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Abstract

This paper considers the estimation problem in dynamic games with finite

actions. We derive the equation system that characterizes the Markovian equi-

libria. The equilibrium equation system enables us to characterize conditions

for identification. We consider a class of asymptotic least squares estimators

defined by the equilibrium conditions. This class provides a unified framework

for a number of well known estimators including Hotz and Miller (1993) and

Aguirregabiria and Mira (2002). We show that these estimators differ in the

weight they assign to individual equilibrium conditions. We derive the efficient

weight matrix. A Monte Carlo study illustrates the small sample performance

and computational feasibility of alternative estimators.
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1 Introduction

This paper builds on a well received literature for static single agent discrete choice

models (McFadden (1978)) and their extension to Markov decision problems in Rust

(1987), Hotz and Miller (1993) and Aguirregabiria and Mira (2002) among others.

We consider extensions of the single agent setting to multiple players.

The starting point of this paper is an equation system that provides necessary and

sufficient conditions for a Markovian equilibrium. This set of equilibrium conditions

enables us to illustrate conditions for identification. Based on these equilibrium con-

ditions, we define a class of asymptotic least squares estimators. They are two step

estimators. In the first step consistent estimates of the auxiliary choice and transition

probabilities are obtained. In the second step the parameters of interest are inferred

by using the set of equations characterizing the equilibrium choice probabilities.

The contribution of this paper is threefold: First, we suggest a unifying framework

for the estimation of dynamic games with finite actions based on an equilibrium

equation system. Static models with strategic interaction as well as single-agent

static and dynamic discrete choice models arise as special cases within the proposed

framework. We show that a number of recently proposed estimators for dynamic

models are asymptotic least squares estimators defined by the set of equilibrium

conditions. The estimators differ in the weights they assign to individual equilibrium

conditions. All estimators in the class are consistent and asymptotically normally

distributed. They include the method of moments estimator, introduced by Hotz and

Miller (1993), the pseudo maximum likelihood estimator, Aguirregabiria and Mira

(2002), and estimators for dynamic games recently considered in Aguirregabiria and

Mira (2007), Pakes, Ostrovsky and Berry (2005) and in Bajari, Benkard and Levin

(2007). We illustrate the associated weight matrices for these estimators.

The second contribution of this paper is to provide sufficient conditions for the

identification of the primitives of dynamic games.
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Third, we characterize the efficient estimator for dynamic games. We characterize

the asymptotically optimal weight matrix.

The framework that we consider builds on the classic discrete choice models, see

McFadden (1978), and includes a number of well known models of interaction. Promi-

nent examples are the peer effect literature in public economics, see Brock and Durlauf

(2001), the quantal response equilibrium in experimental economics, see McKelvey

and Palfrey (1995),1 and the entry literature in industrial organization, see Bresnahan

and Reiss (1990), and Seim (2006). Our framework also includes the substantial em-

pirical literature on dynamic Markov decision models. A seminal contribution is Rust

(1987), who proposes a nested fixed point algorithm to estimate the parameters of

interest in dynamic models by maximum likelihood. The nested fixed point algorithm

involves the calculation of the optimal choice probabilities and the value function for

every parameter vector. Rust’s estimator is efficient but computationally intensive.

Rust (1994) shows that the estimator can be applied to estimate dynamic games. We

illustrate that there is an asymptotic least squares estimator that is asymptotically

equivalent to the maximum likelihood estimator.

Hotz and Miller (1993) introduce an elegant simplification consisting of a two step

procedure. This two step approach forms the basis of a number of recent papers. In

a first step the choice probabilities conditional on state variables are estimated. In a

second step, the parameters of interest are inferred based on a set of moment condi-

tions, one for each choice. Hotz and Miller’s second step moment estimator involves

choice specific moments interacted with instruments. We illustrate that the Hotz and

Miller moment estimator is equivalent to an asymptotic least squares estimator. The

choice and number of instruments matters, since together with the moment weight

matrix they determine the weight assigned to individual equilibrium conditions. We

show that instruments consisting of current and lagged state variables, as are typically

1Bajari (1998) reformulates and estimates an auction model with discrete bids as a quantal

response model.
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used in applied work, may make it impossible to combine the equilibrium conditions

efficiently. We characterize the form of the optimal instrument matrix.

Further, we show that the partial pseudo maximum likelihood estimator, intro-

duced in Aguirregabiria and Mira (2002), is equivalent to a partial asymptotic least

squares estimator with weights equal to the inverse of the covariance of the choice

probabilities. The pseudo likelihood weights do not take into account the equilibrium

conditions of dynamic games efficiently.

Recent working papers by Aguirregabiria and Mira (2007), Pakes, Ostrovsky and

Berry (2005), and Bajari, Benkard and Levin (2007),2 show that the pseudo likelihood

estimator and the moment estimator can be applied to estimate dynamic games. We

argue that the alternative estimators considered in these recent papers are asymptotic

least squares estimators. We describe the corresponding weight matrices.

Our approach of first estimating equilibrium choices and beliefs and then using

equilibrium conditions to infer the payoff parameters is related to the empirical auc-

tion literature. Elyakime, Laffont, Loisel and Vuong (1994) and Guerre, Perrigne,

and Vuong (2000) estimate the distribution of equilibrium actions based on bid data.

The distribution function estimates summarize bidders’ beliefs and are used in a sec-

ond step to infer bidders’ valuations based on the equilibrium conditions manifested

in the first order condition of optimal actions. Jofre-Bonet and Pesendorfer (2003)

extend this approach to a dynamic setting.

While the unified framework allows us to conclude which estimator may be pre-

ferred asymptotically, this preference is less clear when the number of observations is

small. We conduct a Monte Carlo study to examine the small sample performance

of a number of these estimators. We consider the efficient asymptotic least squares

estimator and compare it to the pseudo maximum likelihood estimator and a method

2Bajari, Benkard and Levin (2007) also show that the moment estimator can include both discrete

and continuous choices. Ryan (2006) and Collard-Wexler (2006) provide applications to the cement

and ready-mix concrete industries.
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of moments estimator based on the average probability of a given choice across states.

Our Monte Carlo study reveals efficiency gains of the asymptotically efficient least

squares estimator for moderate to large sample sizes.

Section 2 provides an illustrative example for a special case in which the dynamic

element is absent. We illustrate our econometric approach based on the equilibrium

conditions of a two-player two-action game. We describe the two step estimator and

illustrate the basic intuition for our estimation approach. Our subsequent analysis

augments the setup to include settings in which agents rationally take the future

implications of their actions into account.

Section 3 describes the elements of the dynamic game. We consider a model that

is closest in spirit to the original contributions in Rust (1987), Hotz and Miller (1993)

and much of the subsequent literature based on dynamic discrete choice. We assume

that every period each player privately observes a vector of payoff shocks drawn from

a known distribution function conditional on state variables. Players simultaneously

choose an action from a finite set in order to maximize the sum of discounted future

period payoffs.

Section 4 establishes properties of the equilibrium. We show that there is a set of

necessary and sufficient equilibrium conditions described by an equation system. The

equation system forms the basis for the estimation problem. We show that a solution

to the equation system, and thus an equilibrium, exists.

Section 5 analyzes the identification conditions for the model. There are two basic

points emerging from the identification analysis. First, similar to the results on single

agent discrete decision processes by Rust (1994) and Magnac and Thesmar (2002),

we find that not all primitives of the model are identified. Second, we show that

the degree of under-identification increases with the number of agents. We briefly

describe restrictions that guarantee identification.

Section 6 discusses the estimation problem. We consider the class of asymptotic

least squares estimators defined by the equilibrium equation system. We provide a
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set of properties that apply to all estimators in the class. The asymptotically optimal

weight matrix in the context of dynamic games is derived. We argue that the class of

asymptotic least squares estimators provides a unified framework that encompasses a

number of estimators proposed in the literature. Members of the class assign distinct

weights to individual equilibrium conditions. We examine to what extent the weight

matrices of estimators proposed in the literature differ from the optimal weight matrix.

Section 7 reports our results of a small sample Monte Carlo study. We compare

the asymptotically optimal estimator to a number of estimators proposed recently in

the literature.

Section 8 concludes.

2 Example

This section illustrates the intuition of the estimation approach in a simple setting.

We consider a (static) two player game with two actions. We begin by describing

the features of the game, then we illustrate the equilibrium conditions and finally we

illustrate our estimation approach.

Set up. Consider a static version duopoly game in which two firms have to decide

whether to be active or not in a given period. Each firm i has two possible choices:

be active or not active, ai ∈ {active, not active}. The choices are made simultane-

ously. We augment this classic game with two elements: A publicly observed demand

variable and a private profitability variable. The demand variable describes whether

demand is low, medium or high, s ∈ {1, 2, 3}. We shall assume that demand affects

the profitability of being active. Player i’s payoff depends on the players’ choices and

demand in the following way:

πi (ai, aj, s)


θ1

i · s if ai = active, aj = not active;

θ2
i · s if ai = active, aj = active;

0 otherwise.
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The parameters (θ1
1, θ

2
1, θ

1
2, θ

2
2) describe the profit of an active firm per unit of demand

with monopoly profit exceeding duopoly profit, θ1
i > θ2

i for i = 1, 2.

The second element that we incorporate into the game is a payoff shock εi. This

payoff shock variable is firm specific and drawn from the standard normal distribution

function denoted by Φ. The payoff shock εi measures firm i’s preference for being

active versus not being active on a given day. We assume that the payoff shock is

i.i.d and enters additively yielding a total payoff of πi (not active, aj, s) if ai = not active

πi (active, aj, s) + εi if ai = active

We may view the payoff shock εi as any element of period profits that is not known to

the other firm but is known to firm i, such as privately observed demand for firm i’s

product or the (negative) of the cost of setting up production. We will see in Section

3 that the shock distribution may additionally depend on the state variable and can

represent an incumbent’s scrap value or a potential entrant’s entry cost.

A pure strategy for firm i in the augmented duopoly game is denoted by ai (s, εi)

which is a function of the public state s and the private profitability shock εi. We are

interested in Bayesian Nash equilibria. A feature that distinguishes games from single

agent decision problems is the possibility of multiple outcomes for the same (s, εi).

Indeed, one equilibrium has the feature that player i is active more often, while the

other equilibrium involves player j being active more frequently. This multiplicity

of outcomes poses a difficulty for direct estimation approaches as the likelihood of

observing an outcome will depend on which equilibrium is played. Furthermore,

the set of equilibria may depend on the parameter values and may change as the

parameter values are varied. Our estimation approach circumvents this difficulty

by considering an indirect inference approach based on “estimating equations.” We

consider the equilibrium best response conditions as estimating equations. Next, we

describe the equilibrium conditions in more detail. We then illustrate our estimator.

