
Estimation of (Dynamic) Games: A Discussion

Martin Pesendorfer�

London School of Economics and Political Sciences

December 2010

1 Introduction

The last ten years saw a number of advances in empirical industrial organizations.

Exciting new methods for estimating dynamic models and especially dynamic games

have been developed. These new methods enable researchers to use a wider set of

empirical tools. The new methods bene�tted the well received literature on estimating

static games. At the same time there have been improvements in single agent dynamic

model estimation.

The two papers provide excellent surveys covering selected setups in detail. The

setups include models with strategic interaction in static and dynamic settings and

dynamic single agent models with a focus on storable and durable goods demand

models. The single and multi-agent dynamic frameworks enable researchers to ex-

plicitly model dynamic linkages in state variables or in payo¤s. The setups also nests

the static games (or single agent) setting which arises as a special case when agents

are myopic and assign no value to the future.

Three types of dynamic linkages can be distinguished: First a strategic linkage

arises when a �rm�s (consumer�s) strategy is allowed to depend on past choices of

(all) �rms (consumers). Second, an informational linkage arises when informational

uncertainty is gradually resolved over time. The third type of linkage arises when the

�I wish to thank the seminar audience at the World Congress for feedback and to Philipp Schmidt-

Dengler for comments on the draft.

1



current payo¤ depends on state variables in�uenced by prior actions. The surveyed

literature studies the third type of linkage.

Example of payo¤ linkages in industrial organization are numerous. In the high-

way paving industry committed capacity from prior won projects may a¤ect pricing

decisions for current projects. A second example are storable goods which may a¤ect

consumers demand. Ketchup or laundry detergents can be stored at home and thus

purchased when store prices are low. Durable goods are another example. Computer

printers or automobiles are durable and thus the decision to buy a new product de-

pends on the use-value of the currently held product. A consumer may decide when

to replace the existing product with a new one. Finally, entry (and exit) incurs a sunk

cost (scrap value) which in turn implies a dynamic linkage as already active �rms will

face di¤erent costs of being active.

The papers contain a vast amount of material, making it impossible to comment

in detail on every section. My plan is to re-iterate some basic elements the papers

share and to place the papers within a broader context of the �eld. Doing so I will

restate the conceptual framework that is shared among the papers.

I will give critical remarks on some contentious issues that have caused some

di¢ culties in the empirical IO literature over the years. These includes equilibrium

multiplicity, unobserved heterogeneity, the iterative methods based on the best reply

mapping and the characteristics space demand model.

The next section illustrates some basic features of the framework and analysis

which are shared in the two papers. Section 3 comments and concludes on limitations

and issues that are open for further research.

2 Empirical Framework

This section sketches some key features of the empirical model that are shared in the

two papers. I highlight the equilibrium properties and describe the basic estimation

technique.

2.1 Model Sketch

The framework shared in both surveys is a N player dynamic game with discrete

time, t = 1; 2 : : : ;1. Every period the following events take place:
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States. Every player observes the state variables which consist of two elements:

First a public state variable sti 2 Si = f1; : : : ; Lg which is observed by all play-
ers. Second, a private payo¤ shock "ti 2 RK drawn independently from the strict

monotone and continuous conditional distribution function F
�
�jsti; st�i

�
. The private

state variable is observed only by the player and not observed by other players or the

econometrician.

Actions. Each player chooses an action or makes a choice ati 2Ai = f0; 1; : : : ; Kg.
All N players make their decisions simultaneously. The actions are taken after players

observe the state and their idiosyncratic payo¤ shocks. An action pro�le at denotes

the vector of joint actions in period t, at = (at1; : : : ; a
t
N).

State transition. The probability density function g :A�S�S �! [0; 1] describes

the state transition. A typical element g (at; st; st+1) equals the probability that state

st+1 is reached when the current action pro�le and state are given by (at; st). The

symbol G denotes the transition matrix in which column s
0 2 S consists of the vector

of probabilities
h
g (a; s; s0)a2A;s2S

i
.

The period payo¤ of player i is collected at the end of the period after all actions

are observed and consists of two components: (i) the action and state dependent

period payo¤, and (ii) the action dependent payo¤ shock realization,

�i
�
at; st

�
+

KX
k=1

"tki � 1
�
ati = k

�
where 1 (a) equals one if event a occurs and zero otherwise. The symbol �i denotes

the period payo¤ vector de�ned by �i =
h
�i (a; s)a2A;s2S

i
. The payo¤ �i may be

parametrized in applications. For example, the demand speci�cation in AN(2010)

assumes that the utility of choice k in state s can be written as �i (k; s) = ui �
Ci(s

t) + akt�i � �ipkt + �k, which includes a consumption bene�t ui, a storage cost
Ci, and an additive term measuring the indirect utility from purchasing product k.

Game payo¤ . Players discount future payo¤s with discount factor � < 1. The

game payo¤ of player i equals the sum of discounted period payo¤s.

The surveys restrict attention to pure Markovian strategies ai("ti;s
t) in which an

action for player i is a function of the player speci�c payo¤ shock and the state

variables. The Markovian assumption abstracts from calendar time and the time

superscript may be omitted.

