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1 Introduction

This paper proposes several statistical tests for finite state Markov games to test
the null hypothesis that data from distinct markets can be pooled. Data pool-
ing is employed in a number of empirical applications of the two-step estimation
methods for dynamic games recently developed.1 These two-step estimators es-
timate players’ policies and state transition probabilities in a first stage directly
from the data as functions of observable state variables. The second stage
conducts a search for the structural model parameters which best rationalize
observed behaviors of players and state transitions using the first stage policy
estimates as estimates for the equilibrium beliefs. A typical application may
not have long time series data for a single market. Researchers are tempted to
pool data from different markets (or games) to perform the first stage policy
function estimation. To do so, researchers assume that the data are generated
from a single and identical equilibrium in every market. This assumption has
become popular in a number of recent papers.2 To be more precise, the assump-
tion commonly imposed requires that the game describing players’ behavior is
identical in all markets and that a single and identical equilibrium of that game
is played in all markets. It also requires that the econometric model controls
for all observable or unobservable market-level elements. A violation of the
assumption results in inconsistent policy estimates and inconsistent structural
parameter estimates. A violation of the assumption can arise because of equi-
librium multiplicity. The single and identical equilibrium assumption may be
very restrictive even if the markets are identical as multiplicity of equilibria is
a well known feature inherent to games. Incorrectly imposing this assumption
leads to erroneous inference.

We propose three tests of the null hypothesis that the data from distinct
markets can be pooled. The first test compares directly the set of conditional
choice or state transition probabilities estimated from the pooled (across mar-
kets) sample with the ones estimated from each market separately. The second
test is based on the result that there is a unique steady-state distribution associ-
ated with a transition matrix of states under the assumption of communicating
states. Based on this result, the second test compares the steady-state distri-
bution estimated from the pooled sample with the one from each market. Our

1Several papers, including Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer
and Schmidt-Dengler (2008), Arcidiacono and Miller (2011), Kasahara and Shimotsu (2012),
and Srisuma and Linton (2012), proposed two-step estimation methods for dynamic Markov
games under varying assumptions. They led to a number of empirical papers that apply these
methods to empirically analyze dynamic interactions between multiple players.

2Examples include Beresteanu, Ellickson and Misra (2010), Collard-Wexler (2013), Dunne,
Klimek, Roberts and Xu (2013), Fan and Xiao (2014), Jeziorski, (2014), Lin (2014), Maican
and Orth (2014), Minamihashi (2012), Nishiwaki (2015), Ryan (2012), Sanches and Silva Ju-
nior (2013), Snider (2009), Suzuki (2013), and Sweeting (2013). They impose the assumption
of a single and identical equilibrium in all markets either explicitly or implicitly. The empiri-
cal sections of Aguirregabiria and Mira (2007) and Arcidiacono, Bayer, Blevins and Ellickson
(2015) and the Monte Carlo exercise in Arcidiacono and Miller (2011) also impose the same
assumption.
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third test statistic is based on the conditional state distribution given the initial
(observed) state. We contrast the observed relative frequencies of states to the
theoretical predictions given the initial state. It turns out that the third test
does not require several assumptions on Markov chains that are imposed for
other tests. Each test has its own advantage. One advantage across all three
tests is that we do not need to impose any mixing structure.

A rejection of the null suggests that the data cannot be pooled. A violation
can arise because: (i) multiple equilibria are played across markets; (ii) the
game form describing players’ behavior and interactions differs across markets;
and (iii) the specified model is not sufficiently rich as it does not control for all
observable or unobservable market-level heterogeneity adequately. It is difficult
to distinguish these alternative explanations although we shall illustrate tests
accounting for unobservable market-level heterogeneity as in Arcidiacono and
Miller (2011) in more detail below. Our test is aimed at checking the validity of
the data pooling assumption commonly imposed in the literature. A rejection
of the null points to an inconsistency of the first stage estimates that arises from
pooling different markets. Naturally, since the framework of this paper nests
single agent settings as a special case with only one player, our tests can also
be thought of as testing whether data can be pooled in the single agent case.

To illustrate the finite sample performance of our tests, we first apply the
tests to simulated data using an example of multiple equilibria in Pesendor-
fer and Schmidt-Dengler (2008). Our tests, particularly the one based on the
steady-state distribution, perform well and have high power even with small
numbers of markets and time periods. We then apply our tests to the empirical
study of Ryan (2012) that analyzes dynamics of the U.S. Portland Cement in-
dustry. Our tests reject the null hypothesis that the data from distinct markets
can be pooled.

To the best of our knowledge, this is the first paper that proposes tests of the
pooling hypothesis in a general class of dynamic Markov games. Our tests may
give a researcher guidance on whether she can pool different markets to estimate
policy functions in the first stage. A rejection of the null hypothesis suggests
that one or more modeling assumption differs across markets. In the context of
static games with incomplete information, de Paula and Tang (2011) propose a
test of multiplicity of equilibria that requires conditional independence between
players’ actions. Since our tests exploit the panel structure of the data and
rely on the way that the game and states evolve, our tests are fundamentally
different from theirs. One notable difference is that while de Paula and Tang
(2011) maintain the assumption of independent-across-players private shocks,
we can allow for within-period correlation in players’ actions and for unobserved
state variables.

This paper is organized as follows. Section 2 lays out a class of general
dynamic Markov games we work with and provides some background on Markov
chains. Section 3 proposes several test statistics. In Sections 4 we conduct
a Monte Carlo study to examine finite sample properties. Section 5 applies
our tests to data of Ryan (2012). Section 6 concludes. Appendix A contains
technical details.
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2 Model

This section describes elements of a general dynamic Markov game with discrete
time t = 1, 2, . . .. We focus on the description of players’ state variables and
actions. These states and actions are the observable outcome variables for some
underlying dynamic game which we do not observe. We leave the details of
the game unspecified. Instead we shall focus on testable implications of the
observed outcomes. Our setting includes the single agent case as a special case
when there is one agent per market. We first describe the framework which
applies for all markets j = 1, . . . ,M .

Players. A typical player is denoted by i = 1, . . . , N . The single agent case
arises when N = 1. The number of players is fixed and does not change over
time. Every period the econometrician observes a profile of states and actions
described as follows.

States. Each player is endowed with state variables sti ∈ {1, . . . , L} in finite
support. The state variable sti is publicly observed by all players. We maintain
the assumption that the econometrician also observes sti. The vector of all
players’ public state variables is denoted by st = (st1, . . . , s

t
N ) ∈ S = {1, . . . , L}N

whose cardinality is ms = LN . In Section 3.5, we discuss the case where some
of the public state variables are unobservable by the econometrician.

Actions. Each player chooses an action ati ∈ {0, 1, . . . ,K} in finite support.
The decisions are made after the state is observed. The decisions can be made
simultaneously or sequentially. The decision may also be taken after an id-
iosyncratic random utility (or a random profit shock) is observed. We leave the
details of the decision process unspecified. Our specification encompasses the
random-utility modeling assumptions, and allows for within-period correlation
in the random utility component across actions and across players. The vector
of joint actions in period t is denoted by at = (at1, . . . , a

t
N ) ∈ A = {0, 1, . . . ,K}N

whose cardinality is ma = (K + 1)N . We assume actions are publicly observed
by all players and the econometrician.

Choice probability matrix. Let σ(a|s) = Pr{at = a|st = s} denote the
conditional probability that an action profile a will be chosen conditionally on
a state s. Throughout the paper, we assume that σ is time invariant and is
conditionally independent from other past actions and states. The matrix of
conditional choice probabilities is denoted by σ, which has dimension ms ×
(mams). It consists of conditional probabilities σ(a|s) in row s, column (a, s),
and zeros in row s, column (a, s′) with s

′ 6= s.
State-action transition matrix. Let g(s′|a, s) = Pr{st+1 = s′|at = a, st = s}

denote the state-action transition probability that a state s′ is reached when
the current action profile and state are given by (a, s). We also assume that
g is time invariant and is conditionally independent from other past actions
and states. We use the symbol G to denote the (mams) × ms dimensional
state-action transition matrix in which column s′ ∈ S consists of the vector of
probabilities {g(s′|a, s)}a∈A,s∈S.

State transition matrix. Under the above assumptions on σ and G, the
state variables st obey a (first-order) Markov chain with the (stationary) state
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transition matrix P = σG whose dimension is ms × ms. A typical element
p(s′|s) =

∑
a∈A σ(a|s)g(s′|a, s) of P equals the probability that state s′ is

reached when the current state is given by s. Hereafter we focus on the first-
order Markov chain. However, our testing procedures can be extended to higher-
order Markov chains since higher-order Markov chains can be reformulated as
first-order ones by modifying the state space (see, e.g., Billingsley, 1961).

Limiting steady-state distribution. When the limit exists, let Q(s′, s) =

limT→∞ T−1
∑T
t=1 1{st = s′, s0 = s} denote the long run proportion of time

that the Markov chain P spends in state s′ when starting at the initial state
s0 = s, where 1{·} is the indicator function. Suppose the unconditional long

run proportion of time Q(s′) = limT→∞ T−1
∑T
t=1 1{st = s′} that the Markov

chain P spends in state s′ satisfies Q(·) = Q(·, s) for all initial states s. Then
the ms dimensional row vector of probabilities Q = {Q(s)}s∈S is called the
steady-state distribution of the Markov chain. Observe that the state space is
finite and Q describes a multinomial distribution.

The properties of Markov chains are well known. We next describe some
property useful for our purpose. To do so, we introduce the concept of commu-
nicating states.

Communicating states. We say that a state s′ is reachable from s if there
exists an integer T so that the chain P will be at state s′ after T periods with
positive probability. If s′ is reachable from s, and s is reachable from s′, then
the states s and s′ are said to communicate.

Lemma 1. Suppose all states of the Markov chain P communicate.3 Then the
steady-state distribution Q exists and is unique. It satisfies Q(s) > 0 for all
s ∈ S and Q = QP.

This lemma guarantees existence and uniqueness of the steady-state distri-
bution and states that the long run proportion of time that the Markov chain
P spends in state s is strictly positive for any state s ∈ S and the equation
Q = QP must hold. A proof of the above properties is given in Levin, Peres
and Wilmer (2009, Proposition 1.14 and Corollary 1.17) for example.

Communicating states are typically invoked in applied work, see Ericson
and Pakes (1995). Communicating states naturally emerge in dynamic discrete
choice models using a random utility specification, see McFadden (1973). The
random component having full support in the real numbers implies that all
actions arise with strictly positive probability for any state s ∈ S. Thus, states
will communicate if the state-action transition matrix allows that state s′, or s,
can in principle be reached when starting from state s, respectively s′, for any
pair of states s, s′ ∈ S.

The feature that all states communicate may also emerge when actions are
chosen with probability one for some (or all) states. Our set-up includes these
settings as well. What is required for states to communicate in this case is that
there exists a sequence of state-action profiles {(a1, s1), . . . , (at, st)} so that the
chain starting at state s will be at state s′ after t periods for any s, s′ ∈ S.

