
< 0.

The above implies that w1 ≡ w̄ +
ε∗

k
is decreasing in c and w2 ≡ w̄ − ε∗

n− k
is increasing in c. At

c = 0 we have (assuming g(0) = 0), ε∗ = (n − k)w̄, w1 =
n
k

w̄ and w2 = 0. Now let us look at (8)

once again. From the Inada conditions f1(w2, g(w2)) = ∞ and thus
dΠI(ε∗)

dε
= −∞ < 0 as the

other two terms in (8) are finite and non-negative (the first term is actually equal to 0). Since f is

concave by assumption, f1(z, g(z)) is decreasing in z and as w1 is decreasing in c the second term

above is increasing in c. Similarly, as −f1(z, g(z)) is increasing in z and w2 is increasing in c, the

third term is increasing in c as well. The latter imply that f1(w1, g(w1)−f1(w2, g(w2)) < 0 and thus

the left hand side increases towards zero for c → ∞. By a continuity argument, the above shows

that there exists some c̄ > 0 (depending on n, k, b) such that for c ∈ [0, c̄],
dΠI(ε∗)

dε
< 0, i.e. ΠI(ε)

is maximized at ε∗ (the minimum degree of inequality needed to have non-contributing agents) as.
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But ΠE > ΠC(w̄ + ε∗
k , w̄− ε∗

n−k ) = ΠI(ε∗) and so perfect equality maximizes joint surplus for small

c.�

Proof of Proposition 5:

(a) The result follows immediately from Lemma 5.

(b) Since we assume constant returns to scale, it follows from Lemma 3 that g(w) = Aw, where

A is a positive constant. A player stops contributing if

A(w − ε
n− k

) < cX =
kcA(w + ε

k )
b + kc

Consider the derivative in (7) evaluated at ε∗. The second and third term are clearly positive.

Because of constant returns to scale, f1(λw, λz) = f1(w, z) for λ > 0. Notice also that from the

definition of ε∗ :
kc

b + kc

(

w +
ε∗

k

)

= w − ε∗

n− k
.

From this equation we can solve for ε∗ :

ε∗ =
bw(n− k)

cn + b
.

But then the first term is:

f1

(

w +
ε∗

k
, g(w +

ε∗

k
)
)

− f1

(

w − ε∗

n− k
,

kc
b + kc

g(w +
ε∗

k
)
)

=

= f1

(

w +
ε∗

k
, g(w +

ε∗

k
)
)

− f1

(

kc
b + kc

(

w +
ε∗

k

)

,
kc

b + kc
g(w +

ε∗

k
)
)

= 0

This implies that ΠI(ε) is increasing in a neighborhood of ε∗ and thus it achieves a maximum for

some ε̄ > ε∗, i.e. maxε∈[ε∗,w̄(n−k)] ΠI(ε) > ΠI(ε∗). Now let us prove that inequality is always joint

profit maximizing. Joint profits under perfect equality when f(w, z) is homogeneous of degree one

is

ΠE(w̄) = n[f(w̄, g(w̄))− g(w̄)
b + nc

]

= nw̄[f(1, A)− A
b + nc

].

Also, joint profits under an unequal wealth distribution such that there are k agents with wealths

w̄ +
ε∗

k
and n− k agents with wealths w̄ − ε∗

n− k
in which only the former group contributes is:

ΠI(ε∗) = k[f(w̄ +
ε∗

k
, g(w̄ +

ε∗

k
))−

g(w̄ + ε∗
k )

b + kc
] + (n− k)f(w̄ − ε∗

n− k
,

kc
b + kc

g(w̄ +
ε∗

k
))

= kf(w̄ +
ε∗

k
, A(w̄ +

ε∗

k
)) + (n− k)f(w − ε∗

n− k
, A

(

w − ε∗

n− k

)

)−
kA(w̄ + ε∗

k )
b + kc

= k
(

w̄ +
ε∗

k

)(

f(1, A)− A
b + kc

)

+ (n− k)
(

w − ε∗

n− k

)

f(1, A)

= nw̄f(1, A)− k
(

w̄ +
ε∗

k

)

A
b + kc

.
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Using the value of ε∗ we get:

kw̄ + bw(n−k)
cn+b

b + kc
=

k(b + cn) + b(n− k)
(b + kc)(b + cn)

w =
n(b + kc)

(b + kc)(b + cn)
w =

n
(b + cn)

w.

i.e. ΠI(ε∗) = ΠE . Therefore, max
ε

ΠI(ε) > ΠI(ε∗) = ΠE and thus some degree of inequality (with

ε > b(n−k)
b+nc w) is joint profit maximizing.