Equilibrium conditions. Let σi(s) denote the firm of player i that player j will
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be active in state s for i = 1, 2. The number σi(s) equals the ex ante expected

probability that player j will be active, while the number 1−σi(s) equals the ex ante

expected probability that player j will not be active. In any equilibrium, it must be

that being active is a best response for some type εi, taking as given the beliefs about

the opponent’s behavior:

[1− σi(s)] · θ1
i · s + σi(s) · θ2

i · s + εi ≥ 0 (1)

as the payoff shock εi has support equal to the real line. Evaluating the best re-

sponse condition ex ante, before the payoff shock εi is observed, we can describe the

probability of being active in demand state s for firm i as:

pi(s) = 1− Φ
(
[1− σi(s)] · θ1

i · s + σi(s) · θ2
i · s

)
for i = 1, 2 and s = 1, 2, 3, which gives rise to an equation system that characterizes

the optimal choices given the beliefs σ = (σi(s)
2
i=1)

3
s=1. We may write the best response

equation system compactly using vector notation as

p−Ψ(σ, θ) = 0. (2)

where p = (pi(s)
2
i=1)

3
s=1 denotes the vector of choice probabilities, θ =(θ1

1, θ
2
1, θ

1
2, θ

2
2)

denotes the parameter vector and Ψ is a multivariate function that characterizes the

best responses.

In equilibrium, beliefs are consistent, pi(s) = σj(s) for i, j = 1, 2, i 6= j and s =

1, 2, 3, which yields a fixed point problem in terms of the ex ante choice probabilities:

p = Ψ(p, θ). (3)

The equilibrium equations (3) provide a relationship between the equilibrium choice

probabilities p and the vector of model parameters θ. The function Ψ is determined

by the assumptions on payoffs for the problem at hand. Our example has two players,

two actions and three states yielding a total of six best response equations in (3).
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The privately observed preference shock plays an important role in the derivation

of the equilibrium equations. Given a player’s beliefs, the decision problem in (1) is

similar to a standard discrete choice problem. The unbounded support assumption

yields a vector of equilibrium choice probabilities p in which all components of the

vector are bounded away from zero. Since all actions arise with positive probability,

the equilibrium is characterized by a system of equations rather than a system of

inequalities which emerges in the absence of the privately observed preference shock.

The set of equilibrium equations thus allows us to adopt a simple estimation method.

Asymptotic least squares estimator. Suppose the available data consist of a time

series of actions of repeated play of the same two firms and a time series for the

demand variable. The data set is thus summarized by
(
at

i, a
t
j, s

t
)T

t=1
. Furthermore,

we assume that the data are generated by a Markovian equilibrium which means for a

given vector of payoff relevant state variables (s, εi) firms make the same choices over

time. Thus our time series approach gets around the multiplicity problem that would

be present in a cross-sectional analysis. Given our assumption that the profitability

variable εi is i.i.d normally distributed, the parameter vector that we wish to infer is

θ.

Our estimator for θ is based on the following idea. The time series data tell us the

frequency with which every firm produces for every realization of the weather variable.

Given that errors are privately observed, players form beliefs based on the same

information that is available to the econometrician. The data thus allow us to estimate

the equilibrium choice probability, p̂i(s), for all i and s. For example, a frequency

estimator can be used. Next, the choice probability estimates can be substituted into

the equilibrium equation system (3), and the resulting equation system has the payoff

parameters θ as the only unknown elements:

p̂−Ψ(p̂, θ) = 0. (4)

The equation system (4) has 6 equations and the unknown parameter vector θ has
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four elements. Our estimation approach is to estimate θ by using least squares on

this equation system. For a given 6× 6 weight matrix W, the least squares problem

is given by

min
θ

[p̂−Ψ(p̂, θ)]′ W [p̂−Ψ(p̂, θ)] .

A solution can be found by minimizing a quadratic form with the use of a suitably

chosen weight matrix W. Distinct choices of weight matrices will give rise to distinct

estimates and thus define the class of asymptotic least squares estimators.

The estimator is simple to implement in a two step procedure. In the first step,

the auxiliary estimates of choice probabilities can be characterized from the data by

using the sample frequencies of choices. In the second step, the parameters of interest

can be estimated using least squares on the equilibrium equation system (4).

In the following sections we specify a general dynamic discrete-choice multi-player

model and characterize its equilibrium equations. We then define the class of asymp-

totic least squares estimators based on the equilibrium equations and show that all

members of the class have nice asymptotic properties. We shall describe a weight

matrix that is optimal in the sense that it yields estimates asymptotically equivalent

to the maximum likelihood estimates. Finally, we also illustrate that a number of

well known estimators are members of the class.

3 Model

This section describes the elements of the general model. We describe the sequencing

of events, the period game, the transition function, the payoffs, the strategies and the

equilibrium concept.

We consider a dynamic game with discrete time, t = 1, 2 . . . ,∞. The set of players

is denoted by N = {1, . . . , N} and a typical player is denoted by i ∈ N. The number

of players is fixed and does not change over time. Players can choose from a finite set

of K + 1 actions. Every period the following events take place:
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States. Each player is endowed with state variable st
i ∈ Si = {1, . . . , L} and a

vector of payoff shocks εt
i ∈ RK . The state variable st

i is publicly observed by all

players and the econometrician. The payoff shock εt
i is privately observed by the

player. The shock is not observed by other players or the econometrician.

The vector of all players’ public state variables is denoted by st = (st
1, . . . , s

t
N) ∈

S = ×N
j=1Sj. Sometimes we use the notation st

−i =
(
st
1, . . . , s

t
i−1, s

t
i+1, . . . , s

t
N

)
∈ S−i

to denote the vector of states by players other than player i. The cardinality of the

state space S equals ms = LN .

We assume that the payoff shock εt
i is drawn independently from the strict mono-

tone and continuous conditional distribution function F
(
·|st

i, s
t
−i

)
defined on RK . The

shock εt
i does not depend on the actions of other players and is independent from past

εt−τ
i for τ ≥ 1. We assume that E [εt

i|εt
i ≥ ε] exists for all ε ∈ RK , to ensure that the

expected period return exists. The economic interpretation of the payoff shock may

vary with the modelling context and has been attributed to a temporary productivity

shock, a shock to opportunity costs and the mood of a player in the literature.3 Since

the distribution of the shock depends on the state of a player it may represent the

entry cost for an inactive firm and the scrap value (the opportunity cost of staying in

the market) for an incumbent as in Pakes, Ostrovsky and Berry (2004). Independence

of payoff shock realizations over time is assumed to keep the number of payoff rele-

vant state variables small. With correlated shocks a model of learning would emerge

in which players would infer other players’ private state based on past actions, and

increasing the dimensionality of the state space considerably.

Actions. Each player chooses an action at
i ∈Ai = {0, 1, . . . , K}. All N players

make their decisions simultaneously. The actions are taken after players observe the

state and their idiosyncratic productivity shock. An action profile at denotes the

3An alternative interpretation in a static model is an idiosyncratic optimization error as in McK-

elvey and Palfrey (1995). In a dynamic model the latter interpretation would be internally incon-

sistent with optimal forward looking behavior, see Rust (1994).
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vector of joint actions in period t, at = (at
1, . . . , a

t
N) ∈A= ×N

j=1Aj. Sometimes we use

the notation at
−i =

(
at

1, . . . , a
t
i−1, a

t
i+1, . . . , a

t
N

)
∈A−i to denote the actions by players

other than player i. The cardinality of the action space A equals ma = (K + 1)N .

State transition. The state transition is described by a probability density function

g :A×S×S −→ [0, 1] where a typical element g (at, st, st+1) equals the probability that

state st+1 is reached when the current action profile and state are given by (at, st).

We require
∑

s′∈S g (a, s, s′) = 1 for all (a, s) ∈A×S. We frequently use the symbol G

to denote the (ma ·ms) ×ms dimensional transition matrix in which column s
′ ∈ S

consists of the vector of probabilities
[
g (a, s, s′)a∈A,s∈S

]
.

The period payoff of player i is collected at the end of the period after all actions

are observed. The period payoff of player i consists of two components: (i) the

action and state dependent period payoff, and (ii) the action dependent payoff shock

realization. The period payoffs are given by:

πi

(
at, st

)
+

K∑
k=1

εtk
i · 1

(
at

i = k
)

where 1 (a) equals one if event a occurs and zero otherwise. We sometimes use the

symbol Πi to denote the (ma ·ms) × 1 dimensional period payoff vector defined by

Πi =
[
πi (a, s)a∈A,s∈S

]
. The payoff shock affects actions k > 0 only. The assumption

that action 0 is not affected by the payoff shock is not restrictive as only the payoff

difference between alternative actions matters.

Game payoff. Players discount future payoffs with discount factor βi < 1. The

game payoff of player i equals the sum of discounted period payoffs. For expositional

purposes we assume that the discount factor is common across players, βi = β for all

i.

Following Maskin and Tirole (1994, 2001), we consider pure Markovian strategies

ai(ε
t
i;s

t) in which an action for player i is a function of the player specific payoff shock

and the state variables. We restrict attention to pure strategies and do not consider

mixed strategies. The Markovian restriction requires that the action at time t is the
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same as the action at time t′, ai(ε
t
i;s

t) = ai(ε
t′
i ;st′) if (εt

i;s
t) = (εt′

i ;st′). The Markovian

assumption allows us to abstract from calendar time and we subsequently omit the

time superscript.

Definition (Markov perfect equilibrium): A collection (a, σ) = (a1, . . . , aN , σ1, . . . , σN)

is a Markov perfect equilibrium if

(i) for all i, ai is a best response to a−i given the beliefs σi at all states s ∈ S;

(ii) all players use Markovian strategies;

(iii) for all i the beliefs σi are consistent with the strategies a.

Value function. We use the ex-ante value function Vi to express the discounted

sum of future payoffs. It is defined as the discounted sum of future payoffs for player

i before player-specific shocks are observed and actions are taken. Let σi(a|s) denote

the conditional ex ante (before εi is observed) belief of player i that action profile a

will be chosen conditional on state s. The ex ante value function can be written as,

Vi (s; σi) =
∑
a∈A

σi(a|s)[πi (a, s) + β
∑
s′∈S

g(a, s, s
′
)Vi(s

′
; σi)]

+
K∑

k=1

Eε

[
εk

i |ai = k
]
· σi (ai = k|s) , (5)

where Eε denotes the expectation operator with respect to the player specific pro-

ductivity shock. Equation (5) is satisfied at every state vector s ∈ S. Since the state

space is finite, we can express it as a matrix equation:

Vi (σi) = σiΠi + Di (σi) + βσiGVi (σi)

= [Is − βσiG]−1 [σiΠi + Di (σi)] . (6)

Equation (6) provides an expression for the ex ante value function associated with

the beliefs σi. The terms on the right hand side are the discount factor, the choice

probability matrix, the state transition matrix, the period return function, and the

expected payoff shocks. Here Vi (σi) = [Vi (s;σi)]s∈S is the ms× 1 dimensional vector

of expected discounted sum of future payoffs; σi is the ms × (ma ·ms) dimensional
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matrix consisting of player i’s beliefs σi(a|s) in row s, column (a, s), and zeros in

row s, column (a, s
′
) with s

′ 6= s; Di (σi) = [Di (s,σi)]s∈S is the ms × 1 dimensional

vector of expected payoff shocks with element Di (s,σi) =
∑K

k=1 Eε

[
εk

i |ai = k; σi

]
·

σi (ai = k|s); and Is denotes the ms dimensional identity matrix. The second line

in equation (6) follows from the dominant diagonal property which implies that the

matrix [Is − βσiG] is invertible.