3This is also called that the Markov chain P is ergodic or irreducible.
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3 Tests of poolability

This section describes hypotheses that we aim at testing and proposes statistical
tests for those hypotheses. For each market j, a sequence of action-state profiles
(atj , s

t
j)t=1,...,T is observed, where T is the length of time periods in the data set.

Our null hypothesis is that the observed profiles are generated from an identical
data generating process in all markets, and the alternative is that the data
generating process is distinct for some markets. Based on the set-up described
in the previous section, the data generating process of the profiles (atj , s

t
j)t=1,...,T

is characterized by the conditional choice probability matrix σj and state-action
transition matrix Gj that imply the transition matrix of states Pj = σjGj . In
particular, we focus on homogeneity of σj and Pj across markets, and test the
following null hypotheses:

Hσ
0 : σ1 = · · · = σM ,

HP
0 : P1 = · · · = PM , (1)

and the alternatives are their negations. The null hypothesis Hσ
0 is based on

the idea that the equilibrium choice probabilities are identical across markets.
The null HP

0 has a similar motivation given that the state-action transition is
identical across markets. Economic models may have the feature that the state-
action transition matrix G is exogenously given and by construction identical
across markets. In such cases, testing the conditional choice probabilities has
the same interpretation to testing the state transition probabilities. However, in
general, the tests may not be equivalent. A rejection of the null HP

0 could arise
either because of non-identical choice probabilities σj or because of heteroge-
neous state-action transition matrices Gj . Which test is most suitable depends
on the economic application at hand and each test has its own rationale.

If all states of the Markov chain P communicate, then by Lemma 1, there
exists a unique steady-state distribution Q and the identical equilibrium hy-
pothesis may be tested by homogeneity of the steady-state distribution,

HQ
0 : Q1 = · · · = QM . (2)

As discussed in the next subsection, if the cardinality of the action or state space
is large, then the power of the test for Hσ

0 or HP
0 tends to be low relative to that

for HQ
0 because a decrease in the degrees of freedom can be expected. Thus,

the power of the homogeneity test can be increased by testing the steady-state
distribution.

Lemma 1 says that the null HP
0 of equal transition matrices implies the

null HQ
0 of equal steady-state distributions. Thus, a rejection of HQ

0 provides

a strong evidence for a rejection of HP
0 . By testing HQ

0 first, we may exploit

the property that the power of testing the null HQ
0 is typically higher than the

power of testing the null HP
0 . However, it should be noted that the converse is

not true: the equivalence of the steady-state distribution across markets does
not necessarily imply that of the transition matrix.
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To test the above hypotheses, we consider the situation where for each mar-
ket j, we observe the action-state profiles (atj , s

t
j)t=1,...,T with sufficiently large

T . The test procedures discussed in the next subsection are theoretically justi-
fied when the time length T increases to infinity. However, the researcher may
face the situation where the length of time periods T is relatively short com-
pared to the number of markets M . In such a scenario, it would be natural to
treat the action-state profiles with fixed T across markets as an i.i.d. sample
(over j = 1, . . . ,M) from the distribution parametrized by a common choice
probability σ or a common transition matrix P. For example, testing may be
based on the conditional state distribution st|s1 = s given the initial state s
for t = 2, . . . , T . By conditioning on the initial state we do not require that
states communicate so that the industry at hand can reach the steady-state
distribution. This situation arises naturally in new or growing industries. Us-
ing the transition matrix P, the conditional distribution st|s1 = s is described
by ι′sP

t, where ιs takes one at the element corresponding to s and zero other-
wise. There are many ways to compare the vector of conditional probabilities
{Pr{st = s′|s1 = s}}s′∈S with the theoretical prediction ι′sP

t. For example, at
a given initial state s, we can consider the null hypothesis in the form of

Hs
0 :

{
1

T − 1

T∑
t=2

Pr{st = s′|s1 = s}

}
s′∈S

=
1

T − 1

T∑
t=2

ι′sP
t. (3)

The left hand side is a vector of model-free conditional probabilities. The right
hand side is the model-based prediction for those probabilities. Note that the
hypothesis Hs

0 is implied from two assumptions: (i) the data (stj)t=1,...,T for
j = 1, . . . ,M are i.i.d. over j which allows us to express the hypothesis Hs

0

without using a market index j, and (ii) the Markov chain is first-order and
time-homogeneous. Thus, a rejection of Hs

0 may be interpreted as violation of
the i.i.d. assumption (perhaps associated with multiplicity of equilibrium) or
misspecification of the Markov chain (such as time-inhomogeneity or higher-
order).

The left hand side denotes the empirical frequency (across markets) of vis-
iting state s′ in periods t = 2, . . . , T conditional on the initial state s1 = s. The
right hand side is the theoretical predicted counterpart under the null of ho-
mogeneity across markets. A violation of (3) would indicate that the empirical
frequency distribution (across markets) differs from the one predicted by the
theoretical model. Hypothesis (3) focuses on the average probabilities of visit-
ing each state given the initial state s. We may do so for selected initial states.
Alternatively, one may consider all possible initial states jointly by testing the
null H0 : Pr{st = s′|s1 = s} = ι′sP

t for all s ∈ S and t or its linear combinations.
We note that the null Hs

0 tests the validity of the i.i.d. parametric model for
(sj)j=1,...,M with sj = (s1

j , . . . , s
T
j ) for fixed T .

As mentioned above, a rejection of the null can arise from multiple equilib-
ria, the game form differing across markets, and/or unobservable market-level
heterogeneity. Our framework nests single agent settings as a special case. In
case of rejection, the first possibility (multiple equilibria) is naturally excluded
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so the interpretation of the rejection would be simpler. Therefore, our tests can
be thought of as testing whether richer heterogeneity among agents should be
considered in the single agent case.

3.1 Testing choice and transition probabilities

Let us first consider testing for Hσ
0 and HP

0 in (1) based on the conditional choice
and transition probabilities, respectively. We form a generally applicable chi-
squared test statistic based on the conditional choice or transition probability,
that is

TP =

M∑
j=1

∑
d∈D

Wj(d){P̂j(d)− P̂ (d)}2, (4)

where P̂j(d) is a nonparametric estimator of the probability of interest for a

market j without imposing the null hypothesis of interest, P̂ (d) is another non-

parametric estimator under the null of homogeneity of P̂j(d) across markets, and
Wj(d) is a weight or standardization to obtain a standard limiting distribution.

For example, to test homogeneity of the conditional choice probabilities Hσ
0 ,

we set d = (a, s) and D = A×S. Let fj(a, s) =
∑T
t=1 1{atj = a, stj = s} be the

frequency of action state profile (a, s) in market j and fj(s) =
∑T
t=1 1{stj = s}

be the frequency of state s in market j. Then we estimate the conditional
choice probabilities for the action profile a given the current state s in market
j, σj(a|s), by the relative frequencies

P̂ (d) =

∑M
j=1 fj(a, s)∑M
j=1 fj(s)

, P̂j(d) =
fj(a, s)

fj(s)
, (5)

with and without imposing Hσ
0 , respectively. To obtain the chi-squared limiting

distribution, we set the weight as Wj(d) = fj(s)/P̂ (d).
Also, to test the equivalence of the transition matrices HP

0 , we set d = (s′, s)

and D = S × S. Let f1
j (s′, s) =

∑T−1
t=1 1{st+1

j = s′, stj = s} and f1
j (s) =∑T−1

t=1 1{stj = s}. Then we estimate the transition probability pj(s
′|s) by

P̂ (d) =

∑M
j=1 f

1
j (s′, s)∑M

j=1 f
1
j (s)

, P̂j(d) =
f1
j (s′, s)

f1
j (s)

, (6)

with and without imposing HP
0 , respectively. The weight is set as Wj(d) =

f1
j (s)/P̂ (d).

The limiting null distribution of the statistic TP is obtained in the following
proposition (see Appendix A.1 for the proof).

Proposition 1. Consider the set-up of Section 2. Suppose that all states of the
Markov chain Pj communicate for each j = 1, . . . ,M and that the observations
(atj , s

t
j)t=1,...,T are mutually independent over j = 1, . . . ,M . Then under Hσ

0
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(or respectively HP
0 ), the statistic TP converges in distribution to the chi-squared

distribution with degrees of freedom (M − 1)ms(ma − 1) (or respectively (M −
1)ms(ms − 1)) as the length of time periods T increases to infinity.

Bootstrap critical value. The chi-squared limiting distributions of the statis-
tic TP gives us critical values to control the asymptotic null rejection probabili-
ties. Alternatively one may compute critical values by some bootstrap method.

For example, to test the null HP
0 , we can randomly pick an initial state

s0 ∈ S and then draw the bootstrap counterpart f1,b
j (s′, s) of f1

j (s′, s) from

the estimated conditional probability P̂ (d) in (6) for s, s′ ∈ S, j = 1, . . . ,M ,
and b = 1, . . . , B. Note that we start the sampling process only after a certain
number of time periods in order to neutralize the effect of the arbitrary choice of
the initial state. Then the bootstrap counterpart T bP of the statistic TP is given

by replacing f1
j (s′, s) and f1

j (s) in (6) with f1,b
j (s′, s) and f1,b

j (s), respectively.
Also, to test the null Hσ

0 , we can use the fact that action profiles a ∈A
conditional on a state s ∈ S are multinomially distributed with probabilities
σj(a|s) in market j. State s ∈ S occurs with frequency fj(s) and the proba-
bility of observing action state profiles (a, s) from fj(s) trials is given by the
multinomial

{fj(a, s)}a∈A|fj(s) ∼ Multinomial(fj(s), {σj(a|s)}a∈A),

for each j = 1, . . . ,M . We can use this distribution to implement a parametric
bootstrap. More precisely, we fix s ∈ S and draw the bootstrap counterpart
{f bj (a, s)}a∈A of {fj(a, s)}a∈A for b = 1, . . . , B from the multinomial distri-

bution with the number of trials fj(s) and the weight vector {P̂ (a, s)}a∈A in
(5). Then the bootstrap counterpart T bP is given by replacing fj(a, s) in (5)
with f bj (a, s). Here we only resample f bj (a, s) and the number of trials fj(s)
is held fixed by the original sample. Based on a similar argument to Andrews
(1997, Corollary 1), we can see that the (1−α)-th quantile of T 1

P , . . . , T BP is an
asymptotically valid critical value.

Similarly, to test the null HP
0 on the transition matrices, we draw a bootstrap

counterpart {f1,b
j (s′, s)}s′∈S of {f1

j (s′, s)}s′∈S from the multinomial distribution

with the number of trials f1
j (s) and weight vector {P̂ (s′, s)}s′∈S in (6). Then the

bootstrap counterpart T bP is given by replacing f1
j (s′, s) in (6) with f1,b

j (s′, s).
Optimal test statistic. The test statistic TP is constructed by measuring

the chi-squared distance between the nonparametric estimators P̂ (d) and P̂j(d)
for the discrete distribution over D with and without imposing the null hy-
pothesis, respectively. There are many other ways to measure the discrepancy
between the single market and full-sample estimates. For example, we can mea-
sure discrepancy of conditional probabilities by the (weighted) Kullback-Leibler
divergence

T ∗P = 2

M∑
j=1

∑
d∈D

Wj(d)P̂j(d) log
P̂j(d)

P̂ (d)
. (7)
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In order to test the null hypothesis Hσ
0 on the conditional choice probabilities,

we can set as d = (a, s) and D = A × S and estimate P̂j(d) and P̂ (d) as in
(5). Also, to test the null hypothesis HP

0 on the transition probabilities, we set

as d = (s′, s) and D = S × S and then estimate P̂j(d) and P̂ (d) as in (6).
For both cases, we set the weight as Wj(d) = fj(s) to obtain the chi-squared
limiting distribution. The test statistic T ∗P is a likelihood-ratio version of the
chi-squared statistic TP . These statistics are asymptotically equivalent under
the null and local alternative hypotheses (e.g. van der Vaart, 1998, Lemma
17.3).