For the second part of Proposition 5 (b), it is sufficient to provide an example. Suppose f(w, z)

has the Cobb-Douglas, constant returns to scale form f(w, z) = wαz1−α and there are two agents

in the economy24 with endowments of the private input w + ε and w − ε, where ε ∈ [0, w]. By

Lemma 3 we have g(w) = Aw and f(w, g(w)) = A1−αw, where A = [(b+c)(1−α)]
1
α . Under perfect

equality each player obtains a surplus of:

πE = wA1−α[1− Aα

b + 2c
] = wA1−α[

c + α(b + c)
b + 2c

] (9)

Let, as in the proof of Proposition 5, ε∗ =
bw

b + 2c
be the degree of inequality at which the poorer

player is just indifferent between contributing and not contributing. Thus, for ε ∈ (ε∗, w] only the

richer player (i.e. the one with endowment w + ε) would contribute and her profits would be given

by:

πrich(ε) = A1−α(w + ε)− A(w + ε)
b + c

= A1−αα(w + ε)

πpoor(ε) = (w − ε)α(w + ε)1−α(
Ac

b + c
)1−α

using the expression for πi obtained previously. First notice that, evaluating the above expressions

at ε = ε∗ it is possible to have:

πrich(ε∗) < πpoor(ε∗) (10)

as it is equivalent to α <
c

b + c
. Clearly, for ε > ε∗ πrich(ε) is increasing in ε. We can verify directly

that
∂πpoor(ε)

∂ε
< 0 for ε > ε∗ if α >

c
b + 2c

. In addition as ε → w, πrich(ε) goes to some positive

value, while πpoor(ε) goes to 0. Combining these results with (10) we see that there can exist some

level of inequality ε0 ∈ (ε∗, w) such that:

πrich(ε0) = πpoor(ε0) (11)

Using the expressions obtained above we can solve for ε0 to get:

ε0 =
w(1−B)

1 + B
24We have actually proven the proposition for any f(w, z) satisfying Assumptions 1-3 and any redistribution in

which k agents obtain w + ε and n − k obtain w − ε but the expressions corresponding to (??) and (??) are much

less tractable which is why we chose to present the result for a Cobb-Douglas function.
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where B = α
1
α (

b + c
c

)
1− α

α . Finally, it is easy to verify that the condition

πrich(ε0) = πpoor(ε0) > πE

is equivalent to
2α(b + 2c)
c + α(b + c)

> 1 + B. As long as this condition, and
c

b + 2c
< α <

c
b + c

hold

simultaneously, we have an example where inequality Pareto-dominates perfect equality. For the

case α = 1/2 the first condition is equivalent to c2 > b2, and the second one is equivalent to

c > b > 0, i.e. if the latter is true inequality is Pareto dominating.�

Proof of Proposition 6: From Assumption 1 we know that f2(w, z) = ∞ as z approaches 0

from above and also, that f(w, z) = −D for z < 0, where D is a very large number. Therefore all

agents contribute in equilibrium, i.e. m = n. Also we know that X is maximized when wealths are

equalized as it is equal to
∑

g(wi)
b + nc

. The individual contributions then equal:

xi =
g(wi)− cX

b
=

(b + (n− 1)c)
b(b + nc)

g(wi)−
c

b(b + nc)

∑

j 6=i

g(wj) > 0

as c < 0 and b + (n− 1)c > b + nc > 0 by Assumption 2. Since all agents contribute joint surplus

equals:

Π =
∑

f(wi, g(wi))−
∑

g(wi)
b + nc

.

Let us start at perfect equality, i.e. wi = w and consider a redistribution giving k of the agents

w +
ε
k

and the rest w − ε
n− k

, ε > 0. We then have:

Π = k[f(w +
ε
k
, g(w +

ε
k
))−

g(w +
ε
k
)

b + nc
] + (n− k)[f(w − ε

n− k
, g(w − ε

n− k
))−

g(w − ε
n− k

)

b + nc
].