Notice, that the value function can be evaluated at any vector of beliefs, not nec-

essarily equilibrium beliefs. In the next section, we use this expression to characterize

the properties of the equilibrium choices and beliefs.

4 Equilibrium Properties

This section characterizes properties of the dynamic equilibrium and provides remarks

on the limitations of our model assumptions. Subsection 4.1 begins with a character-

ization of the equilibrium decision rule, and the equilibrium choice probabilities. We

show that the equilibrium decision rule is characterized by an N · K · ms equation

system. We show that an equilibrium exists. Subsection 4.2 concludes with remarks

on limitations and possible extensions of our model.

4.1 Equilibrium Characterization

First, we examine when it is optimal to choose action ai in state (s, εi). Let θ denote

the parameter vector summarizing the model elements (Π1, . . . ,ΠN , F, β, g). Let

ui(ai; σi, θ) denote player i’s continuation value net of the payoff shocks under action

ai with beliefs σi:

ui(ai; σi, θ) =
∑

a−i∈A−i

σi(a−i|s) ·

πi (a−i, ai, s) + β
∑
s
′∈S

g(a−i, ai, s, s
′
)Vi(s

′
; σi)

 (7)

where σi(a−i|s) denotes the conditional beliefs of player i that players −i choose an

action profile a−i conditional on state s.
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It is optimal to choose action ai given the beliefs σi if the continuation value under

action ai exceeds the continuation value under all alternative actions:

ui(ai; σi, θ) + εai
i ≥ ui(a

′
i; σi, θ) + ε

a′i
i for all a′i ∈ Ai (8)

where ε0
i = 0. The optimality condition (8) characterizes the optimal decision rule

up to a set of Lebesgue measure zero on which two or more alternative actions yield

equal continuation values. We may evaluate condition (8) before the payoff shock εi

is observed. Doing so, gives an expression for the ex ante optimal choice probability

of player i given the beliefs σi:

p(ai|s, σi) = Ψi (ai, s, σi; θ) (9)

=

∫
k∈Ai,k 6=ai

1
(
ui(ai; σi, θ)− ui(k; σi, θ) ≥ εk

i − εai
i

)
dF

In matrix notation, equation (9) can be written as:

p = Ψ (σ; θ) (10)

where p = (p1, . . . ,pN) denotes the (N ·K ·ms)×1 dimensional vector of the optimal

players’ choice probabilities for all states, players and actions other than action 0; and

σ denotes the (N ·K ·ms) × 1 dimensional vector of players’ beliefs. We omit the

choice probability for action 0 in equation (10) as it is already determined by the

remaining choice probabilities, pi(0|s) = 1−
∑K

k=1 pi(k|s).

Equation system (10) determines the optimal choice probabilities as a function of

players’ beliefs. In equilibrium, beliefs are consistent leading to a fixed point problem

in ex ante choice probabilities p:

p = Ψ (p; θ) . (11)

The following proposition characterizes the set of Markov perfect equilibria. All proofs

are given in the appendix.
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Proposition 1 (Characterization) In any Markov perfect equilibrium, the probability

vector p satisfies equation (11). Conversely, any p that satisfies equation (11) can be

extended to a Markov perfect equilibrium.

The proposition states that equation system (11) is a necessary and also a sufficient

condition for any Markov equilibrium. It gives a system of N · K · ms equations

characterizing the N ·K ·ms equilibrium ex ante choice probabilities. The necessity

part stems from the optimality condition which says that the continuation value when

taking action ai is at least as large as the continuation value when taking action a′i.

The sufficiency part is established by showing that any p that satisfies equation (11)

can be extended to construct a decision rule based on condition (8) that constitutes

a Markov perfect equilibrium under the beliefs p.

Equation system (11) is not the only equation system that characterizes the set of

equilibria. For example, any monotone transformation of the left hand side and right

hand side variables in (11) can also be used as an equation system characterizing the

equilibrium. This property will be convenient when we study identification of the

model, where we will use a characterization that is linear in payoffs.

Next, we provide a few remarks on the existence, computation and multiplicity of

equilibria. The following theorem establishes that an equilibrium exists.

Theorem 1 A Markov perfect equilibrium exists.

The existence result follows from Brouwer’s fixed point theorem. Equation (11)

gives us a continuous function from [0, 1]N ·K·ms onto itself. By Brouwer’s theorem it

has a fixed point p. Maskin and Tirole (1994, 2001) and Doraszelski and Satterthwaite

(2007) provide alternative existence arguments for related problems.

Proposition 1 and Theorem 1 enable us to calculate equilibria numerically. They

show that the equilibrium calculation is reduced to a fixed point problem in [0, 1]N ·K·ms ,

which is solvable even for non-trivial ms, K and N . Backwards solving algorithms,

which calculate a new optimal policy and value function at each step of the iteration,
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are computationally complex, as is shown in Pakes and McGuire (2001). Proposition

1 shows that the fixed point problem in equation (11) gives an equivalent representa-

tion of equilibria which may facilitate the computation considerably. Hence, it is not

necessary to determine the optimal decision rule and value function at every step of

the iteration. Numerical solution techniques for continuous time games are studied

in Doraszelski and Judd (2006).

Markov perfect equilibria need not be unique. Section 2 provides an illustration

for a game in which dynamic linkages are absent. Section 7 gives an example of

multiple equilibria in a dynamic context.

Proposition 1 and Theorem 1 permit asymmetric payoffs and strategies. Our

framework takes heterogenous behavior by agents into account. It permits the pos-

sibility that players i and j adopt distinct strategies, ai (si, s−i, εi) 6= aj

(
s′j, s

′
−j, εj

)
,

even when the state variables are identical, (si, s−i) = (s′j, s
′
−j) and εi = εj. Next,

we shall illustrate that imposing symmetry on payoffs, transition probabilities and

strategies does not affect the properties of the framework conceptually.

Symmetry Restriction. Symmetry means that players i and j adopt identical

strategies, receive identical payoffs and face identical transition probabilities when

their state variables are identical. The game is symmetric if πi(a
1, s1) = πj(a

2, s2) for

all i,j ∈ N, for all (a1, s1), (a2, s2) ∈ A× S such that (a1
i , a

1
−i) = (a2

j , a
2
−j), (s1

i , s
1
−i) =

(s2
j , s

2
−j) and g(a1, s1, s1′) = g(a2, s2, s2′) for all (a1, s1, s1′), (a2, s2, s2′) ∈ A × S × S

such that (a1
i , a

1
−i) = (a2

j , a
2
−j), (s1

i , s
1
−i) = (s2

j , s
2
−j) and (s1′

i , s1′
−i) = (s2′

j , s2′
−j). The

strategies are symmetric if ai (s
1, εi) = aj (s2, εj) for all i,j ∈ N, for all s1, s2 ∈ S

such that (s1
i , s

1
−i) = (s2

j , s
2
−j), and for all εi, εj ∈ RK such that εi = εj. A Markov

perfect equilibrium is symmetric if (i) the game is symmetric and (ii) the strategies

are symmetric.

Corollary 1 Suppose the game is symmetric.

(i) A symmetric Markov perfect equilibrium exists.

(ii) In any symmetric Markov perfect equilibrium, the probability vector p satisfies
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equation (11). Conversely, any p that satisfies equation (11) can be extended to a

symmetric Markov perfect equilibrium.

The symmetry assumption reduces the number of equations in (11). The reduction

in dimension reduces the complexity of the problem which may facilitate the numerical

calculation of equilibria. Additionally, symmetry places a number of restrictions on

the payoff vector Π and transition probability matrix G which can be useful in the

empirical analysis.

Static models and single agent models. Static models, as in McKelvey and Palfrey

(1995), Seim (2005), and others, are a special case of our framework with β = 0.

When the number of players N = 1, the framework corresponds to a single agent

discrete decision processes as studied in Rust (1987, 1994).

4.2 Discussion

Next, we discuss some limitations and possible extensions of our framework. We

illustrate that serially correlated payoff shocks are not readily incorporated. We

discuss possible extensions to continuous action spaces, and describe computational

limitations.

Payoff shock. The assumption regarding conditional independence of the payoff

shock εai
i is an important assumption commonly made in this literature. It permits

the use of the Markovian framework. For a detailed discussion of the independence

assumption in Markovian decision problems see Rust (1994).

Permitting serial correlation in the privately observed error would give rise to

models of learning in which players form beliefs about other players’ states based on

past actions. To model these beliefs consistently, the state space would need to be

amplified to include the set of all possible past actions. Doing so may render the

method computationally infeasible. Whether the assumption of conditional indepen-

dence is appropriate depends on the environment studied. In some applications a

18



firm’s scrap value, sunk entry cost, or productivity may be auto-correlated, and the

proposed method may not be applicable.

Introducing a common payoff shock component that is observed by all players but

not by the econometrician would give rise to a model in which the beliefs of players

depend additionally on the common shock. In order to correctly infer the beliefs of

players, the econometrician has to be able to integrate conditional choice probabilities

over the distribution of common shocks.

Heterogeneity in the payoff shock distribution can be incorporated by adding a

player-specific dummy variable to the publicly observed state variable.

Action Space. Recall that the equilibrium was characterized by one equation

for every action in every state. A game with a continuous action space may yield a

continuum of equilibrium conditions for every state. Such equilibrium conditions have

been studied in special cases. For example in the pricing game studied in Jofre-Bonet

and Pesendorfer (2003) the equilibrium condition corresponding to (11) becomes a

set of first-order conditions.

Computational Limitations. Our modelling framework and approach also has

computational limitations. First, it is better suited for situations in which there is

a small number of players and states. In situations with many players, or states,

the transition matrix G will be large and solving the equations in (11) may become

computationally infeasible. Second, it may be difficult to simulate the equilibria even

if estimation is possible as there can be multiple equilibria. Finding the set of fixed

points of equation (11) may be computationally infeasible.