On the other hand, in the literature of hypothesis testing for multinomial dis-
tributions, Hoeffding (1965) discovered that the likelihood ratio statistic for the
simple hypothesis on multinomials enjoys some global power optimality which is
not shared by the chi-squared statistic. In particular, under some restriction on
the convergence rate of the type I error probability, the likelihood ratio statistic
achieves the highest power under fixed alternatives. This optimality is called
the generalized Neyman-Pearson optimality and has been extended to several
contexts (see, Gutman, 1989). By extending the argument in Gutman (1989)
to our set-up, we derive the following optimality for T ∗P (see Appendix A.2 for
the proof).

Proposition 2. Under the same set-up of Proposition 1 with fixed initial states
(s0

1, . . . , s
0
M ), consider the statistic T ∗P with Wj(d) = fj(s) and (5) to test Hσ

0 .
There exists a positive sequence δT = O(T−1 log T ) such that

lim
T→∞

1

T
log Pr{T ∗P ≥ 2T (α− δT ) : Hσ

0} ≤ −α, (8)

for α > 0, and that for any test statistic TA for Hσ
0 satisfying

lim
T→∞

1

T
log Pr{TA rejects Hσ

0 : Hσ
0} ≤ −α, (9)

it holds
Pr{T ∗P ≥ 2T (α− δT ) : Hσ

1} ≥ Pr{TA rejects Hσ
0 : Hσ

1}, (10)

for all T large enough.
Also the same result holds for the statistic T ∗P with Wj(d) = fj(s) and (6)

to test HP
0 by replacing Hσ

0 , Hσ
1 , and T with HP

0 , HP
1 , and T − 1, respectively.

This proposition says that in the class of test statistics satisfying the restric-
tion on the exponential decay rate of the type I error probability in (9), the
Kullback-Leibler statistic T ∗P attains the highest power. This optimality result
is a natural extension of the generalized Neyman-Pearson optimality analysis to
homogeneity testing of conditional choice or transition probabilities.

Parametric model for σ and P. Suppose we parametrize the choice proba-
bility σj or transition matrix Pj by a parametric model σ(a|s; θj) or p(s, s′; θj),
such as logit. We assume that the functional forms are identical across markets

10



and the different equilibria are characterized by different parameter values of
θj . In this case, the null hypothesis of interest can be written as

Hθ
0 : θ1 = · · · = θM .

Since this is a parameter hypothesis for a discrete parametric model, standard
maximum likelihood theory applies. In particular, the score test would be con-
venient since the test statistic requires only the full sample estimator.

Comment on the large-T asymptotics. The asymptotic analysis for the test
based on TP (and TQ in the next subsection) is conducted under the framework
of T → ∞ while M fixed. As far as the researcher is interested in consistency
of the parameter estimates as T → ∞, we do not need to pool the data across
markets. However, if the researcher is concerned with efficiency of the estimates,
the test based on TP would be a useful diagnostic to decide whether she can
increase the sample size by pooling. Indeed there are some empirical examples
where T is not small but the researchers are tempted to pool the data across
markets, such as Ryan (2012) and Collard-Wexler (2013).

Also, we note that the large-T asymptotic analysis above is basically for
convenience to obtain the critical value. Although it is computationally too
expensive to implement in our typical examples, in principle it is possible to
conduct exact (i.e., fixed T ) test based on TP by adapting the simulation-based
approach of Besag and Mondal (2013).

Large number of markets M . The asymptotic distribution of the test statistic
TP is derived under the assumption that the number of markets M is fixed.
However, there are some cases where M is large relative to the length of time
T ; e.g., Collard-Wexler (2013) and Dunne, Klimek, Roberts and Xu (2013).
When M is large, it may be useful to investigate the limiting behavior of the
statistic TP as both M and T diverge to infinity. Let {MT } be a sequence
satisfying MT → ∞ and MT /T → 0 as T → ∞. In this case, intuitively, the
degree of freedom for the limiting distribution of TP grows to infinity. Thus after
standardization, the limiting distribution of TP is characterized by the standard
normal. For example, the test statistic for Hσ

0 based on (5) satisfies

TP − (MT − 1)ms(ma − 1)√
2(MT − 1)ms(ma − 1)

d→ N(0, 1),

as T →∞ under Hσ
0 . A similar result applies for the test of HP

0 .
Comparison with de Paula and Tang (2011). Note that our test can allow

for within-period correlation. In the context of static games with incomplete
information, de Paula and Tang (2011) test conditional independence between
players’ actions to check if there are more than one equilibria in the data gener-
ating process. This test relies on the assumption of independent-across-players
actions conditional on state variables. For example, this may arise if there is
a utility component in payoffs unobserved by the econometrician but known
to players.4 Our test is more flexible and permits within-period correlation

4For example, suppose the random profit shocks are correlated across players within a
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in players’ actions conditional on state variables. The permissible information
structure and set of games our framework can deal with is more general. Our
tests explore the way that the game and states evolve and require repeated
observations for each market.5

3.2 Testing steady-state distribution

We now consider testing of HQ
0 in (2), which examines the steady-state distri-

bution in individual markets and compares it to the average (across markets)
steady-state distribution. Under the null hypothesis of identical steady-state
distributions, the market specific and average market distributions are close to
each other. The test statistic is more intuitive in the sense that it compares two
steady-state distributions directly. However, the test requires that the steady-
state distributions exist and that the Markov chain is in the steady-state, see
Lemma 1. That is, regardless of which hypothesis is true, we assume that all
states in the chain Pj communicate for all markets j. The relative frequencies

Q̂j = {T−1fj(s)}s∈S are nonparametric estimates of the steady-state distribu-

tion Qj . By Billingsley (1961, Theorem 3.3), the limiting distribution of Q̂j is
obtained as

T 1/2(Q̂j −Qj)
d→ N(0,Vj), (11)

where the asymptotic variance Vj is defined in Appendix A.3. Since rank(Vj) =

ms − 1, we can obtain a test statistic for HQ
0 as

TQ = T

M∑
j=1

(Q̂j − Q̂)′V̂−(Q̂j − Q̂)
d→ χ2((M − 1)(ms − 1)), (12)

under HQ
0 , where Q̂ = M−1

∑M
j=1 Q̂j and V̂− means a generalized inverse of V̂,

which is defined in Appendix A.3. Although this statistic validates the use of
the chi-squared critical value for the asymptotic test, the estimator V̂ may not
be easy to compute and requires a bandwidth choice. Thus in our simulation
and empirical studies below, we replace V̂ in (12) with the identity matrix and
employ some bootstrap critical value.

time period. Then, σ(a1|s) · · ·σ(aN |s) 6= σ(a|s) even under Hσ0 . Two-step methods work in a
similar manner as in the case of i.i.d. profit shocks; a researcher would have to estimate the
choice probability of action profile a instead of each player’s CCPs separately. The inference
of the underlying structural parameters can then be based on the joint choice probability
estimates and the appropriate equilibrium conditions.

5Tests of independence are used in various contexts to find evidence for unobserved vari-
ations in data that non-trivially affect agents’ actions. For example, Chiappori and Salanié
(2000) test the conditional independence of the choice of better coverage and the occurrence of
an accident using data of automobile insurance, and attributes a violation of the conditional
independence to the existence of asymmetric information between customers and insurance
companies. de Paula and Tang (2011) assume independent private shocks in games with
incomplete information and regard additional variations (after controlling for observable co-
variates) as coming from multiple equilibria being played in data. On the other hand, Navarro
and Takahashi (2012) interpret a violation of the conditional independence as a rejection of
models of pure private shocks.
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3.3 Testing conditional state distribution given the initial
state

Our final test does not require that the Markov chain has a unique steady-state
distribution or that all states communicate. Such situations may arise in new
or growing industries when the steady-state has not been reached yet. It may
also arise in situations when there is no unique steady-state distribution. For
example, it may arise when some states are absorbing. These situations share
the feature that the limiting state distributions may depend on the initial state.
To develop a test for this case we consider the conditional state distribution
given the initial state. We assume that the number of markets M is large (and
the length of time periods T can be short).

To describe a suitable test statistic, we treat the state profiles across markets
as an i.i.d. sample from the distribution parametrized by the transition matrix
P, and propose a test for the null hypothesis Hs

0 in (3). Let P̂ be the frequency
estimator of the state transition matrix based on the whole state profiles. Also

let Q̂t
s =

{∑M
j=1 1{stj=s′,s1j=s}∑M

j=1 1{s1j=s}

}
s′∈S

be the relative frequency estimator for the

vector of conditional probabilities
{

Pr{st = s′|s1 = s}
}

s′∈S for t = 2, . . . , T for
a given initial state s. If our model parametrized by P is correct, the contrast
between Q̂t

s and ι′sP̂
t should be close to zero for all t = 2, . . . , T . We evaluate

the contrast C′s = (T − 1)−1(
∑T
t=2 Q̂

t
s− ι′s

∑T
t=2 P̂

t). The test statistic satisfies

Ts = MC′sV̂
−
s Cs

d→ χ2(ms − 1), (13)

as M → ∞ with fixed T under Hs
0, where V̂−s is a generalized inverse of an

estimator of the asymptotic variance of
√
MCs under Hs

0.6 As in (12), the

estimator V̂s may not be easy to compute. Thus in our simulation and empirical
studies below, we replace V̂s in (13) with the identity matrix and employ some
bootstrap critical value.

The test based on Ts requires T ≥ 3. The standard argument implies that
it has non-trivial power against local alternatives approaching to the null at
the
√
M -rate. The local power function is characterized by a non-central χ2

distribution. As T increases, both the non-centrality parameter and degree-of-
freedom increase. Thus, overall the effect of T on local power is indeterminate.

We note that a rejection by the statistic Ts occurs typically in two scenarios.
First, even though the state profile (stj)t=1,...,T is i.i.d. over j = 1, . . . ,M , a
violation of the first-order time-homogeneous Markov chain assumption yields
a large value of Ts. Second, if the state profile (stj)t=1,...,T is not i.i.d. over

j = 1, . . . ,M , then there is no guarantee that Q̂t
s and ι′sP̂

t converge to the same

6We can also consider the hypothesis

Hs,T
0 : Pr

{
st = s′|s1 = s

}
= ι′sP

t for all t = 2, . . . , T.