Let us see how a change in ε affects joint profits:

∂Π
∂ε

= f1(w +
ε
k
, g(w +

ε
k
)) +

+g′(w +
ε
k
)[f2(w +

ε
k
, g(w +

ε
k
))− 1

b + nc
]

−f1(w − ε
n− k

, g(w − ε
n− k

))−

g′(w − ε
n− k

)[f2(w − ε
n− k

, g(w − ε
n− k

))− 1
b + nc

]

We have f2(z, g(z)) = 1
b+c from the first-order conditions. So:

∂Π
∂ε

= [f1(w +
ε
k
, g(w +

ε
k
))− f1(w − ε

n− k
, g(w − ε

n− k
))] + (12)

+
(n− 1)c

(b + c)(b + nc)
[g′(w +

ε
k
)− g′(w − ε

n− k
)]
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Evaluating the above at ε = 0, we have that

∂Π
∂ε
|ε=0 = 0

i.e. ε = 0 is a critical point for the joint surplus function. Denote w1 = w +
ε
k

and w2 =

w − ε
n− k

.The second derivative of Π is:

∂2Π
∂ε2 =

1
k
[f11(w1, g(w1)) + f12(w1, g(w1))g′(w1)] +

+
1

n− k
[f11(w2, g(w2)) + f12(w2, g(w2))g′(w2)]

+
(n− 1)c

(b + c)(b + nc)
[
1
k
g′′(w1) +

1
n− k

g′′(w2)].

At ε = 0 the above equals:

n
k(n− k)

[f11(w) + f12(w)g′(w) +
(n− 1)c

(b + c)(b + nc)
g′′(w)].

The first term within the brackets is negative (recall from the proof of Lemma 5 that f11 f11 +

f12g′(w) = f11f22−f2
12

f22
< 0 as f(z, w) is concave) but the second term is positive. Therefore we

cannot sign the derivative in general. For c → 0, however, we know it is going to be negative by

the concavity of f , i.e. ε = 0 is a local maximum. Recall that by Assumption 2, b + nc > 0, or

c > − b
n .Suppose c is large enough in absolute value such that b + nc is close enough to 0.Then the

last term within the square brackets becomes arbitrarily large and so
∂2Π
∂ε2 > 0 i.e. ε = 0 is a local

minimum. Therefore by a continuity argument, if c is close to zero, i.e. for all c in some interval

[c0, 0) perfect equality is locally joint profit maximizing. If however c is large in absolute value, i.e.

c ∈ [− b
n

, c1) and so b + cn close to 0, the second term above is arbitrarily large and therefore joint

profits are maximized at some positive degree of inequality.�

Stability of Equilibrium

Following Cornes and Sandler (1984), the stability condition in Assumption 2 that b + nc ≥ 0

can be derived from a simple adjustment mechanism of the following form:

dxi

dt
= µi(x̂i − xi(t)), i = 1, 2, .., m

where µi are positive constants, xi(t) is the actual value of xi at time t, and x̂i is the reaction

function as given by (1). Given that reaction functions are linear in our model, the condition for

stability is equivalent to the following determinant of order m
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b + c

c

.

c

c

b + c

.

c

..

c

c

.

b + c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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being positive definite. Performing some simple operations to make all elements in the first row (or

column) except for the first two to be equal to zero, we can prove by induction that the value of

this determinant is equal to bm−1(b + mc).

The CES Example

For the CES production function:

f(w, z) = (δwρ + (1− δ)zρ)

k
ρ

we show that if 0 < ρ < k ≤ 1 then γ(w) is increasing and concave. First we need to ensure that f

is concave and w and z are complements. The condition for non-increasing returns is k ≤ 1, since

f(λw, λz) = λkf(w, z). The condition for f12 > 0 is k > ρ. The first order condition of maximization

is:

(δwρ + (1− δ)γ(w)ρ)
k
ρ−1γ(w)ρ−1 =

1
k(1− δ)(b + c)

.

Differentiating with respect to w and using the first order condition we get:

γ′(w) =
(k − ρ)δwρ−1γ(w)

(1− k)(1− δ)(γ(w))ρ + δ(1− ρ)wρ .

As k > ρ by assumption the numerator is positive. Also, the denominator is positive as 1 −
k ≥ 0 and ρ ∈ (0, 1) and δ ∈ (0, 1). Therefore γ(.) is increasing. Observe that wγ′(w)

γ(w) =
(k−ρ)δwρ

(1−k)(1−δ)(γ(w))ρ+δ(1−ρ)wρ ≤ 1 since the numerator is less than the second term in the denomi-

nator (which follows from k ≤ 1). Differentiating the expression for γ′(w), the sign of γ′′(w) turns

out to be the same as that of the following expression:

(1− ρ)
{

(1− k)(1− δ)wρ−2γ(w)ρ+1 + δw2ρ−2γ(w)
}

{

wγ′(w)
γ(w)

− 1
}

.

This expression is non-negative under our assumptions, and the fact that wγ′(w)
γ(w) ≤ 1. For k =

1, wγ′(w)
γ(w) = 1 and so the expression is equal to 0. Therefore γ(w) is concave, and strictly so for

k < 1.�
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