This section has characterized some properties of Markov perfect equilibria. We

have provided a simple characterization of the equilibrium choice probabilities in

form of an equation system that can be solved numerically. We have shown that

the equation system has a solution which implies that a Markov perfect equilibrium

exists. Finally, we described some limitiations and possible extensions of our model

framework. Next, we use the necessary and sufficient equilibrium condition (11) to
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address the question of identification.

5 Identification

This section examines the identification question. The model is identified if there

exists a unique set of model primitives (Π1, . . . ,ΠN , F, β, g) that can be inferred from

a sufficiently rich data set characterizing choice and state transition probabilities.

We consider time series data generated by a single path of play and we exploit

information contained in the repeated observations on the same set of players along

the path of play. Our time series approach differs from the cross section approach

frequently used in the single agent dynamic literature. The cross section approach

does not extend to games without additional restrictive assumptions as, in contrast

to single agent problems, games may have multiple equilibria.4 Estimation based on

a single path of play gets around the multiplicity concerns inherent to Markovian

equilibria: When the data are generated by a Markovian equilibrium, players make

the same choices over time for a given vector of payoff relevant state variables (s, εi).
5

Consequently, the Markovian assumption guarantees that a single time series have

been generated by only one equilibrium. When considering cross-sectional data, one

has to assume additionally that the same equilibrium is played in every path observed.

We assume that time series data (at, st)
T
t=1 permit us to characterize the choice

probabilities p (a|s) and the transition probabilities g(a, s, s
′
) for any s, s

′ ∈ S, a ∈A.

To study the identification problem, we examine the properties of equation system

(11). The unknown elements in equation system (11) are the discount factor β, the

distribution function F , and the ma·ms·N parameters in (Π1, . . . ,ΠN). Our approach

follows the analysis of the single agent case by Magnac and Thesmar (2002) in that

4Identification of static entry models based on a cross-section data set is considered in Tamer

(2003).
5Thus the Markovian assumption rules out ‘equilibrium switches’ in a single path of play.
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we fix (F, β) and analyze the identification of payoff parameters (Π1, . . . ,ΠN) . The

following Proposition illustrates the need for identifying restrictions.

Proposition 2 Suppose (F, β) are given. At most K · ms · N parameters can be

identified.

Proposition 2 states that not all the model elements in (Π1, . . . ,ΠN , F, β) are

non-parametrically identified. Even if the distribution function F and the discount

factor β are known, not all parameters in (Π1, . . . ,ΠN) can be identified. The reason

is that there are a total of K ·ms · N equations in (11) enabling identification of at

most as many parameters while there are ma ·ms · N parameters in (Π1, . . . ,ΠN).

Thus at least (ma ·ms −K ·ms) · N restrictions are needed. The non-identification

result is similar in spirit to results obtained in the single agent dynamics literature,

see Rust (1994) and Magnac and Thesmar (2002).6 Proposition 2 also illustrates that

the degree of under-identification increases with the number of agents. The reason

is that the number of required restrictions is exponential in N , while the number of

equations is linear in N .

In many economic settings the payoff parameters are the main object of interest.

The researcher may be willing to assume a functional form for the distribution F and

may obtain estimates for the discount factor β elsewhere. Next, we illustrate how to

incorporate a (minimal) set of linear restrictions on the payoff parameters and ensure

that the remaining payoff parameters are identified. Without loss of generality, we

consider player i. Let Ri be a (ma ·ms −K ·ms) × (ma ·ms) dimensional restriction

matrix and ri a (ma ·ms −K ·ms) ×1 dimensional vector such that

Ri ·Πi = ri. (12)

6Heckman and Navarro (2007) obtain stronger identification results for a binary choice single

agent model, because one action (‘treatment’) corresponds to an absorbing state and they have

information on measured consequences of reaching this absorbing state.
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We determine whether the model is exactly identified with the restriction (12) in

place.

It is convenient to rephrase the equilibrium conditions by using the optimality

condition (8) for the action pair ai and 0. The resulting equations are linear in period

payoffs which allows us to illustrate the identification problem for payoff parameters

in a simple way. Let εai
i (s) denote the realization of εai

i that makes player i indifferent

between actions ai and 0 in state s. It corresponds to the realization of εai
i at which

equation (8) holds with equality when comparing the payoffs from action ai and action

0. The indifference equation between action pairs is given by:

∑
a−i∈A−i

p(a−i|s) ·

πi (a−i, ai, s) + β
∑
s
′∈S

g(a−i, ai, s, s
′
)Vi(s

′
; p)

 + εai
i (s)

=
∑

a−i∈A−i

p(a−i|s) ·

πi (a−i, 0, s) + β
∑
s
′∈S

g(a−i, 0, s, s
′
)Vi(s

′
; p)

 (13)

Substituting the ex ante expected value function, equation (6), and expressing the

above equation in matrix notation, we obtain a system of equations that is linear in

the payoff parameters. The linear equation system for player i is given by:

Xi (p, g, β) ·Πi + Yi (p, g, β) = 0. (14)

where Xi and Yi are (K ·ms) × (ma ·ms) dimensional and (K ·ms) × 1 coefficient

matrices determined by the choice probabilities, the transition probabilities and the

discount factor β. Lemma 1 in the appendix shows that p satisfies (14) for all players

i if and only if p satisfies the best response system (11). Next, we augment the linear

equation system (14) with the payoff restrictions Ri ·Πi = ri, yielding the ma ·ms

equations in ma ·ms unknown payoff parameters: Xi

Ri

Πi +

 Yi

ri

 = XiΠi + Yi (15)

= 0.
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The identification problem is now reduced to determining whether the linear equation

system has a unique solution.

Proposition 3 Consider any player i ∈ N and suppose that (F, β) are given. If

rank(Xi) = (ma ·ms), then Πi is exactly identified.

The Proposition allows us to verify whether a set of linear payoff restrictions

guarantees exact identification. It states that we need to verify whether the restriction

together with the coefficient matrix Xi satisfies a rank condition. Then, the payoff

parameters are identified. If additional restrictions are imposed, then the payoff

parameters are over-identified.

The set of restrictions imposed in equation (15) may depend on the economic

problem at hand. We conclude this section with an example of two payoff restrictions

that appear applicable in a number of settings.

Example: Suppose the number of state variables exceeds the number of actions,

L ≥ K + 1. Consider the following two restrictions:

πi (ai, a−i, si, s−i) = πi

(
ai, a−i, si, s

′
−i

)
∀ a ∈ A, (si, s−i) ,

(
si, s

′
−i

)
∈ SR1(16)

πi(0, a−i, si) = ri(a−i, si) ∀ a−i ∈ A−i, si ∈ SiR2 (17)

where ri is a ((K + 1)N−1 · L) × 1 dimensional exogenous vector. Restriction (R1 )

says that period payoffs do not depend on the state variables of other firms. It fixes

ma·(ms−L) payoff parameters. Restriction (R1) is satisfied in games with adjustment

costs such as entry or investment games. Restriction (R2) says that period payoffs

under action ai = 0 are fixed exogenously for every state si and action profile a−i.

Restriction (R2) fixes (K + 1)N−1 ·L payoff parameters. Restriction (R2) is satisfied

in games in which one action, say action inactivity, implies zero payoffs. For given F

and β, imposing restrictions (R1) and (R2) in equation (15) ensures identification of

the payoff parameters provided the number of state variables exceeds the number of

actions, L ≥ K +1, and the rank condition in Proposition 3 is satisfied. Observe also
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that a payoff normalization such as restriction (R2) is required for identification as

the indifference analysis determines payoffs relative to the payoff under action ai = 0

at every state only.

The illustration of the identification conditions and how to impose identifying

restrictions allows us to proceed to the estimation problem. The next section proposes

a class of asymptotic least squares estimators based on the equation system (11).

6 Estimation

We consider the class of asymptotic least squares estimators. This class provides a

unified framework for a number of estimators proposed in the literature. We describe

the asymptotically efficient weight matrix and discuss how a number of well known

estimators can be recast as asymptotic least squares estimators.

6.1 Asymptotic Least Squares Estimators

Asymptotic least squares estimators are defined by using the equilibrium equation

system equation (11) as estimating equations. They consist of two steps: In the

first step, the auxiliary parameters consisting of the choice probabilities p and the

parameters entering the transition probability matrix G are estimated. In the second

step, the parameters of interest are estimated by using weighted least squares on the

equilibrium equation system.

Let θ =
(
θπ, θF , β, θg

)
∈ Θ ⊂ Rq denote an identified parameter vector.7 The

parameter vector θ may include parameters entering the period payoffs πi (a, s; θπ)

for all i, the transition probabilities g (a, s, s′; θg), the distribution of payoff shocks

F (ε; θF ) and the discount factor β. We introduce H auxiliary parameters consisting of

7We include θg in the parameter vector θ to permit the possibility that a parametric restriction

is placed on the state transition g.
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the choice and state transition probabilities p (θ) and g (θ), with H ≤ (N ·K ·ms)+

(ma ·ms ·ms). The auxiliary parameters are related to the parameters of interest

through the system of N ·K ·ms implicit equations given by the equilibrium condition

(11):

h (p,g, θ) = p−Ψ (p,g, θ) = 0 (18)

The identification condition implies that the parameter vector θ is determined without

ambiguity from the auxiliary parameters p,g from the system of estimating equations

(18). As explained in section 5 the equation system (18) is not the only representation

of the equilibrium conditions. An equivalent representation exists in the space of

expected discounted payoffs instead of choice probabilities, which is considered in

Hotz, Miller, Sanders and Smith (1994) and is illustrated in Lemma 1 in the Appendix.

The subsequent arguments can be made for any representation, but in the remainder

of this section we select the representation given by equations (18).

Auxiliary parameters: We assume that estimators of the auxiliary parameters p,g

exist and are consistent and asymptotically normally distributed. That is, we assume

that there exists a sequence of estimators (p̂T ,ĝT ) of (p,g) such that

(p̂T ,ĝT ) −→ (p (θ0) ,g (θ0)) a.s.
√

T ((p̂T ,ĝT )− (p (θ0) ,g (θ0)))
d−→ N (0,Σ (θ0))

as T −→∞, where θ0 denotes the true parameter vector.

There are a number of ways in which the auxiliary parameters consisting of the

choice and transition probabilities can be estimated. Well known techniques in-

clude maximum likelihood or a Kernel smoother.8 A Monte Carlo study compar-

ing these techniques in single agent dynamic models is conducted in Hotz, Miller,

Sanders and Smith (1994). Maximum likelihood may be preferred if choices and

state transitions are observed for all states, while Kernel smoothers may be pre-

8Grund (1993) provides conditions such that a Kernel estimator of cell probabilities has the

assumed large sample properties.
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ferred if some states are not observed. Let p(k, i, s) denote the probability that

player i selects action k in state s. Define the observed choice frequency by nkis =∑
t 1 (at

i = k, st = s) for all i ∈ N,k ∈Ai, s ∈ S and observed state frequency by

nass
′ =

∑
t 1

(
at = a, st = s, st+1 = s

′)
. By assumption, choices and states are multi-

nomially distributed which implies that the maximum likelihood estimator equals the

sample frequency:

p̂(k, i, s) =
nkis∑

l∈Ai
nlis

, ĝ(a, s, s
′
) =

nass′∑
s
′′∈S nass′′

. (19)

We denote with p̂ = (p̂(k, i, s)i∈N,k∈Ai,s∈S) the vector of sample frequencies. Billings-

ley (1961) establishes that the maximum likelihood estimator is consistent and asymp-

totically efficient with a normal limiting distribution.