Under Hs,T
0 , the Wald statistic for this hypothesis will converge to χ2(T (ms− 1)) as M →∞

with fixed T . Also its normalized version converges to the standard normal distribution as
M,T →∞ but T/M → 0.
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limit7 and the statistic Ts tends to be large.8 Although we cannot distinguish
these sources of rejection, we argue that the second type of rejection can be
associated with multiplicity of equilibria.

3.4 Relationships among test statistics

The three test statistics provided in the previous subsections have different
advantages depending on the application and the type of data. Given that in
standard dynamic discrete models, player’s behavior is described in the form
of conditional choice probabilities, the test based on Hσ

0 (TP and T ∗P using (5))
would be a natural starting point. It is also reasonable to use the test based
on HP

0 . Under the assumption that Gj is identical for all markets j, testing HP
0

plays a similar role to testing Hσ
0 . In general, however, rejecting the null HP

0

may also arise because of differences in Gj even if Hσ
0 holds.

Poolability can also be tested by the null hypothesis HQ
0 using the steady-

state distribution test statistic TQ. Since the dimension of the hypothesis de-
creases, we expect it to have higher power compared to TP . It should also be
emphasized, however, that there is a region where poolability is violated but
the test based on TQ is not able to detect. Put differently, if the test based on

TQ rejects the null hypothesis HQ
0 , we would reject the null of poolability; on

the other hand, if it does not rejects the null, there may still be multiple equi-
libria or some misspecification that would invalidate pooling (as two distinct
transition matrices may yield the same steady-state distribution). Therefore,

we recommend the following procedure in practice. First, the test of HQ
0 based

on TQ is applied to take advantage of its desirable power property. If the null

HQ
0 is rejected, then we stop and conclude that poolability is violated. If the

test does not reject the null HQ
0 , then we proceed to apply TP for Hσ

0 or HP
0 .

By proceeding in this way, it can be made sure that the tests are consistent and
the power property of TQ can be exploited.

There are also situations where states do not communicate or initial con-
ditions matter. In such cases, the conditional state distribution test Ts can be
used. It is also worth emphasizing that Ts is suitable when M becomes large,
while T is fixed (i.e., short panel). Some empirical applications in IO have this
data structure; e.g., Collard-Wexler (2013) and Dunne, Klimek, Roberts and
Xu (2013).

7Similarly to existing specification test statistics with the parametric rate, it is possible
that the probability limits of Q̂t

s and ι′sP̂
t coincide under the alternative. This issue is known

as the implicit null hypothesis (see, e.g., Mizon and Richard, 1986). The statistic Ts has
no power in such a situation. To alleviate this issue, the statistic Ts may be calculated for
different initial states.

8For example, consider the case where {(stj)t=1,...,T }
M/2
j=1 and {(stj)t=1,...,T }Mj=M/2+1

are

i.i.d. samples following distinct Markov chains. In this case, we can see that Q̂t
s and ι′sP̂

t

converge to distinct limits.
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3.5 Unobservable state variables

This subsection considers the situation in which the public state variables have
two components, st = (st1, s

t
2). The component st1 is observed by the econome-

trician but the component st2 is not. Arcidiacono and Miller (2011) consider this
framework with a parametric model of unobserved state variables with known
finite support. They propose an estimation strategy based on the EM-type
algorithm. Our testing procedures presented above can be extended to this
framework as follows.

First, we note that the null of homogeneity of the joint transition Pr{st+1 =
s′|st = s} implies the homogeneity of the marginal transition Pr{st+1

1 = s′1|st1 =
s1}. Thus, if the researcher is willing to assume that all states of the Markov

chain Pj communicate, then our tests for HP
0 , Hσ

0 , and HQ
0 presented in Sections

3.1-3.3 can be applied to the observable component st1. These tests using only
st1 can be interpreted as the ones for homogeneity of the marginal transition
Pr{st+1

1 = s′1|st1 = s1}, which is implied from homogeneity of the joint transition
Pr{st+1 = s′|st = s}. Therefore, a rejection by TP using only st1 implies a
rejection of homogeneity of Pr{st+1 = s′|st = s} even though the econometrician
does not observe st2. On the other hand, an acceptance by TP using only st1 does
not necessarily imply an acceptance of homogeneity of Pr{st+1 = s′|st = s}.
Similar comments apply to the tests of Hσ

0 and HQ
0 .

Second, a researcher may be interested in situations in which the unobserved
component has a permanent time-invariant market level variable (sometimes
called market level unobserved heterogeneity). We shall illustrate how our test
statistics can be modified to allow for an unobservable time-invariant state vari-
able s2 with a known finite support. Suppose s2 is binary for simplicity. We
can modify the null hypothesis Hs

0 in (3) by setting the transition matrix as a
mixture P = πP(a) + (1− π)P(b). Under Hs

0 with certain regularity conditions,
we can estimate (π,P(a),P(b)) based on the pooled sample across markets by
applying the methods in Arcidiacono and Miller (2011) and Kasahara and Shi-
motsu (2009). Based on these estimates, we obtain an estimator of P, say P̃.

Then we can apply the test statistic Ts in (13) by replacing P̂ with P̃, i.e.,

T̃s = MC̃′sṼ
−
s C̃s, (14)

where C̃′s = (T − 1)−1(
∑T
t=2 Q̂

t
s − ι′s

∑T
t=2 P̃

t) and Ṽ−s is a generalized inverse

of an estimator of the asymptotic variance of
√
MC̃s under Hs

0. Similar to Ts,
this statistic converges to a χ2 distribution under Hs

0 as M → ∞ while T is
fixed.

Third, we illustrate how to extend the test for HP
0 in (1) to accommodate

unobservable time-invariant state variables. Again, for simplicity of exposition
suppose s2 is binary. We can modify the null hypothesis as

H̃P
0 : sj is a Markov chain from P(a) or P(b) for all j.

As M →∞, we can consistently estimate P(a) and P(b) using the pooled sample
across markets by applying Arcidiacono and Miller (2011) or Kasahara and
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Shimotsu (2009). Let P̃(a) and P̃(b) be such estimators. On the other hand, as

T → ∞, the estimator P̂j defined in (6) consistently estimates the transition

for each market j and thus converges to P(a) or P(b) under H̃P
0 . Based on these

observations, a test statistic for H̃P
0 may be constructed as T̃P =

∑M
j=1 T̃P,j ,

where

T̃P,j = min


(∑

s′,s∈S
f1
j (s)

P̃ (a)(s′,s)
{P̂j(s′, s)− P̃ (a)(s′, s)}2

)
,(∑

s′,s∈S
f1
j (s)

P̃ (b)(s′,s)
{P̂j(s′, s)− P̃ (b)(s′, s)}2

)
 . (15)

This construction of the test statistic (i.e., aggregate the statistic T̃P,j over cross-
section units j = 1, . . . ,M) appears often in the literature of large-T panel data
analysis (see, e.g., Baltagi, 2008, ch. 12). In this literature, it is common to take
the sequential limits (i.e., take T → ∞ first to derive the limiting distribution
of T̃P,j for each j, and then take M →∞ to establish the limiting distribution

of T̃P ) to analyze the asymptotic properties of test statistics, such as panel
unit root tests. Phillips and Moon (1999) provided additional requirements to
strengthen the sequential limit theory to the joint one, where T and M can
grow in an arbitrary way. However, in our setup, the statistic T̃P,j for market

j depends on both M (for P̃ (a) and P̃ (b)) and T (for P̂j(s)). Therefore, the
existing techniques of large-T panel data analysis are not directly applicable.
Although the complete analysis of the asymptotic theory for T̃P is beyond the
scope of this paper, we can adjust the construction of the test statistic to fit
into the sequential asymptotic framework. To this end, we choose the sample
size to estimate P̃(a) and P̃(b) as a function of T , say CT . Also we assume
CT /T →∞ as T →∞, which guarantees that the estimation errors P̃ (a)−P (a)

and P̃ (b) − P (b) are negligible. Since P̃(a) and P̃(b) are typically computed by
a pooled sample across markets, the requirement CT /T → ∞ is mild. Under
these additional requirements, the statistic T̃P,j depends only on T and satisfies

T̃P,j = min


(∑

s′,s∈S
f1
j (s)

P̃ (a)(s′,s)
{P̂j(s′, s)− P (a)(s′, s)}2

)
,(∑

s′,s∈S
f1
j (s)

P̃ (b)(s′,s)
{P̂j(s′, s)− P (b)(s′, s)}2

)
+ op(1)

d→ χ2
ms(ms−1) as T →∞ under H̃P

0 ,

for every j. Therefore, we can obtain the limiting distribution of T̃P =
∑M
j=1 T̃P,j

under the sequential limit, i.e.,

T̃P −Mms(ms − 1)√
2Mms(ms − 1)

d→ N(0, 1),

as T →∞ followed by M →∞ sequentially. This sequential limiting result may
be strengthened to the joint one by verifying additional conditions in Phillips
and Moon (1999, Lemma 6).

In practice, the test for H̃P
0 based on T̃P is used as follows. If we do not

reject the null H̃P
0 , then the researcher can pool the data across markets to
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implement two-step estimation for parameters, where the first-step estimates
are constructed by using P̃(a) and P̃(b). If we reject H̃P

0 , it is recommended to
avoid pooling the whole data and look for a subset that preserves homogeneity.

4 Monte Carlo

This section examines the practical aspects of the proposed tests in a Monte
Carlo study. We consider a simple and transparent dynamic oligopoly game
with multiple equilibria. The game was illustrated and analyzed in more detail
in Pesendorfer and Schmidt-Dengler (2008). It has the following features.

There are two players, binary actions ati ∈ {0, 1}, and binary states sti ∈
{0, 1}. The distribution of the profitability shocks is the standard normal. The
discount factor is fixed at 0.9. The state transition law is given by st+1

i = ati.
Period payoffs are symmetric and parametrized as follows:

π(ai, aj , si) =



0 if ai = 0; si = 0
0.1 if ai = 0; si = 1

π1 − 0.2 if ai = 1; aj = 0; si = 0
π2 − 0.2 if ai = 1; aj = 1; si = 0
π1 if ai = 1; aj = 0; si = 1
π2 if ai = 1; aj = 1; si = 1

where π1 = 1.2; and π2 = −1.2. The period payoffs can be interpreted as
stemming from a game with switching costs and/or as entry/exit game. A
player that selects action 1 receives monopoly profits π1 if she is the only active
player, and she receives duopoly profits π2 otherwise. Additionally, a player
that switches states from 0 to 1 incurs the entry cost 0.2; while a player that
switches from 1 to 0 receives the exit value 0.1.

Multiplicity. The game illustrates the possibility of multiple equilibria which
is a feature inherent to games. The following analysis focuses on two asym-
metric equilibria of the three equilibria described in Pesendorfer and Schmidt-
Dengler (2008). In equilibrium (i), player two is more likely to choose action
0 than player one in all states. The ex ante probability vectors for both play-
ers are given by σ(a1 = 0|s1, s2) = (0.27, 0.39, 0.20, 0.25), σ(a2 = 0|s2, s1) =
(0.72, 0.78, 0.58, 0.71), where the order of the elements in the probability vec-
tors corresponds to the state vector (s1, s2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

In equilibrium (ii), player two is more likely to choose action 0 than player
one in all states with the exception of state (1, 0). The probability vectors
are given by σ(a1 = 0|s1, s2) = (0.38, 0.69, 0.17, 0.39), σ(a2 = 0|s2, s1) =
(0.47, 0.70, 0.16, 0.42).