The asymptotic least squares estimating principle consists of estimating the pa-

rameters of interest θ by forcing the constraints

h (p̂T ,ĝT , θ) = p̂T −Ψ (p̂T ,ĝT , θ) = 0 (20)

to be satisfied approximately. Consider initially the case in which the payoff parameter

vector is identified exactly. The asymptotic least squares problem then has an explicit

solution. Further, a simple argument based on the delta method shows that the

explicit solution is an efficient estimator of θ, see Pesendorfer and Schmidt-Dengler

(2003). With an over-identified parameter vector there are more equations than

parameters and there is no unique way to select a solution. A solution depends on

the weight individual equations are given.

Let WT be a symmetric positive definite matrix of dimension (N ·K ·ms) ×

(N ·K ·ms) that may depend on the observations. An asymptotic least squares

estimator associated with WT is a solution θ̃T (WT ) to the problem

min
θ∈Θ

[p̂T −Ψ (p̂T ,ĝT , θ)]′ WT [p̂T −Ψ (p̂T ,ĝT , θ)] . (21)

Thus, the asymptotic least squares estimator θ̃T (WT ) brings the constraint p̂T −
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Ψ (p̂T ,ĝT , θ) closest to zero in the metric associated with the scalar product defined

by WT .

Assumptions: Next, we state a number of assumptions that allow us to character-

ize the asymptotic properties of asymptotic least squares estimators. The assumptions

are the following:

A1: Θ is a compact set.

A2: the true value θ0 is in the interior of Θ.

A3: as T −→∞,WT −→ W0 a.s. where W0 is a non-stochastic positive definite

matrix.

A4: θ satisfies [p (θ0)−Ψ (p (θ0) ,g (θ0) , θ)]′ W0 [p (θ0)−Ψ (p (θ0) ,g (θ0) , θ)] =

0 implies that θ = θ0.

A5: the functions π, g, F are twice continuously differentiable in θ.

A6: the matrix [∇θΨ (p (θ0) ,g (θ0) , θ0)]
′ W0 [∇θ′Ψ (p (θ0) ,g (θ0) , θ0)] is non-singular.

Assumptions A1-A3, A5, and A6 are standard technical conditions to ensure the

problem is well behaved. Assumption A4 ensures that the parameter vector is iden-

tified.

The following Proposition shows that given the assumptions above, the asymp-

totic least squares estimator is consistent and asymptotically normally distributed.

The Proposition follows from results developed in Gourieroux, Monfort and Trognon

(1985) for asymptotic least squares estimators (see also Gourieroux and Monfort,

1995, Theorem 9.1).

Proposition 4 Under assumptions A1-A6, the asymptotic least squares estimator

θ̃T (WT ) exists, strongly converges to θ0 and is asymptotically normally distributed

with
√

T
(
θ̃T (WT )− θ0

)
d−→ N (0,Ω (θ0))
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as T −→∞, where

Ω (θ0) =
(
∇θΨ

′
W0∇θ′Ψ

)−1

∇θΨ
′
W0

[
(I : 0)−∇(p,g)′Ψ

]
Σ

·
[
(I : 0)−∇(p,g)′Ψ

]′
W0∇θ′Ψ

(
∇θΨ

′
W0∇θ′Ψ

)−1

(22)

where 0 denotes a (N ·K ·ms)×
(
ma · (ms)

2) matrix of zeros and the various matrices

are evaluated at θ0, p (θ0), and g (θ0).

The Proposition shows that there are a number of consistent and asymptotically

normally distributed estimators, each one corresponding to a particular sequence of

matrices WT .9

Next, we address the optimal choice of matrix WT .

6.2 Efficient Asymptotic Least Squares Estimator

In this section we describe the optimal weight matrix. We make an additional as-

sumption:

A7: the matrices

[
(I : 0)−∇(p,g)′Ψ

]
Σ

[
(I : 0)−∇(p,g)′Ψ

]′
and

∇θΨ
′
([

(I : 0)−∇(p,g)′Ψ
]
Σ

[
(I : 0)−∇(p,g)′Ψ

]′)−1

∇θ′Ψ

are non-singular where 0 denotes a (N ·K ·ms) ×
(
ma · (ms)

2) matrix of zeros and

Σ,∇θΨ and ∇′
(p,g)Ψ are evaluated at θ0.

The optimal weight matrix for asymptotic least squares estimators follows from

Gourieroux, Monfort and Trognon (1985). The following Proposition states the result:

9If two distinct auxiliary estimators, p̂1
T and p̂2

T , are employed in the equilibrium conditions

(20) , p̂1
T −Ψ

(
p̂2

T ,ĝT , θ
)

= 0, then the matrix matrix Σ in Proposition 4 refers to the asymptotic

covariance matrix associated with the vector of auxiliary parameters (p̂T , ĝT ) =
(
p̂1

T , p̂2
T ,ĝT

)
.
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Proposition 5 Under assumptions A1-A7, the best asymptotic least squares estima-

tors exist. They correspond to sequences of matrices W∗
T converging to

W∗
0 =

([
(I : 0)−∇(p,g)′Ψ

]
Σ

[
(I : 0)−∇(p,g)′Ψ

]′)−1

.

Their asymptotic variance covariance matrices are equal and given by

Ω (W∗) =

(
∇θΨ

′
([

(I : 0)−∇(p,g)′Ψ
]
Σ

[
(I : 0)−∇(p,g)′Ψ

]′)−1

∇θ′Ψ

)−1

(23)

Proposition 5 establishes that the asymptotically optimal weights W∗
0 depend on

the derivative of the estimating equations with respect to the auxiliary parameters

(p,g) and the covariance matrix of the auxiliary parameters Σ.

The next subsection shows that a number of well known estimators are members

of the class of asymptotic least squares estimators.

6.3 Examples of Asymptotic Least Squares Estimators

This section considers moment estimators and pseudo maximum likelihood estima-

tors.

6.3.1 Moment Estimator

A moment estimator is proposed in Hotz and Miller (1993). It is based on the moment

condition for the K × 1 dimensional random vector of choices αis = (α1, . . . , αK) for

player i in state s multiplied by an instrument vector. A realization αt of the random

variable αis is a K×1 dimensional vector with entry k equal to 1 if action k is adopted

and 0 otherwise, so that
∑K

k=1 αt
k ∈ {0, 1} and α̂k ∈ {0, 1} for all k. Let Tis denote

the set of observations for player i in state s. The orthogonality condition is defined

as:

E [Z ⊗ [αis −Ψis (p̂T ,ĝT , θ)]] = 0 (24)
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where Z is a J×1 dimensional instrument vector exogenous to the term in the second

square bracket, and ⊗ denotes the Kronecker product.10 It is easy to see that the

moment estimator based on the moment condition (24) is an asymptotic least squares

estimator when setting Zt = Zis for all t ∈ Tis and for all i ∈ N,s ∈S. The reason

is that the inner sum of the sample analog of (24) can be rewritten as a weighted

average of the estimating equation:

1

NT

∑
i∈N,s∈S

∑
t∈Tis

Zt⊗
[
αt −Ψis (p̂T ,ĝT , θ)

]
=

1

NT

∑
i∈N,s∈S

nis

[
Zis ⊗ [p̂is −Ψis (p̂T ,ĝT , θ)]

]
.

as
∑

t∈Tis
αt equals the vector of sample frequencies p̂is = (n1is/nis, . . . , nKis/nis)

defined in equation (19). So, the estimating equation of the equivalent asymptotic

least squares estimator is p̂ −Ψ (p̂T ,ĝT , θ) = 0.11 The weights assigned to the indi-

vidual estimating equations depend on the vector of instruments Z, and the choice of

a (J ·K) square weight matrix associated with the moment conditions.12

Current and lagged state variables are selected as instruments in a number of ap-

plications including Hotz and Miller (1993), Slade (1998) and Aguirregabiria (1999).

These instrument matrices differ from the optimal weight matrix as they generate a

set of weighted moment averages with weights determined by the level of the state

variables. In contrast, the optimal choice would single out a separate moment condi-

tion for every state. One way to achieve efficiency is to set the number of instruments

equal to J = ms · N , where the element (i, s) of Zt is equal to 1
nis

, if t ∈ Tis and

zero if t /∈ Tis. In this manner N ·ms · K moment conditions are generated, corre-

sponding to the equilibrium conditions in (20). It remains to choose the (ms · N)

10Hotz, Miller, Sanders and Smith (1994) consider an alternative representation of the equilibrium

in the payoff space. As explained earlier, this representation is equivalent to our formulation in the

choice probability space.
11Observe, that the frequency estimator p̂ is used in the first appearance of the auxiliary parameter

in the estimating equation while a possibly distinct parameter p̂T may appear in the second place.
12The condition Zt = Zis for all t ∈ Tis and for all i ∈ N,s ∈ S is not necessary for the moment

estimator to be an asyomptotic least squares estimator. If Zt 6= Zis for some t ∈ Tis, then the

frequency estimator p̂ would be replaced by a different estimator p̃.
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square weight matrix appropriately equal to W∗
0 as defined in Proposition 5, and the

moment estimator corresponds to the efficient asymptotic least squares estimator.

Hansen (1982) and Chamberlain (1987) derive the optimal choice of instruments

and weight matrix for a given set of moment conditions. They correspond to the op-

timal asymptotic least squares weight matrix W∗
0 if a moment condition is considered

for every agent and at every state. Notice though that this enlarged set of moment

conditions is distinct from those considered in Hotz and Miller (1993).

In the case of exact identification, the asymptotic least squares estimator is op-

timal regardless of the choice of weight matrix. Jofre-Bonet and Pesendorfer (2003)

consider a continuous choice dynamic pricing model in which the equilibrium equa-

tion system is linear in the cost parameters of interest. They impose restrictions for

exact identification. Their estimator can be recast in our model as an asymptotic

least square estimator with weight matrix equal to the identity matrix.

Our approach could be extended to general continuous action games by replacing

equilibrium equation system (20) by a continuum of conditions. The corresponding

asymptotic least squares estimator minimizes the norm of these conditions in a Hilbert

space. Carrasco and Florens (2000) establish consistency and asymptotic normality.

Efficient estimation of an overidentified model however would require the inversion of

a covariance operator in an infinite dimensional Hilbert space.