Design. The simulated data are generated by randomly drawing a time series
of actions from the calculated equilibrium choice probabilities described above
for each of the equilibria (i)-(ii) respectively. The initial state is taken as (0, 0)
and we start the sampling process after 100 periods. The number of markets
and the length of the time series is varied in the experiment with the aim at
staying close to typical industry applications. We choose M = 20, 40, . . . , 640
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and T = 5, 10, . . . , 640. The parameter λ denotes the fraction of markets that
adopt equilibrium (i) while 1 − λ denotes the fraction of markets that adopt
equilibrium (ii).

Implementation. The Monte Carlo study considers the conditional choice
probability multiplicity test by TP , its optimal version by T ∗P , the steady-state
distribution test by TQ, and the conditional state distribution test by Ts as
described in Section 3. In this example, at = st+1 and the state transition
probabilities P equal the conditional choice probabilities σ. Therefore, the null
hypotheses Hσ

0 and HP
0 and their tests are identical. To implement TP in (4)

and T ∗P in (7), we employ the formula in (6).9 The steady-state probabilities
Q are estimated by the relative frequencies. For the steady-state distribution
test by TQ, we use the identity matrix for the variance matrix in (12). For the
conditional state distribution test by Ts, we consider the sum TS =

∑
s∈S Ts

instead of focusing on a particular initial state. To compute Ts, we replace the
variance matrix V̂s in (13) with the identity matrix.

The critical values of these test statistics are calculated using a bootstrap
procedure. For every bootstrap iteration b, we simulate choice/state profiles

{sbj} from the transition matrix based on P̂ (d) defined in (6) for every market
j. For the first three tests (i.e., the tests by TP , T ∗P , and TQ), as in the data
generating process, the initial state is taken as (0, 0) and we start the sampling
process after 100 periods. For the test by Ts, for each market, we use the same
initial state as is observed in the simulated sample and start the game from
that state. The bootstrap counterparts of the test statistics are calculated for
b = 1, . . . , B. The critical values are obtained by the 95th percentile of the
bootstrapped statistics.

Results. The experiment is based on B = 999 repetitions for the bootstrap
sample and 1, 000 Monte Carlo repetitions. Tables 1-4 report the results of the
experiments. These tables report the percentages of rejections of our tests for
selected values of M , T , and λ.

We first study the size properties of our tests. Tables 1 and 2 consider the
cases of λ = 1 and λ = 0, respectively. For these cases, there is a unique
equilibrium and the null hypotheses are satisfied. All tests perform reassuringly
well leading to a five percent rejection frequency as T and/or M increase.

We next assess the power properties of our tests. Table 3 considers the case
of λ = 0.5, where the first and second equilibria arise with equal probability. It
shows that as the number of time periods T and/or markets M increases, all the
tests typically reject the null more frequently. The two conditional choice prob-
ability tests (TP and T ∗P ) and the steady-state distribution test (TQ) perform
better than the conditional state distribution test (Ts) for moderate values of M
(e.g., M = 20 or 40). When M becomes large (M = 320 or 640), Ts dominates
TP and T ∗P especially when T is relatively small. Comparing the conditional
choice probability tests and the steady-state distribution test, we find that TQ
performs better than TP and T ∗P . A possible reason is that TQ uses fewer cells

9When
∑T
t=1 1{stj = s} = 0 (or

∑M
j=1

∑T
t=1 1{stj = s} = 0), we remove such states from

the summand of the test statistics.
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than TP and T ∗P . TQ is based on ms cells while TP and T ∗P are based on (msma)
cells. Table 3 also illustrates that for a typical industry application with about
40 markets and 20 time periods the performance of TQ is satisfying. Also the
test by TP and the optimal test by T ∗P have similar performance. For a better
comparison based on the result in Proposition 2, we compute the size-adjusted
power for TP and T ∗P . We find that the size-adjusted power for T ∗P is higher
than that for TP in most cases.10 To further investigate the power properties of
these tests, Table 4 considers the case of λ = 0.9. That is, the first equilibrium
is played in 90% of M markets. While all the tests have lower power than in
Table 3, the relative performances of these tests appear the same. TQ has still
the best performance among all tests.

Overall, our Monte Carlo illustrates that the steady-state distribution test
by TQ performs well for moderate sample sizes of T and M . It seems well suited
for typical industry applications.1112

10For example, when M = 40, T = 20, and λ = 0.5, Table 3 suggests that the power for TP
is higher than the power for T ∗P . On the other hand, the size-adjusted power for TP is 16.1,
while the size-adjusted power for T ∗P is 21.8.

11The number of markets M and time periods T in several important papers in the literature
are (M = 1600, T = 24) in Collard-Wexler (2013), (M = 639, T = 5) in Dunne, Klimek,
Roberts, and Xu (2013), (M = 23, T = 19) in Ryan (2012), and (M = 102, T = 4) in
Sweeting (2012).

12We also check the performance of T̃s and T̃P using the following simple simulation design.
Suppose there are only two states. Consider the following three state transition matrices:

P(a) =

(
0.3 0.7
0.3 0.7

)
,P(b) =

(
0.7 0.3
0.7 0.3

)
,P(c) =

(
0.8 0.2
0.8 0.2

)
.

Under the null, each market follows P(a) or P(b) with equal probability. Under the alternative,
each market follows P(a) or P(b) with probability of 0.25, and follows P(c) with probability of
0.5. We compute the size and power of the two test statistics with varying numbers of markets
and time periods. Overall, the size approaches 5 percent quickly for both statistics. For the
power, T̃P performs better than T̃s. For example, the power of T̃P when (M = 500, T = 10),
(M = 500, T = 30), and (M = 500, T = 50) is 9.3, 80.1, and 99.7 percent, respectively. On
the other hand, the corresponding figures for T̃s are 5.0, 7.0, and 9.1 percent, respectively.
The details of this exercise are available upon request.
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Table 1. Monte Carlo Results: λ = 1

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

13.2
7.0
4.4
5.1
5.7
4.4
6.1

5.9
4.5
5.0
6.2
6.6
4.4
5.3

1.3
2.5
3.5
4.3
5.0
4.8
4.9

3.2
3.9
4.9
4.0
2.9
3.4
3.5

40
40
40
40
40
40
40

5
10
20
40
80
320
640

6.5
3.8
4.3
4.5
5.3
5.2
5.3

2.3
2.7
3.4
5.3
5.3
5.4
5.4

1.3
2.9
3.5
3.4
5.7
4.5
4.9

3.7
5.0
4.1
4.8
3.0
5.3
4.4

80
80
80
80
80
80
80

5
10
20
40
80
320
640

5.3
3.2
5.2
3.9
4.7
4.9
4.2

1.5
1.2
3.5
3.9
4.6
5.5
4.1

1.2
2.5
2.5
3.5
5.0
5.4
5.3

4.8
4.8
4.3
5.7
4.7
5.1
5.7

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.9
3.4
3.3
4.8
4.5
5.4
4.7

0.6
0.9
2.4
4.8
4.6
5.7
4.2

2.0
2.1
4.1
3.9
5.4
6.2
5.3

5.1
4.2
4.5
3.3
4.7
3.8
4.4

320
320
320
320
320
320
320

5
10
20
40
80
320
640

5.0
3.6
4.3
4.5
4.8
4.8
6.0

0.5
0.8
1.9
4.6
4.1
5.6
5.8

1.4
3.2
3.8
3.9
4.3
5.0
5.6

4.5
4.5
5.3
5.4
5.3
5.1
5.7

640
640
640
640
640
640
640

5
10
20
40
80
320
640

4.3
3.2
4.7
4.8
5.4
5.1
5.6

0.4
0.9
2.9
4.3
4.8
4.9
5.5

0.7
1.9
3.6
4.4
4.0
4.4
5.7

4.2
4.3
5.3
3.4
5.0
4.5
4.3
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Table 2. Monte Carlo Results: λ = 0

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

13.5
7.9
5.8
4.8
5.1
5.0
3.5

12.7
8.4
7.1
5.4
5.2
4.9
3.6

0.5
2.5
3.4
3.6
4.4
5.9
4.7

4.8
4.3
5.3
3.8
5.5
5.4
4.4

40
40
40
40
40
40
40

5
10
20
40
80
320
640

8.0
5.2
6.2
3.9
5.6
5.0
5.1

6.4
4.9
6.9
5.3
4.5
4.7
5.2

1.2
2.3
3.5
3.6
3.8
5.2
4.2

4.7
5.2
4.0
3.7
3.9
5.7
4.0

80
80
80
80
80
80
80

5
10
20
40
80
320
640

4.6
5.6
4.9
4.7
5.3
3.3
4.0

3.7
5.1
5.7
5.1
5.0
3.7
4.1

1.6
1.9
3.8
3.1
4.8
4.5
4.3

5.2
4.7
5.5
4.4
4.8
4.7
3.8

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.0
4.7
4.5
6.3
5.5
4.6
5.3

1.4
3.9
4.5
5.5
5.2
4.8
5.1

1.3
2.6
2.9
3.3
3.4
3.3
4.1

5.1
6.0
3.7
5.1
4.9
5.1
4.2

320
320
320
320
320
320
320

5
10
20
40
80
320
640

4.1
4.8
4.6
5.0
5.8
6.4
5.2

1.7
2.8
3.6
4.4
6.1
6.5
5.5

0.8
1.4
3.8
3.8
4.5
4.2
5.3

4.9
5.6
4.4
6.0
6.1
6.0
4.7

640
640
640
640
640
640
640

5
10
20
40
80
320
640

4.2
4.9
4.0
5.3
4.4
4.7
5.2

2.2
2.0
3.9
4.6
4.8
4.5
5.6

1.2
1.7
3.2
3.7
4.9
3.5
5.1

5.8
5.0
4.8
6.0
6.0
6.3
5.3
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Table 3. Monte Carlo Results: λ = 0.5

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

10.3
6.5
27.8
79.7
99.9
100.0
100.0

8.3
7.4
27.4
76.1
99.8
100.0
100.0

2.9
20.2
63.9
97.9
100.0
100.0
100.0

5.9
13.7
23.5
47.7
72.4
97.1
98.2

40
40
40
40
40
40
40

5
10
20
40
80
320
640

4.7
7.4
44.6
97.4
100.0
100.0
100.0

4.1
5.5
36.2
94.3
100.0
100.0
100.0

6.9
37.8
89.0
99.9
100.0
100.0
100.0

8.1
15.8
36.5
64.4
83.8
98.1
99.8

80
80
80
80
80
80
80

5
10
20
40
80
320
640

3.3
10.8
68.5
100.0
100.0
100.0
100.0

2.3
5.8
55.5
99.9
100.0
100.0
100.0

12.4
64.3
99.1
100.0
100.0
100.0
100.0

10.3
27.9
53.2
84.3
95.8
99.9
99.9

160
160
160
160
160
160
160

5
10
20
40
80
320
640

2.9
12.4
92.3
100.0
100.0
100.0
100.0

0.9
5.8
78.6
100.0
100.0
100.0
100.0

22.8
89.5
100.0
100.0
100.0
100.0
100.0

18.7
48.9
82.6
95.9
99.5
100.0
100.0

320
320
320
320
320
320
320

5
10
20
40
80
320
640

2.2
20.8
99.7
100.0
100.0
100.0
100.0

1.1
6.8
96.3
100.0
100.0
100.0
100.0

44.9
99.5
100.0
100.0
100.0
100.0
100.0

35.2
77.1
98.0
100.0
100.0
100.0
100.0

640
640
640
640
640
640
640

5
10
20
40
80
320
640

1.5
33.2
100.0
100.0
100.0
100.0
100.0

0.6
10.5
100.0
100.0
100.0
100.0
100.0

78.0
100.0
100.0
100.0
100.0
100.0
100.0

69.3
98.0
100.0
100.0
100.0
100.0
100.0
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Table 4. Monte Carlo Results: λ = 0.9

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

10.7
6.5
11.7
32.7
75.8
100.0
100.0

6.0
4.8
12.8
35.3
76.5
100.0
100.0

2.4
11.4
30.1
64.6
94.2
100.0
100.0

6.4
14.7
20.0
29.2
44.6
71.5
82.9

40
40
40
40
40
40
40

5
10
20
40
80
320
640

4.5
5.4
16.0
49.0
93.5
100.0
100.0

2.5
4.2
14.8
50.1
92.5
100.0
100.0

3.1
19.0
45.5
87.1
99.9
100.0
100.0

10.0
17.0
26.0
41.5
58.8
89.4
94.2

80
80
80
80
80
80
80

5
10
20
40
80
320
640

3.4
5.9
23.3
72.8
99.7
100.0
100.0

1.7
3.2
19.7
73.2
99.6
100.0
100.0

4.3
28.9
71.3
98.0
100.0
100.0
100.0

10.7
21.1
33.9
53.5
73.2
95.2
98.4

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.0
6.0
38.2
93.4
100.0
100.0
100.0

0.9
2.1
30.6
92.4
100.0
100.0
100.0

8.8
46.6
92.5
100.0
100.0
100.0
100.0

16.8
28.9
47.0
68.1
85.7
98.9
99.5

320
320
320
320
320
320
320

5
10
20
40
80
320
640

2.9
9.1
60.2
99.8
100.0
100.0
100.0

1.0
3.7
49.7
99.7
100.0
100.0
100.0

14.7
73.3
99.9
100.0
100.0
100.0
100.0

22.2
45.0
68.6
88.4
96.7
99.7
100.0

640
640
640
640
640
640
640

5
10
20
40
80
320
640

2.7
12.3
86.6
100.0
100.0
100.0
100.0

0.5
4.8
77.2
100.0
100.0
100.0
100.0

32.1
93.3
100.0
100.0
100.0
100.0
100.0

40.9
69.9
91.0
98.2
100.0
100.0
100.0
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5 Empirical Application

Recently, a number of empirical papers apply a dynamic game to data and es-
timate parameters of the game using two step methods. These papers include
Ryan (2012), Collard-Wexler (2013), Sweeting (2013), Beresteanu, Ellickson
and Misra (2010), and the empirical section of Aguirregabiria and Mira (2007),
among others. Panel data frequently contain a number of markets over a rel-
atively short time period. Researchers tend to pool different markets together
to estimate policy functions in the first stage. To do this pooling, an important
assumption is that a single equilibrium is played in every market. This sec-
tion tests the poolability hypothesis using the data of Ryan (2012). We chose
Ryan (2012) because it is one of a few papers already published and because the
number of state variables is relatively small so that it fits well our illustrative
purpose.

To evaluate the welfare costs of the 1990 Amendments to the Clean Air Act
on the Portland cement industry in the U.S., Ryan (2012) develops a dynamic
oligopoly model based on Ericson and Pakes (1995) and estimates the model
using a two-step method developed by Bajari, Benkard and Levin (2007). In
his application, there are 23 geographically separated markets. To estimate
firms’ policy functions in the first stage, Ryan (2012) assumes that the data are
generated by a single Markov Perfect Equilibrium. We apply our test to check
this assumption. One caveat is that we use a discrete state space framework,
while Ryan (2012) uses a continuous state space. Thus, we have to discretize the
state variables in Ryan (2012)’s application to perform the test. For a fine grid,
however, little differences between the two frameworks are expected in practice.

We first summarize Ryan (2012)’s model. Then, we explain the procedure
of our test in this context.

5.1 Ryan (2012)’s model

Ryan (2012) assumes that N firms play a dynamic oligopoly game in each
regional cement market. Firms make decisions to maximize the discounted
sum of expected profits. The timing of the decisions is as follows. At the
beginning of each period, incumbent firms draw a private scrap value and decides
whether to exit the market or not. Then, potential entrants receive a private
draw of entry costs and investment costs. At the same time, incumbent firms
who have not decided to exit the market draw private costs of investment and
divestment. Then, all entry and investment decisions are made simultaneously.
Firms compete in the product market and profits realize. Finally, firms enter and
exit, and their capacity levels change according to the investment/divestment
decisions in this period.

Let s = (s1, . . . , sN ) ∈ S be the capacity levels of N firms and let εi be
a vector of all private shocks to firm i. Assuming that εi is iid over time and
focusing on pure Markovian strategies, firm i’s strategy is a mapping from states
and private shocks to actions. The game payoff for firm i is defined as the
discounted sum of expected period payoffs given the beliefs now and in the

24



future. The collection of strategies and beliefs is a MPE if (i) for all i, firm i’s
strategy is a best response to its rivals’ strategies given the beliefs at all states
s ∈ S and (ii) for all i, the beliefs of firm i are consistent with the strategies.
The existence of pure strategy equilibria in a class of dynamic games is provided
in Doraszelski and Satterthwaite (2010). The model of Ryan (2012) also falls in
this class. Furthermore, multiplicity of equilibria is prevalent.

Ryan (2012) follows the two-step method developed by Bajari, Benkard and
Levin (2007). In the first stage, Ryan (2012) estimates the entry, exit, and
investment policies as a function of states. Because of the issue of multiplicity,
different equilibria may be played in different markets. However, since Ryan
(2012) has only 19 years of time series compared to a large state space, estimat-
ing policy functions market by market is not practical. Thus, he imposes the
following assumption:

Assumption 1 The same equilibrium is played in all markets.

Based on this assumption Ryan pools all markets when estimating policy func-
tions. Our aim is to test the validity of this assumption.

In addition to Assumption 1, Ryan (2012) assumes flexible functional forms
for the policy functions. First, the probability of entry is modeled as a probit
regression,

Pr{firm i enters in period t| si = 0, s} (16)

= Φ
(
ψ1 + ψ2(

∑
j 6=i

stj) + ψ31{t > 1990}
)
,

where Φ(·) is the cdf of the standard normal. The dummy 1{t > 1990} is
introduced to account for the change in firms’ behavior after the introduction
of the 1990 Amendments.

Second, the exit probability is also modeled as probit,

Pr{firm i exits in period t| si > 0, s} (17)

= Φ
(
ψ4 + ψ5s

t
i + ψ6(

∑
j 6=i

stj) + ψ71{t > 1990}
)
.

Finally, the investment policy is modeled using the empirical model of the
(S,s) rule by Attanasio (2000). Specifically, firms adjust the current capacity
level to a target level of capacity when current capacity exceeds one of the bands
around the target level. The target level s∗ti is given by

ln s∗ti = λ′1b1(sti) + λ′2b2(
∑

j 6=i
stj) + u∗ti , (18)

where u∗ti is iid normal with zero mean and a homoscedastic variance, the func-
tions b1(·) and b2(·) denote cubic b-spline, which is to capture flexible functional
forms in the variables sti and

∑
j 6=i s

t
j , respectively. The lower and upper bands

are given by

sti = s∗ti − exp
(
λ′3b1(sti) + λ′4b2(

∑
j 6=i

stj) + ubti

)
(19)
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and
sti = s∗ti + exp

(
λ′3b1(sti) + λ′4b2(

∑
j 6=i

stj) + ubti

)
, (20)

where ubti and ubti are assumed iid normal with zero mean and equal variance. It
is assumed that the upper and lower bands are symmetric functions of the target
capacity. To estimate (18), Ryan (2012) simply replaces ln s∗ti with ln st+1

i and
runs OLS using the sample with sti 6= st+1

i . To estimate parameters in (19) and
(20), Ryan (2012) regresses ln |st+1

i − sti| on b1 and b2 using the sample with
sti 6= st+1

i . The implicit assumption here is that the level of capacity observed
before the change (i.e., sti) is equal to either the lower or the upper bands
depending on whether the investment is positive or negative.13 To estimate the
variances of u∗ti , u

bt
i , and ubti , Ryan (2012) calculates the sum of the squared

residuals at the estimated parameters and divide it by (n− kλ), where n is the
sample size used in least squares and kλ is the number of parameters in λ for
each equation.

Once all these parameters are estimated, the value functions can be com-
puted by forward simulation. If Assumption 1 holds and the functional forms
are flexible enough, the first stage delivers consistent estimates of choice prob-
abilities associated with the equilibrium that is played in the data. However, if
there are more than one equilibria in the data, estimates of choice probabilities
are not consistent, and estimates of structural parameters in the second stage
are not consistent either.

The model specified above implies the Markov transition probability P and
the corresponding steady-state distribution Q. Although Ryan (2012) uses a
parametric specification in his first stage estimate for the feasibility reason, we
apply our test directly to P and Q. It is a major advantage of our tests that
the model’s details do not have to be specified.

5.2 Data

We download the data from the Econometrica webpage. The dataset contains
information on all the Portland cement plants in the United States from 1980 to
1998. Following Ryan (2012), we assume that every plant is owned by different
firms. For each plant, we observe the name of company that owns the plant and
the location of the plant. A plant consists of several kilns. For each kiln, we
observe the fuel type, process type, and the year when the kiln was installed.
We organize the data in the following way. The capacity of a plant is simply
defined as the sum of capacity of all kilns that are installed in the plant. Plants
sometimes change their company name. One reason is that plants are sold to
a different company. Another possibility is that two or more firms merge and
names change accordingly. In such cases, it appears as if the old plant exits the
market and a new firm (plant) enters the market at the same time. To deal with
such spurious entry/exit, we check information of kilns (fuel type, process type,
year of installation) installed in the plant that changed the company name, and

13For an interpretation and justification of this implicit assumption, see Attanasio (2000).
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if those information have not changed at all, we assume that the plant stays in
the market (we assume that no entry and exit took place associated with this
name change).

As a result, we obtained the same plant-level data as Ryan (2012). Table 5
shows its summary statistics.