Recent working papers by Bajari, Benkard and Levin (2007),13 and Pakes, Os-

trovsky and Berry (2005),14 propose moment estimators that are asymptotic least

13Bajari, Benkard and Levin (2007) consider a least squares estimator based on a criterion function

that squares the difference between the expected discounted payoff associated with the observed

choice and any other choice times an indicator function that equals one if the difference is negative.

They use the identity matrix as a weight matrix. Bajari, Benkard and Levin (2007) also permit

continuous choice variables, but define the estimator on a finite set of choices.
14Pakes, Ostrovsky and Berry (2005) apply two moment estimators in their Monte Carlo study of

an entry model. The first moment estimator is defined by the average entry (and exit) rate across a

fixed subset of states; and the second equals the entry and exit rate at a state weighted by one over
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squares estimators with weight matrices equalling the identity matrix or a diagonal

matrix with elements equal to the inverse of the number of observations per state.

For over-identified models as considered in these papers, these weight matrices do not

take the equilibrium equation system or the covariance of the auxiliary parameters

into account optimally.

6.3.2 Pseudo Maximum Likelihood Estimator

The pseudo maximum likelihood estimator, or PML, maximizes the pseudo log like-

lihood. Aguirregabiria and Mira (2002) consider the partial pseudo log likelihood

conditional on the transition probability estimates ĝT . It is given by:

` =
∑
s∈S

∑
i∈N

∑
k∈Ai

nkis log Ψkis (p̂T ,ĝT , θ)

where Ψkis is evaluated at (p̂T ,ĝT ). The first order condition of the partial pseudo

maximum likelihood estimator is equivalent to the first order condition of the asymp-

totic least squares estimator defined in (21) with weight matrix Wml
T converging to

the inverse of the covariance matrix of the choice probabilities Σ−1
p . The reason is

that the first order condition is given by

∂`

∂θ
= (∇θΨ

′)Σ−1
p (Ψ) [p̂−Ψ (p̂T ,ĝT , θ)] .

as is shown in the appendix. Observe that for auxiliary estimates not equalling the

sample frequency, p̂T 6= p̂, the PML uses two distinct auxiliary parameter estimators

of the choice probabilities, p̂ and p̂T , and the equivalent asymptotic least squares

estimator solves the equation system p̂−Ψ (p̂T ,ĝT , θ) = 0. The first appearance of p

in the equation system is evaluated at p̂ and the second at p̂T . The intuition is that

the PML sets the sample frequency p̂ equal to the pseudo likelihood Ψ evaluated at

(p̂T ,ĝT , θ). This feature is shared with the moment estimator.15

the number of observations for that state, and again defined on a fixed subset of states.
15Aguirregabiria and Mira (2002) also introduce the iterated pseudo maximum likelihood estimator,

or k-PML. It is based on the observation that the choice probability vector Ψ (p̂T ,ĝT , θ) , evaluated
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The optimal weight matrix of the partial asymptotic least squares estimator con-

ditional on the transition probability estimates ĝT differs from the one of the partial

pseudo maximum likelihood estimator, which equals Σ−1
p , by a term that accounts for

the derivative of the estimating equations with respect to the auxiliary parameters

p. It is manifested in the term ∇p′Ψ. Aguirregabiria and Mira (2002) show that the

derivative ∇pΨ vanishes in the single agent case, as the continuation value, which

enters Ψ and is defined in equation (7), achieves a maximum at the optimal choice

probabilities p. The pseudo maximum likelihood estimator is then optimal. In the

multi agent case, as is shown in Aguirregabiria and Mira (2007), the derivative ∇pΨ

need not vanish, as player j’s choices do not maximize player i’s continuation value.

The weight matrix of the conditional pseudo maximum likelihood estimator is then

not optimal.

So far, we have described large sample properties of asymptotic least squares

estimators based on the equilibrium equation system. We have shown that a number

of estimators proposed in the literature are asymptotic least squares estimators. The

estimators differ in the weight they assign to individual equilibrium equations. In

each case, we have characterized the associated weight matrix. In the next section, we

conduct a Monte Carlo study to compare the performance of a number of estimators

when the sample size is small.

7 Monte Carlo Study

This section examines the practical effect of alternative weight matrices in a Monte

Carlo study. We also illustrate the multiplicity of equilibria inherent to games.

We compare the performance of four asymptotic least squares estimators: These

estimators are: (i) the efficient estimator, LS-E;16 (ii) the pseudo maximum likeli-

at the PML estimate θ̂1, defines a new auxiliary parameter estimate, p̂1 = Ψ
(
p̂T ,ĝT ,θ̂1

)
. This

process can be iterated.
16The efficient weight matrix is calculated by using a two step procedure. In the initial step, the
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hood estimator, PML; (iii) the estimator using the identity matrix as weights, LS-I;

(iv) the k-step iterated pseudo maximum likelihood estimator, k-PML, proposed by

Aguirregabiria and Mira (2002,2007). We fix the number of iterations in the k-step

procedures at 20, although convergence may be achieved at earlier iterations.

We select a simple model design and assess the performance of the estimators in

symmetric and asymmetric equilibria with distinct number of observations yielding a

total of 12 Monte Carlo experiments. We use the frequency estimator for the auxiliary

parameters. We refer the interested reader to the Monte Carlo studies by Hotz and

Miller (1994), Aguirregabiria and Mira (2002,2007) and Pakes, Ostrovsky and Berry

(2005) for the effect of alternative auxiliary estimators.

We describe the design of the Monte Carlo study in more detail in subsection 7.1.

Subsection 7.2 reports the results and comments on the findings.

7.1 Design

To keep the study simple and transparent, we consider a setting with two players,

binary actions {0, 1} and binary states {0, 1}. We have conducted exercises for prob-

lems involving more players, states and actions yielding similar results at increased

computational costs. The payoff structure and model parameters are selected to

imitate the empirical entry application in Pesendorfer and Schmidt-Dengler (2003).

Variations in the model parameters achieve results similar to the ones reported here,

and we report results for our baseline specification only.

The specification has the following features: The distribution of the profitability

shocks F is the standard normal. The discount factor is fixed at 0.9. The state tran-

sition law is given by st+1
i = ai. Period payoffs are symmetric and are parametrized

profit parameters are estimated consistently by using the identity matrix as weights. The efficient

weight matrix is then constructed by using the first stage estimates and is used in the second stage

to obtain the estimates.
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as follows:

π (ai, aj, si) =



0 if ai = 0; si = 0

x if ai = 0; si = 1

π1 + c if ai = 1; aj = 0; si = 0

π2 + c if ai = 1; aj = 1; si = 0

π1 if ai = 1; aj = 0; si = 1

π2 if ai = 1; aj = 1; si = 1

where x = 0.1; c = −0.2; π1 = 1.2; and π2 = −1.2. The period payoffs can be

interpreting as stemming from a game with switching costs and/or as entry/exit

game. A player that selects action 1 receives monopoly profits π1 if she is the only

active player, and she receives duopoly profits π2 otherwise. Additionally, a player

that switches states from 0 to 1 incurs the entry cost c; while a player that switches

from 1 to 0 receives the exit value x.

Multiplicity. The game illustrates the possibility of multiple equilibria which is a

feature inherent to games. We illustrate five equilibria, four of which are asymmetric

and one of which is symmetric. The equilibria have the following distinguishing

features: In equilibrium (i), player one is more likely to choose action 0 than action

1 in all states. The ex ante probability vectors for both players are given by: p(a1 =

0|s1, s2) = (0.27, 0.39, 0.20, 0.25)′, p(a2 = 0|s2, s1) = (0.72, 0.78, 0.58, 0.71)′ where

the order of the elements in the probability vectors correspond to the state vector

(s1, s2) = ((0, 0), (0, 1), (1, 0), (1, 1)).

In equilibrium (ii), player two is more likely to choose action 0 than action 1 in

all states with the exception of state (1, 0). The probability vectors are given by

p(a1 = 0|s1, s2) = (0.38, 0.69, 0.17, 0.39)′, p(a2 = 0|s2, s1) = (0.47, 0.70, 0.16, 0.42)′.

Equilibrium (iii) is symmetric. The probability vectors are given by p(a1 =

0|s1, s2) = (0.42, 0.70, 0.16, 0.41)′, p(a2 = 0|s2, s1) = (0.42, 0.70, 0.16, 0.41)′. Two ad-

ditional equilibria have the property that the identities of players 1 and 2 in equilibria

(i) and (ii) are reversed. We consider equilibria (i)-(iii) in the subsequent analysis.
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Identification and Estimation. The game has four distinct states and permits the

exact identification of at most four parameters per player. We impose the restrictions

x = 0.1, and that the parameters are identical for both players. We estimate three

parameters: c, π1, and π2.

The simulated data are generated by randomly drawing a time series of actions

from the calculated equilibrium choice probabilities described above for each of the

equilibria (i)-(iii) respectively. The initial state is taken as (0, 0) and we start the

sampling process after 250 periods. The length of the time series is varied in the

experiment with T equalling 100, 1,000, 10,000 and 100,000. For each design we

conduct 1,000 repetitions of the experiment in order to obtain a distribution of the

estimates. For each estimator we report the mean, standard deviation and mean

squared error based on the simulated distribution of parameter estimates.

7.2 Results

Tables 1-3 summarize our Monte Carlo results for equilibria (i)-(iii). In total there are

12 specifications. We report the mean, the standard deviation and the mean squared

error, MSE. The MSE is summed over the three parameters and is scaled by a factor

of 100.

[Tables 1-3 about here]

The LS-E estimator is selected by the MSE criterion in eight of 12 cases as the

preferred estimator. Overall the LS-E is the best performing estimator for all three

equilibria. The LS-E does not perform well in small sample sizes with T equalling

100 observations, but is preferred in moderate to large sample sizes with T equalling

1,000, 10,000 and 100,000 observations. A possible reason for the poor performance

with small T are imprecisions in the estimated optimal weight matrix.

The PML is ranked second according to the MSE criterion in seven of 12 spec-

ifications. The PML performs better than the LS-E for small sample sizes with T
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equalling 100 and worse for larger sample sizes. A reason for the good performance

in small sample sizes may be that the covariance matrix of the auxiliary parameters

is more accurately estimated than the optimal weight matrix. The PML performs

better than the LS-I and k-PML in equilibrium (ii), but performs worse than the LS-I

and k-PML in equilibrium (i). Both the PML and the LS-I perform similarly to the

LS-E in equilibrium (iii) for moderate to large sample sizes. This may be a special

feature of equilibrium (iii) as the equilibrium choice probabilities are symmetric and

close to one half. As a result, the weight matrices of the LS-E, PML and LS-I have

similar properties.

The LS-I is ranked third in nine of 12 specifications according to the MSE criterion.

It performs better than the PML in equilibrium (i) for sample sizes with T larger than

100, but worse than the LS-E and k-PML. Overall, the MSE criterion does not select

the LS-I in any specification as the preferred estimator. The weak performance may

be attributable to a larger standard deviation of the estimates. The LS-I does have a

smaller bias than the LS-E and PML in equilibria (ii) and (iii) for small sample sizes

with T equalling 100 and 1000.

The k-PML is ranked 4th on six of 12 specifications according to the MSE criterion.

It has a low MSE for T equalling 100, but this low MSE is attributable to a low

standard deviation. The k-PML is severely biased for small, moderate and large T in

equilibria (ii) and (iii). The bias increases when we consider more than 20 iterations.

The k-PML performs well in equilibrium (i) with a MSE only about 20-30 higher

than that of the LS-E for moderate to large sample sizes with T equalling at least

1,000.

The Monte Carlo study shows that the efficient LS-E estimator may be the pre-

ferred estimator for moderate to large sample sizes. For small sample sizes the PML

or the LS-I may be preferred alternatives, as they do not require the estimation of the

optimal weight matrix. The iterated k-PML performs reasonably well in equilibrium

(i), but has a strong bias in equilibria (ii) and (iii).
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Table 4 reports CPU times for finding an equilibrium numerically and for estimat-

ing the parameters using alternative estimators. We consider a Cournot Model with

a stochastic demand component that rotates the slope of the demand curve.17 We

restrict the attention to symmetric equilibria in order to keep the burden of solving

for the equilibrium at reasonable levels. The table illustrates that the CPU time re-

quired to estimate the model parameters increases as the number of firms and states

increases, but at a slower rate than the time required to compute the equilibria. For

large state spaces the computational burden of finding an equilibrium is substantially

higher than the burden of estimating the parameters. There is considerable variation

in CPU times across alternative estimators. Part of the variation may be software

and algorithm specific, but part may be attributable to the fact that computing the

efficient weight matrix becomes increasingly burdensome when the state space in-

creases, as the size of the derivative matrix ∇pΨ increases. Consequently, the PML

may be computationally less burdensome than the LS-E for large state spaces.

8 Concluding Remarks

This paper considers the class of asymptotic least squares estimators for dynamic

games. The basis of our analysis is an equation system characterizing the equilibrium

choice probabilities. This equilibrium equation system permits us to derive iden-

17In particular, we consider a payoff function that arises from Cournot competition with linear

demand function P = M · (a − bQ) with a, b > 0 and M ∈ {M1,M2, ..,MM} follows a Markov

process with the typical element of the M ×M transition matrix given by

tij = .5 · 1{i=j} + .25 · 1{i,j=1} + .25 · 1{i,j=M} + .25 · 1{|i−j|=1}

The fixed cost of production is equal to F and the marginal cost of production is zero. Firms receive

a scrap value of x > 0 when becoming inactive. We estimate the composite Cournot parameter (a
b )2

and the fixed cost F. The advantage of this design is that results are comparable, because varying

the number of firms and possible demand states, leaves the number of parameters unchanged.
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tification conditions of the underlying model parameters. Asymptotic least squares

estimators minimize the weighted distance between estimated choice probabilities and

choice probabilities implied by the model. We show that a number of well known es-

timators fall into the class of asymptotic least squares estimators. These estimators

differ in the weight they assign to individual equilibrium conditions. We characterize

the efficient weight matrix. Asymptotic least squares estimators for dynamic games

are simple to implement. We conducted a small scale Monte Carlo study illustrating

the small sample performances of alternative weight matrices. We found benefits to

using the efficient weight matrix in moderate and large sample sizes.

There are several directions for future research. One is to relax the assumption

that the econometrician has access to the same information on state variables as

the players. It appears possible that our proposed estimator is extendable to such

environments, as long as consistent estimates of players’ beliefs and state transitions

are obtainable. Another extension is to explore a game with continuous action space.

Such a game may entail a continuum of equilibrium conditions, and as discussed in

section 6, efficient estimation may require the inversion of a covariance operator in

an infinite dimensional Hilbert space.
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9 Appendix

This appendix contains proofs.

Proof of Proposition 1. First, we show that equation (11) must be satisfied

in any equilibrium. An action ai ∈ Ai is optimal for player i in state s given beliefs

σi if it yields a continuation value at least as large as any other action a′i ∈Ai:

ui(ai; σi, θ) + εai
i ≥ ui(a

′
i; σi, θ) + ε

a′i
i for all a′i ∈ Ai (25)

where ε0
i = 0. The optimality condition (25) can be expressed before the payoff shock

εi is observed. Doing so, gives an expression for the probability that player i chooses

action ai ∈Ai in state s given the beliefs σi:

pi(ai|s) = Ψi (ai, s, σi; , θ)

=

∫
k∈Ai,k 6=ai

1
(
ui(ai; σi, θ)− ui(k; σi, θ) ≥ εk

i − εai
i

)
dF (26)

Equation (26) is a necessary equilibrium condition that must be satisfied at every

state s ∈ S, for every player i, and for every action ai = 1, . . . , K, yielding a total of

ms ·K ·N equations, one for each possible state, action and player. We may compactly

write equation (26) in matrix form as:

p = Ψ (σ; θ) (27)

where p = (p1, . . . ,pN) denotes the (N ·K ·ms)×1 dimensional vector of the optimal

players’ choice probabilities for all states, players and actions other than action 0; and

σ denotes the (N ·K ·ms) × 1 dimensional vector of players’ beliefs. We omit the

choice probability for action 0 in equation (27) as it is already determined by the

remaining choice probabilities,

pi(0|s) = 1−
K∑

k=1

pi(k|s).

In equilibrium, beliefs must be consistent yielding equation (11).
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Next, we show that any p that satisfies equation (11) can be extended to construct

a Markov perfect equilibrium. Let the beliefs of player i equal pi and define the

decision rule of player i based on condition (25). That is, suppose player i chooses

action ai ∈ Ai in state s when the continuation value under action ai is at least as

large as the continuation value under any action a′i ∈Ai. In case of equal continuation

values of alternative actions we assume the player selects the smallest action:

ai(εi, s) = min{k ∈ Ki(εi, s)}

where Ki(εi, s) = {k ∈ Ai|ui(k; pi, θ) + εk
i ≥ ui(k

′; pi, θ) + εk′

i for all k′ ∈ Ai}

and ε0
i = 0. By construction, the decision rule and the beliefs are an equilibrium as

the decision rule is optimal given the beliefs pi for all i, and the beliefs are consistent.

This completes the proof.

Proof of Theorem 1. We need to show that equation (11) has a solution. The

choice probabilities p are contained in the unit interval. The function Ψ is continuous

in p. Brouwer’s fixed point theorem implies that there exists a fixed point p of the

function Ψ. By Proposition 1, the fixed point corresponds to an equilibrium.

Proof of Corollary 1. The arguments in the proofs of Proposition 1 and

Theorem 1 do not rely on asymmetry. The same arguments remain valid with the

symmetry assumption in place.

Lemma 1 (Equilibrium Characterization Linear in Payoffs) There exist

(Xi(p; g, β),Yi(p; g, β))N
i=1 such that any p that satisfies (11) solves

Xi(p; g, β)Πi + Yi(p; g, β) = 0 for all i ∈ N (28)

and any p that solves (28) also satisfies (11).

Proof of Lemma 1. We shall consider any player i and show that there exists an

equivalent representation to the best response equations in (11). The representation

is linear in payoffs.
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The alternative representation is based on the optimality condition (8) for the

action pair ai and 0. Let εai
i (s) be the type that is indifferent between actions ai and

0 in state s. The equation characterizing the indifferent type is linear in payoffs and

given by:

∑
a−i∈A−i

p(a−i|s) ·

πi (a−i, ai, s) + β
∑
s
′∈S

g(a−i, ai, s, s
′
)Vi(s

′
; p)

 + εai
i (s)

=
∑

a−i∈A−i

p(a−i|s) ·

πi (a−i, 0, s) + β
∑
s
′∈S

g(a−i, 0, s, s
′
)Vi(s

′
; p)


By transitivity any type

(
εai

i , ε
a′i
i

)
will prefer action ai over action a′i in state s if

εai
i − εai

i (s) > ε
a′i
i − ε

a′i
i (s). Thus, the equilibrium decision rule for player i with type

εi in state s can be written as

ai(εi, s) =

 k if εk
i > εk

i (s) and for all k
′ 6= k: εk

i − εk
′

i > εk
i (s)− εk

′

i (s) ;

0 if εk
i < εk

i (s) for all k.
(29)

and the choice probability is given by:

p(ai = k|s) = Pr
(
εk

i > εk
i (s) and for all k

′ 6= k: εk
i − εk

′

i > εk
i (s)− εk

′

i (s)
)

(30)

for all i ∈ N, k ∈Ai, s ∈S. Observe that there is a one-to-one relationship between

choice probabilities and indifferent types based on equation (30), as is originally shown

in Hotz and Miller (1993). Our earlier working paper, Pesendorfer and Schmidt-

Dengler (2003), includes also a proof for this statement. Thus, any vector of choice

probabilities implies a unique vector of indifferent types and vice versa.

To obtain the representation stated in the Lemma we write the equations charac-

terizing the indifferent types in matrix notation. We introduce the following notation.

Let εi =
[
εk

i (s)
]
s∈S,k=1,...K

be the (ms ·K)×1 dimensional vector of indifferent types.

Let P denotes the ms× (ma ·ms) dimensional matrix consisting of choice probability

p(a|s) in row s column (a−i, s) and zeros in row s column (a, s
′
) with s

′ 6= s. Fur-

ther, let P−i be the ms × ((K + 1)N−1 ·ms) dimensional matrix consisting of choice
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probability p(a−i|s) in row s column (a−i, s), and zeros in row s column (a−i, s
′
) with

s
′ 6= s; and define the (K ·ms)× (ma ·ms) dimensional matrix Pi (ε) as:

ai =

0 1 2 . . . K

Pi (ε) =

︷ ︸︸ ︷
−P−i P−i 0 . . . 0

−P−i 0 P−i . . . 0
... 0 0

. . . 0

−P−i 0 0 . . . P−i


We can re-state the indifference equations for player i as:

Pi (ε)Πi + βPi (ε)GVi + εi = 0 (31)

where ε = [εi]i∈N is the (K ·ms ·N)×1 dimensional vector of indifferent types. Using

the expression for the ex ante expected value function, equation (6) and substituting

equilibrium beliefs P for σi, we obtain the following equation system:[
Pi (ε) + βPi (ε)G [Is − βP (ε)G]−1 pi

]
Πi (32)

+βPi (ε)G [Is − βP (ε)G]−1 Di (ε) + εi = 0

Equation system (32) consists of ms ·K equations for player i. Notice also that the

ex ante expected payoff shock can be uniquely written in terms of indifferent types,

as:

Di (s) =
K∑

k=1

∫ ∞

εk
i (s)

εk
∏

k′≥1,k′ 6=k

F (εk + εk
′

− εk)f(εk)dεk.