Table 5. Summary Statistics of Plant-Level Data

Min Mean Max Std. Dev.
Sample

size
Quantity (1,000 tons) 177 699 2348 335 2233
Capacity (1,000 tons) 196 797 2678 386 2233
Investment (1,000 tons) -728 2.19 1140 77.60 2077

5.3 Testing poolability

Ryan (2012)’s panel data contain states and actions over 19 years for 23 dif-
ferent markets.14 Since our Monte Carlo study indicates that the steady-state
distribution test by TQ performs better than the other tests when the number
of markets is small, we first apply the steady-state distribution test to Ryan
(2012)’s data. Then to account for the possibility that poolability is violated
but the test based on TQ is not able to detect, we also apply the state transition
probability test by TP and its optimal version T ∗P . For the sake of completeness,
we apply the test based on Ts as well. The original state space of Ryan (2012)
consists of firm-level capacities. We focus on a lower-dimensional state variable
consisting of the total market-level capacity stj obtained by summing capacity

levels across firms, i.e. stj =
∑
i s
it
j . Hereafter we consider testing the null hy-

potheses HQ
0 , HP

0 , and Hs
0 based on stj . Note that a rejection of the null based

on the market-level capacity implies a rejection of the null for the full model
with firm-level capacities, but that the converse is not true.

Our test proceeds as follows. Ryan (2012) assumed that the same equilibrium
was played in all markets before 1990 and that another identical equilibrium
was played in all markets after 1990. We test these hypotheses in different time
periods by the statistics TQ, TP , T ∗P , and Ts .

To implement these tests, we discretize the support of stj into 50 bins with
equal intervals of 250 thousand tons (0-250 thousand tons, 250-500 thousand
tons, and so on). Figure 1 depicts the discretized state distributions before and
after 1990.

14Ryan (2012)’s Java code available at the Econometrica website generates only 22 markets,
while his first-stage estimation appears to be using 23 markets (23 markets times 18 years
equals 414 observations). One natural way to increase the number of markets is to disaggregate
one large market into two. In California, we can observe two clusters of plants; one in Northern
California around the San Francisco area and another in Southern California around the Los
Angeles area. These two clusters are remote by more than 350 miles. Thus, we believe that
Northern and Southern California can be considered two separate markets.
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Figure 1: Steady-State Distribution of Total Capacity (1,000 ton)

Before 1990 After 1990

For these samples, the steady-state distributions are estimated by the rela-
tive frequencies

Q̂before
j (s) =

1

T before

1990∑
t=1980

1{stj = s} for s ∈ {1, . . . , 50} and j = 1, . . . , 23,

Q̂after
j (s) =

1

T after

1998∑
t=1991

1{stj = s} for s ∈ {1, . . . , 50} and j = 1, . . . , 23.

Then the test statistic TQ is obtained as

T lQ = T l
23∑
j=1

50∑
s=1

{Q̂lj(s)− Q̂l(s)}2, (21)

for l = {before, after}. Also for d = (s′, s) ∈ {1, . . . , 50}2, the state transition
probabilities are estimated by

P̂ before
j (d) =

∑1989
t=1980 1{s

t+1
j = s′, stj = s}∑1989

t=1980 1{stj = s}
for j = 1, . . . , 23,

P̂ after
j (d) =

∑1997
t=1991 1{s

t+1
j = s′, stj = s}∑1997

t=1991 1{stj = s}
for j = 1, . . . , 23,
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and P̂ before(d) and P̂ after(d) are defined as in (6). The test statistic TP is
obtained as

T lP =

23∑
j=1

∑
d∈D

W l
j(d){P̂ lj(d)− P̂ l(d)}2 for l = {before, after}, (22)

where W l
j(d) =

∑T l−1
t=1 1{stj = s}/P̂ l(d). The test statistic T ∗P is given by

T ∗lP = 2

23∑
j=1

∑
d∈D

W l
j(d)P̂ lj(d) log

P̂ lj(d)

P̂ l(d)
for l = {before, after}. (23)

Finally, the test statistic Ts is defined accordingly as in (13).15

The bootstrap critical values for the first three tests are computed as fol-
lows. For each bootstrap iteration b, we simulate the game for 19 years and
23 markets. More precisely, we draw an initial state from the distribution
M−1

∑M
j=1 Q̂

before
j (·) and generate Markov chains by the transition matrix P̂ before(·)

for t = 1980, . . . , 1990. In the same way, we use M−1
∑M
j=1 Q̂

after
j (·) and P̂ after(·)

to generate a sequence of states for t = 1990, . . . , 1998. For the simulated b-
th bootstrap sample, we estimate {Q̂l,bj (s), P̂ l,bj (d), P̂ l,b(d), f l,bj (s)} for all

j = 1, . . . , 23, l = {before, after}, s = 1, . . . , 50, and d ∈ {1, . . . , 50}2. We
then compute the bootstrap counterparts T bQ, T bP , and T ∗bP using (21), (22) and
(23), respectively. For the test by Ts, all steps are the same as other tests. The
number of bootstrap iterations is B = 999.

Table 6. Baseline Results

Before 1990
TP T ∗P TQ Ts

Test statistics 199.481 159.426 101.549 273.867
5% critical value 174.548 144.663 113.454 292.766
p-value 0.009 0.010 0.330 0.125

After 1990
TP T ∗P TQ Ts

Test statistics 89.430 90.579 81.032 131.867
5% critical value 93.275 91.780 95.543 179.406
p-value 0.089 0.055 0.599 0.619

Table 6 summarizes the test results. TP and T ∗P imply that we reject the
poolability hypothesis at the 1% significance level for the period before 1990
and at the 10% significance level for the period after 1990. The fact that the
test by TQ does not reject the null, while the tests by TP and T ∗P reject it may
suggest that distinct conditional choice probabilities have similar (or perhaps

15We replace the variance matrix with the identity matrix.
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identical) steady-state distributions. The result of the test by Ts may be because
the power is low under the current sample size.

To perform the above tests, we implicitly assume that the relevant state
variable is firm-level cement capacity only. However, regional markets differ
significantly in their size. Therefore, the rejection of the null hypothesis of
poolability may simply have come from the large amount of observable hetero-
geneity. To capture such market-level heterogeneity, we control for the size of
population of each market following Ryan (2012).16 Specifically, we calculate
the average (over 19 time periods) population size by market, and divide 23
markets into 7 “small” markets, 8 “medium” markets, and 8 “large” markets.
For each of these subgroups of markets, we apply the tests by TP and T ∗P .

Table 7. Test conditional on market size

TP T ∗P
Small markets Before 1990 After 1990 Before 1990 After 1990
Test statistics 25.269 12.122 20.455 15.955
5% critical value 26.778 21.435 26.589 22.532
p-value 0.074 0.469 0.241 0.293

Medium markets Before 1990 After 1990 Before 1990 After 1990
Test statistics 47.910 10.902 37.288 11.708
5% critical value 51.765 16.691 43.010 17.449
p-value 0.089 0.285 0.144 0.311

Large markets Before 1990 After 1990 Before 1990 After 1990
Test statistics 25.918 13.409 26.353 15.150
5% critical value 23.601 15.550 20.963 16.577
p-value 0.023 0.121 0.003 0.093

Table 7 summarizes the results of the tests on subgroups of markets. This
suggests that while our tests do not reject the hypothesis HP

0 of poolability for
small and medium markets, they still reject the null hypothesis for the group of
large markets, especially for the period before 1990.

Finally, we use T̃s in (14) and T̃P in (15) to account for potential unobserved
heterogeneity. The parameters in P̃, that is, π and the elements in P(a) and
P(b) are estimated by the MLE. To compute the critical value, the parametric
bootstrap is employed as before. Table 8 summarizes the results. The upper
panel of the table shows the test results based on the full sample. The tests
based on transition probability matrices do not reject the null of poolability
across markets at the 5% significance level. However, if we control for the size
of population, a slightly different picture emerges. The lower panel shows the
test results when we focus on the subsample of large markets. As in Table 7, the
test based on T̃P rejects the null hypothesis of poolability at the 5% significance

16Ryan (2012) tries controlling for regional population in one of his specifications of policy
function estimation, but does not include it in his preferred specification.
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level for the period before 1990. In addition, the test based on T̃s supports the
same conclusion.

Table 8. Test accounting for unobserved types

T̃s T̃P
Full sample Before 1990 After 1990 Before 1990 After 1990
Test statistics 295.754 153.537 76.702 29.306
5% critical value 308.187 190.933 83.030 33.576
p-value 0.094 0.412 0.084 0.150

Large markets Before 1990 After 1990 Before 1990 After 1990
Test statistics 89.083 51.096 8.170 0.375
5% critical value 84.475 61.145 8.051 4.085
p-value 0.018 0.324 0.046 0.675

Our result suggests that the data should not be pooled even if a researcher
accounts for two unobservable market types and uses an appropriate method
(e.g., Arcidiacono and Miller, 2011). Since we assume that unobserved hetero-
geneity follows a finite-mixture model with only two components, the rejection
of our tests may point to the existence of more general types of unobserved
heterogeneity, the presence of multiple equilibria within a group of markets of
the same type, or both. One caveat is that the size of the tests may not have
converged quickly enough. Therefore, given the small sample size in this appli-
cation, our results should be treated as suggestive.

6 Conclusion

This paper proposes several statistical tests for finite state Markov games to
examine the null hypothesis that the data from distinct markets can be pooled.
The tests are based on the conditional choice and state transition probabilities,
the steady-state distribution, and the conditional state distribution. We perform
a Monte Carlo study and find that the steady-state distribution test works well
and has high power even with a small number of markets and time periods. We
apply our tests to the empirical application of Ryan (2012) and reject the null
hypothesis of poolability.

Two caveats need to be emphasized. First, in case of rejection, researchers
may be tempted to apply the tests repeatedly to subsamples until the null
hypothesis is no longer rejected. While this exercise may be informative for
identifying the cause of the rejection, it is not statistically justified. In general,
if the same test is applied to the subsample after a rejection based on the full
sample, the test statistic should be modified to incorporate the fact that the
test rejects the null with the full sample. Such a sequential testing procedure
would involve more sophisticated statistical theory and is beyond the scope of
our paper.
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Second, our test statistics are proposed within the finite state discrete time
Markov class. The theory of finite state Markov chains is well developed and
allows us to borrow well known results from the probability theory literature.
To extend the tests to a richer state space, we would need to borrow results from
a more involved statistical literature making the tests perhaps less accessible to
researchers. However, we believe that our tests cover a wide class of dynamic
games that are used in the empirical IO literature. With a bounded state space,
as is typical the case in IO applications, the observable difference between games
with finite state and games with a continuous state space seem superficial and
not essential as in practice the data are finite. Researchers may use a finer grid
when the data become richer.
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A Appendix

A.1 Proof of Proposition 1

We first consider the statistic TP for Hσ
0 defined by (5), that is

TP =

M∑
j=1

∑
(a,s)∈A×S

{fj(a, s)− fj(s)σ̂(a|s)}2

fj(s)σ̂(a|s)
,

where σ̂(a|s) =
∑M

j=1 fj(a,s)∑M
j=1 fj(s)

. Let ξj(a, s) = {fj(a, s) − fj(s)σj(a|s)}/fj(s)1/2

and define the (mams)-dimensional vector ξj = {ξj(a, s)a∈A}∈s∈S. Since atj |stj
is conditionally independent from past values, the Markov chain P is stationary,
and all states of P communicate, the same argument to the proof of Billingsley
(1961, Theorem 3.1) implies

ξj
d→ N(0,diag{Vj(s)}s∈S),

for each j = 1, . . . ,M , where [Vj(s)](k,l) = 1{k = l}σj(ak|s) − σj(ak|s)σj(al|s)
for k, l = 1, . . . ,ma. Thus, we obtain∑

(a,s)∈A×S

{fj(a, s)− fj(s)σj(a|s)}2

fj(s)σj(a|s)
d→ χ2(ms(ma − 1)), (24)

for each j = 1, . . . ,M . Note that under the set-up of Section 2, σ̂(a|s) is the
maximum likelihood estimator of σ(a|s) under Hσ

0 : σ1 = · · · = σM = σ using
the full-sample (atj , s

t
j)t=1,...,T for j = 1, . . . ,M . Therefore, based on (24), the

asymptotic theory of the chi-squared statistic (e.g., Lemma 17.3 of van der
Vaart, 1998) implies the conclusion.