Thus, we have shown that for any player i, there is an equilibrium characterization

(32) consisting of K ·ms equations of the form stated in the Lemma and in which

Xi =
[
Pi (ε) + βPi (ε)G [Is − βpi (ε)G]−1 pi

]
and

Yi = βPi (ε)G [Is − βpi (ε)G]−1 Di (ε) + εi
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and the unknown parameters are in Πi.

Now, take a vector p that satisfies (11). We can recover the indifferent types ε

based on equation (30). By optimality of p the indifferent types must satisfy the

indifference equations (28).

Conversely, take a vector ε that satisfies (28). We can calculate the implied ex

ante choice probabilities based on equation (30). The choice probabilities will satisfy

(11) as they are the ex ante expected values of equilibrium decision rules satisfying

the equilibrium conditions (28). This completes the proof.

Proof of Proposition 2. The equation system (28) characterized in Lemma 1

consists of K ·ms ·N equations. Hence, at most K ·ms ·N parameters in (Π1, . . . ,ΠN)

can be identified.

Proof of Proposition 3. Consider the equation system (28) in Lemma 1. By

construction, the coefficient matrix Xi is of dimension (K ·ms)× (ma ·ms) and the

vector Yi is of dimension (K ·ms)× 1. Augmenting the linear equation system (14)

with a set of ma · ms − K · ms payoff restrictions Ri · Πi = ri, yields the ma · ms

equations in ma ·ms unknown payoff parameters Πi Xi

Ri

Πi +

 Yi

ri

 = XiΠi + Yi (33)

= 0. (34)

The identification problem is now reduced to determining whether the linear equa-

tion system has a unique solution. Standard arguments for linear equation systems

establish that there exists exactly one solution if the rank of the (ma ·ms)× (ma ·ms)

matrix Xi is equal to (ma ·ms). Then Πi is exactly identified.

Proof of Proposition 4. Assumption A5 implies that the function h is twice

continuously differentiable. All the assumptions in Theorems 9.1 and 9.2 on pages

280 and 281 in Gourieroux and Monfort (1995) are satisfied. The result follows from

those theorems.
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Proof of Proposition 5. The result follows from property 9.1 on page 282 in

Gourieroux and Monfort (1995).

Proof that the pseudo maximum likelihood estimator is equivalent to

an asymptotic least squares estimator. To see the equivalence, observe that

the first order condition of the pseudo maximum likelihood estimator is given by:

∂`

∂θ
=

∑
s∈S

∑
i∈N

K∑
k=1

[
nkis

Ψkis

− n0is

Ψ0is

]
∂Ψkis

∂θ

=
∑
s∈S

∑
i∈N

K∑
k=1

[
K∑

l=0

nlis

] [
p̂kis −Ψkis

Ψkis

− p̂0is −Ψ0is

Ψ0is

]
∂Ψkis

∂θ

=
∑
s∈S

∑
i∈N

K∑
k=1

[
K∑

l=0

nlis

] [
1

Ψkis

(p̂kis −Ψkis) +
K∑

l=1

1

Ψ0is

(p̂lis −Ψlis)

]
∂Ψkis

∂θ

= (∇θΨ
′)Σ−1

p (Ψ) [p̂−Ψ (p̂T ,ĝT , θ)]

where the second equality uses the definition of the frequency estimator p̂kis =

nkis/
∑K

l=0 nlis from equation (19), and augments the first term in the second square

bracket by minus one and the second term by plus one; the third equality uses the

definitions p̂0is = 1−
∑K

k=1 p̂kis and Ψ0is = 1−
∑K

k=1 Ψkis. The term Σ−1
p (Ψ) in the

fourth equality denotes the inverse of the covariance matrix of the choice probabil-

ity vector Ψ evaluated at (p̂T ,ĝT , θ). To see the fourth equality, observe that the

inverse of the covariance matrix Σpis of a multinomial distributed random variable

with probabilities (Ψ0is, Ψ1is, . . . , ΨKis) equals

Σ−1
pis = diag(1/Ψ1is, . . . , 1/ΨKis) + 1/Ψ0is · ee′

where e is a K×1 dimensional vector given by e = (1, 1, . . . , 1)′. The expression for the

inverse is given for example in Tanabe and Sagae (1992). The inverse of the covariance

matrix Σp is then given by the block-diagonal matrix Σ−1
p = diag

(
Σ−1

p11, . . . ,Σ
−1
pNms

)
.

This follows from our assumption that the choices are independently distributed

across states and players.
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Table 1: Monte Carlo Results, Equilibrium (i).

T Estimator c π1 π2 MSE

100 LS-E -0.116 (0.768) 1.424 (1.472) -1.367 (1.108) 406.617

LS-I -0.292 (0.400) 1.086 (0.493) -1.052 (0.511) 70.732

PML -0.260 (0.310) 1.083 (0.344) -1.067 (0.372) 38.738

k-PML -0.231 (0.163) 1.225 (0.309) -1.186 (0.229) 17.655

1,000 LS-E -0.195 (0.030) 1.207 (0.077) -1.208 (0.067) 1.156

LS-I -0.213 (0.104) 1.185 (0.093) -1.189 (0.134) 3.791

PML -0.209 (0.111) 1.187 (0.107) -1.191 (0.129) 4.061

k-PML -0.204 (0.040) 1.197 (0.090) -1.202 (0.061) 1.334

10,000 LS-E -0.200 (0.008) 1.199 (0.022) -1.200 (0.018) 0.089

LS-I -0.203 (0.032) 1.197 (0.028) -1.196 (0.042) 0.363

PML -0.202 (0.034) 1.196 (0.034) -1.197 (0.040) 0.396

k-PML -0.201 (0.012) 1.199 (0.029) -1.200 (0.018) 0.132

100,000 LS-E -0.200 (0.003) 1.200 (0.007) -1.200 (0.005) 0.009

LS-I -0.201 (0.010) 1.200 (0.009) -1.200 (0.013) 0.036

PML -0.201 (0.011) 1.200 (0.011) -1.199 (0.013) 0.042

k-PML -0.200 (0.004) 1.200 (0.009) -1.200 (0.006) 0.013
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Table 2: Monte Carlo Results, Equilibrium (ii).

T Estimator c π1 π2 MSE

100 LS-E -0.391 (0.559) 1.047 (0.415) -0.967 (0.577) 93.139

LS-I -0.235 (0.509) 1.094 (0.480) -1.025 (0.678) 99.243

PML -0.322 (0.448) 0.954 (0.399) -0.907 (0.573) 84.802

k-PML -0.499 (0.193) 1.031 (0.245) -0.734 (0.186) 46.639

1,000 LS-E -0.219 (0.153) 1.181 (0.126) -1.169 (0.192) 7.759

LS-I -0.208 (0.173) 1.191 (0.140) -1.176 (0.207) 9.319

PML -0.222 (0.165) 1.165 (0.139) -1.151 (0.207) 9.377

k-PML -0.491 (0.060) 0.998 (0.065) -0.749 (0.052) 33.937

10,000 LS-E -0.198 (0.021) 1.199 (0.025) -1.202 (0.030) 0.192

LS-I -0.202 (0.056) 1.198 (0.046) -1.197 (0.066) 0.959

PML -0.205 (0.054) 1.193 (0.045) -1.192 (0.067) 0.953

k-PML -0.493 (0.029) 0.991 (0.027) -0.750 (0.036) 33.535

100,000 LS-E -0.200 (0.002) 1.200 (0.007) -1.200 (0.005) 0.008

LS-I -0.201 (0.017) 1.200 (0.014) -1.199 (0.020) 0.088

PML -0.201 (0.016) 1.199 (0.014) -1.199 (0.020) 0.087

k-PML -0.491 (0.032) 0.991 (0.025) -0.752 (0.047) 33.245
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Table 3: Monte Carlo Results, Equilibrium (iii).

T Estimator c π1 π2 MSE

100 LS-E -0.439 (0.794) 1.036 (0.596) -0.928 (0.963) 206.942

LS-I -0.240 (0.491) 1.101 (0.476) -1.008 (0.627) 90.878

PML -0.326 (0.433) 0.964 (0.393) -0.896 (0.541) 79.729

k-PML -0.504 (0.190) 1.037 (0.229) -0.722 (0.169) 46.474

1,000 LS-E -0.219 (0.179) 1.181 (0.145) -1.173 (0.212) 9.925

LS-I -0.209 (0.180) 1.189 (0.147) -1.179 (0.211) 9.934

PML -0.227 (0.170) 1.156 (0.141) -1.147 (0.207) 9.733

k-PML -0.511 (0.062) 0.992 (0.066) -0.734 (0.052) 36.835

10,000 LS-E -0.201 (0.053) 1.198 (0.042) -1.200 (0.063) 0.858

LS-I -0.200 (0.057) 1.199 (0.046) -1.201 (0.065) 0.952

PML -0.202 (0.053) 1.195 (0.043) -1.197 (0.064) 0.883

k-PML -0.510 (0.025) 0.989 (0.022) -0.733 (0.030) 36.082

100,000 LS-E -0.201 (0.017) 1.199 (0.013) -1.198 (0.020) 0.085

LS-I -0.200 (0.018) 1.200 (0.014) -1.199 (0.021) 0.096

PML -0.201 (0.017) 1.199 (0.014) -1.199 (0.021) 0.091

k-PML -0.508 (0.031) 0.990 (0.020) -0.736 (0.045) 35.700
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Table 4: CPU Times.

Model Parameters

N 2 2 5 5 10 10 15 15

Demand Levels 2 10 2 10 2 10 2 10

CPU times

Solve Model 0.98 2.70 0.66 34.46 5.24 582.70 42.31 4720.82

Estimate p̂ 1.12 1.12 1.12 1.19 1.13 1.62 1.21 3.52

(0.03) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.77)

LS-I 0.14 0.04 0.04 0.06 0.02 0.04 0.03 0.10

(0.19) (0.00) (0.01) (0.01) (0.00) (0.01) (0.00) (0.02)

LS-E 0.05 0.21 0.08 3.47 0.73 48.21 3.42 288.65

(0.02) (0.03) (0.01) (0.01) (0.02) (0.74) (0.02) (48.92)

PML 0.04 0.03 0.05 0.08 0.02 0.11 0.03 0.20

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.01) (0.03)

k-PML 0.86 0.67 0.62 1.76 0.88 9.97 1.91 42.75

(0.01) (0.04) (0.01) (0.01) (0.02) (0.11) (0.02) (9.77)

Note: For each set of model parameters, the model was solved once and simulated 5

times. Reported CPU times are averages in seconds. Standard errors are in parentheses.
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