We now consider the statistic TP for HP
0 defined by (6), that is

TP =

M∑
j=1

∑
(s′,s)∈S×S

{f1
j (s′, s)− f1

j (s)p̂(s′|s)}2

f1
j (s)p̂(s′|s)

,

where p̂(s′|s) =
∑M

j=1 f
1
j (s′,s)∑M

j=1 f
1
j (s)

. In this case, Billingsley (1961, Theorem 3.1) di-

rectly implies the asymptotic normality of {f1
j (s′, s) − f1

j (s)pj(s
′|s)}/f1

j (s)1/2.
Thus, a similar argument yields the conclusion.

A.2 Proof of Proposition 2

We prove the optimality for T ∗P to test HP
0 . The case for testing Hσ

0 is shown in
the same manner although the notation becomes more complicated.

Let ωj = (s1
j , . . . , s

T
j ) ∈ Ωj and Ω = Ω1 × · · · × ΩM be the sample space

of the observables ω = (ω1, . . . , ωM ). The sample space Ω is partitioned into
different types {Λl}l=1,...,L, where {Λl}l=1,...,L is a collection of disjoint subsets
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of Ω satisfying Ω = ∪Ll=1Λl and any element in Λl yields the same joint counts
{f1
j (·, ·)}j=1,...,M . A test is defined as a partition (ΩA,ΩR) of Ω, where ΩA and

ΩR mean the acceptance and rejection regions, respectively.
First, we show that for any test (ΩA,ΩR), there exists a test (Ω̃A, Ω̃R) based

only on the joint counts {f1
j (·, ·)}j=1,...,M such that

lim
T→∞

1

T − 1
log Pr{Ω̃R : HP

0 } ≤ lim
T→∞

1

T − 1
log Pr{ΩR : HP

0 },

lim
T→∞

1

T − 1
log Pr{Ω̃A : HP

1 } ≤ lim
T→∞

1

T − 1
log Pr{ΩA : HP

1 }, (25)

Note that the subset ΩA or ΩR contains at least half of the elements in Λl
for each l = 1, . . . , L. Thus, for any (ΩA,ΩR), we can define (Ω̃A, Ω̃R) as
follows. For each l = 1, . . . , L, if ΩA (or respectively ΩR) contains at least half
of the elements in Λl, then let Ω̃A (or respectively Ω̃R) include all elements in
Λl. Observe that (Ω̃A, Ω̃R) depends only on {f1

j (·, ·)}j=1,...,M by construction.

Now, pick any type Λl such that Λl ⊂ Ω̃R. It holds

Pr{ΩR : HP
0 } ≥ Pr{ΩR ∩ Λl : HP

0 } ≥
1

2
Pr{Λl : HP

0 }

=
1

2

M∏
j=1

Pr{Λl,j : HP
0 }, (26)

where the first inequality follows from the set inclusion relationship, the second
inequality follows from the facts that at least half of elements of Λl is contained
in ΩR (due to Λl ⊂ Ω̃R) and that all elements in Λl occur with same probability,
and the equality follows from independence of (ω1, . . . , ωM ) and Λl = Λl,1×· · ·×
ΛM . By Gutman (1989, Lemma 1), if the initial values (s0

1, . . . , s
0
M ) are fixed,

for any probability measure P on Ω given by a Markov chain, there exists a
positive sequence δT = O(T−1 log T ) such that

exp (−(T − 1){K(qj,l, p) + δT }) ≤ Pr{Λl,j : P} ≤ exp (−(T − 1){K(qj,l, p)− δT }) ,
(27)

where qj,l(·, ·) is the two-period joint empirical measure given by the type Λl,j ,
p(·, ·) is the two-period joint measure given by P , and

K(qj,l, p) =
∑
s∈S

qj,l(s)
∑
s′∈S

qj,l(s
′|s) log

qj,l(s
′|s)

p(s′|s)

is the Kullback-Leibler divergence for qj,l and p. Combining (26) and (27),

Pr{ΩR : HP
0 } ≥

1

2
exp

−(T − 1)


M∑
j=1

K(qj,l, p) + δ1T


 , (28)

for some δ1T = O(T−1 log T ). Here p is the common joint measure under HP
0 .
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Thus, we have

Pr{Ω̃R : HP
0 } = Pr{ΩR : HP

0 }+
∑

l:Λl⊂Ω̃R

Pr{ΩA ∩ Λl : HP
0 }

≤ Pr{ΩR : HP
0 }+

∑
l:Λl⊂Ω̃R

exp

−(T − 1)


M∑
j=1

K(qj,l, p)− δ2T




≤ Pr{ΩR : HP
0 }+

∑
l:Λl⊂Ω̃R

Pr{ΩR : HP
0 } exp((T − 1)δ3T )

= Pr{ΩR : HP
0 }{1 + LR exp((T − 1)δ3T )},

for some δ2T , δ3T = O(T−1 log T ), where the first equality follows from the
construction of Ω̃R, the first inequality follows from Pr{ΩA∩Λl : HP

0 } ≤ Pr{Λl :
HP

0 } and (27), the second inequality follows from (28), and the last equality

follows from the definition of LR =
∑L
l=1 1{Λl ⊂ Ω̃R}. Therefore, the first

inequality in (25) follows by (T − 1)−1 logLR → 0. The second inequality in
(25) is obtained in the same manner (by replacing Ω̃R, ΩR, and HP

0 with Ω̃A,
ΩA, and HP

1 , respectively). By (25), we can focus on the test defined by the
joint counts {f1

j (·, ·)}j=1,...,M .

Next, we show (10). Pick any test (Ω̃A, Ω̃R) based only on {f1
j (·, ·)}j=1,...,M

that satisfies (9). Then there exists δ4T = O(T−1 log T ) such that

e−α(T−1) ≥ Pr{Ω̃R : HP
0 } =

∑
l:Λl⊂Ω̃R

M∏
j=1

Pr{Λl,j : HP
0 }

≥ exp

−(T − 1)


M∑
j=1

K(qj,l, p) + δ4T


 , (29)

for any l satisfying Λl ⊂ Ω̃R and all T large enough, where the first inequality
follows from (9), the equality follows from independence of (ω1, . . . , ωM ) and
Λl = Λl,1 × · · · × ΛM and the fact that Ω̃R depends only on the types, and

the second inequality follows from (27). Thus, if the rejection by Ω̃R occurs,
then the observed empirical joint empirical measure {qj}j=1,...M satisfies (29)

and setting p as the joint empirical measure qtotal(·, ·) = 1
M(T−1)

∑M
j=1 f

1
j (·, ·)

in (29) implies

α− δ4T ≤
M∑
j=1

K(qj , qtotal) =
T ∗P

2(T − 1)
,

for all T large enough, and (10) follows.
Finally, we show (8). Define the entropy of a two-period joint measure q(·, ·)

as
H(q) = −

∑
s∈S

q(s)
∑
s′∈S

q(s′|s) log q(s′|s).
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Then by the definition of K(·, ·), the test statistic is written as

T ∗P
2(T − 1)

= MH(qtotal)−
M∑
j=1

H(qj). (30)

Let Ω∗R be the rejection region of the test 1{T ∗P ≥ 2(T − 1)(α− δ4T )}. Also, let
q
ωj

j (·, ·) be the two-period joint empirical measure based on ωj and qωtotal(·, ·) =

M−1
∑M
j=1 q

ωj

j (·, ·). We have

Pr{Ω∗R : HP
0 } =

∑
ω∈Ω∗R

M∏
j=1

Pr{ωj : HP
0 }

≤
∑
ω∈Ω∗R

exp(−(T − 1)MH(qωtotal))

≤ exp(−(T − 1)(α− δ4T ))
∑
ω∈Ω∗R

exp

−(T − 1)

M∑
j=1

H(q
ωj

j )


≤ exp(−(T − 1)(α− δ4T ))

M∏
j=1

∑
ωj∈Ωj

exp(−(T − 1)H(q
ωj

j ))

≤ exp(−(T − 1)(α− δ4T ) + (T − 1)O(T−1 log T )),

where the equality follows from independence of (ω1, . . . , ωM ), the first inequal-

ity follows from the fact that under HP
0 the log likelihood

∑M
j=1 log Pr{ωj : HP

0 }
of observed ω is maximized by qωtotal with maximum −M(T−1)H(qωtotal), the sec-

ond inequality follows from ω ∈ Ω∗R and (30) (i.e., MH(qωtotal)−
∑M
j=1H(q

ωj

j ) ≥
2(α−δ4T )), the third inequality follows from the Jensen inequality and Ω∗R ⊂ Ω,
and the last inequality follows from the upper bounds of the entropy and num-
ber of types of Markov chains in Davisson, Longo and Sgarro (1981, Theorem
1 combined with eq. (4)). Therefore, (8) follows.

A.3 Detail for the test statistic TQ

The asymptotic variance Vj in (11) has the (k, l)-th element

vjkl = 1{k = l}qjk − q
j
kq
j
l + qjk

∞∑
m=1

(p
j(m)
kl − ql) + qjl

∞∑
m=1

(p
j(m)
lk − qk),

qjk is the k-th element of Qj , p
j(m)
kl is the (k, l)-th element of (Pj)m. It should be

noted that rank(Vj) = ms−1 due to the linear constraint (1, . . . , 1)′Fj = T −1.

Under HQ
0 , it holds V = V1 = · · · = VM and the common asymptotic variance

V can be estimated by e.g. Newey and West’s (1987) estimator V̂ whose (k, l)-th
element is defined as

v̂kl = 1{k = l}q̂k − q̂kq̂l + q̂k

bT∑
m=1

(p̂
(m)
kl − q̂l) + q̂l

bT∑
m=1

(p̂
(m)
lk − q̂k),
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where q̂k is the k-th element of 1
M(T−1)

∑M
j=1 F

j , p̂
(m)
kl is the (k, l)-th element of

P̂m, and P̂ =
{

1
M(T−1)

∑M
j=1 f

1
j (s′, s)

}
s,s′∈S

. Also the bandwidth bT satisfies

bT →∞ and T−1/2bT → 0.
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