De�nition (Markov perfect equilibrium): A collection (a; �) = (a1; : : : ; aN ; �1; : : : ; �N)

is a Markov perfect equilibrium if
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(i) for all i, ai is a best response to a�i given the beliefs �i at all states s 2 S;
(ii) all players use Markovian strategies;

(iii) for all i the beliefs �i are consistent with the strategies a.

The ex ante expected value function (or ex ante expected game payo¤) is the dis-

counted sum of future payo¤s for player i before player-speci�c shocks are observed

and actions are taken. Let �i(ajs) denote the conditional ex ante (before "i is ob-
served) belief of player i that action pro�le a will be chosen conditional on state s.

The ex ante expected value function can be written as,

Vi (s;�i) =
X
a2A

�i(ajs)[�i (a; s) + �
X
s02S

g(a; s; s
0
)Vi(s

0
;�i)]

+
KX
k=1

E"
�
"ki jai = k

�
� �i (ai = kjs) ; (1)

where E" denotes the expectation operator with respect to the player speci�c pro-

ductivity shock. Equation (1) is satis�ed at every state vector s 2 S.1

Continuation values can also be written after a choice has been made. Player i�s

continuation value net of the payo¤ shocks under action ai with beliefs �i is given by:

ui(ai;�i;�) =
X

a�i2A�i

�i(a�ijs) �

24�i (a�i; ai; s) + �X
s02S

g(a�i; ai; s; s
0
)Vi(s

0
;�i)

35 (3)

where �i(a�ijs) denotes the conditional beliefs of player i that players �i choose an
action pro�le a�i conditional on state s.

Next, the properties of the equilibrium decision rules are summarized.

2.2 Equilibrium Properties

Let � denote the parameter vector summarizing the model elements (�1; : : : ;�N ; F; �; g).

It is optimal to choose action ai given the beliefs �i if the continuation value under

action ai exceeds the continuation value under all alternative actions:

ui(ai;�i;�) + "
ai
i � ui(a0i;�i;�) + "

a0i
i for all a0i 2 Ai (4)

1The state space is �nite and the ex ante value function can be re-written as an explicit matrix

equation:

Vi (�i) = [Is � ��iG]�1 [�i�i +Di (�i)] : (2)

where Di (�i) = [Di (s;�i)]s2S is the vector of expected payo¤ shocks with element Di (s;�i) =PK
k=1E"

�
"ki jai = k;�i

�
� �i (ai = kjs) and Is denotes the identity matrix.
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where "0i = 0. We may evaluate condition (4) before the payo¤ shock "i is observed.

Doing so, gives an expression for the ex ante optimal choice probability of player i

given the beliefs �i:

p(aijs; �i) = 	i (ai; s; �i;�) (5)

=

Z Y
k2Ai;k 6=ai

1
�
ui(ai;�i;�)� ui(k;�i;�) � "ki � "aii

�
dF

In matrix notation, equation (5) can be written as:

p = 	 (�;�) (6)

where p =(p1; : : : ;pN) denotes the vector of the optimal players�choice probabilities

for all states, players and actions other than action 0; and � denotes the vector of

players�beliefs. We may omit the choice probability for action 0 in equation (6) as it is

already determined by the remaining choice probabilities, pi(0js) = 1�
PK

k=1 pi(kjs).
Equation system (6) determines the optimal choice probabilities as a function of

players�beliefs. In equilibrium, beliefs are consistent leading to a �xed point problem

in ex ante choice probabilities p:

p = 	 (p;�) . (7)

Equation system (7) characterizes the equilibrium choice probabilities p. Note

that equation system (7) is not the only equation system doing so. For example,

any monotone transformation of the left hand side and right hand side variables in

(7) can also be used as an equation system characterizing the equilibrium. Static

models, as in BHN (2010), are a special case with � = 0. The single agent dynamic

demand model studied in AN (2010) arises as a special case when there is no strategic

interaction, or when the number of players equals one, N = 1.

Limitations. The modelling framework and approach has limitations: First, it is

better suited for situations in which there is a small number of players and states.

In situations with many players, or states, the transition matrix G will be large and

solving the equations in (7) may become computationally involved. Second, it may be

di¢ cult to simulate the equilibria even if estimation is possible as there can be multiple

equilibria. Finding the set of �xed points of equation (7) may be computationally

infeasible.

BHN (2010) nicely illustrate restrictions that a commonly used in the literature

to ensure that there exists a unique set of model primitives (�1; : : : ;�N ; F; �; g)
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that can be inferred from a su¢ ciently rich data set characterizing choice and state

transition probabilities.

2.3 Estimation Method

Let � =
�
��;�F ; �;�g

�
2 � � Rq denote an identi�ed parameter vector.2 The para-

meter vector � may include parameters entering the period payo¤s �i (a; s;�
�) for all

i, the transition probabilities g (a; s; s0;�g), the distribution of payo¤ shocks F (";�F )

and the discount factor �.

The surveys discuss two types estimation approaches commonly used in this lit-

erature. The direct likelihood approach and the indirect two step estimator.

The direct likelihood approach is frequently used for single agent problems. It is

based on the idea that for a given parameter value the implied optimal choices and

the value function can be calculated by solving �xed point problems numerically. The

likelihood is maximized by solving the �xed point problems repeatedly for each set

of parameters. As AN (2010) nicely illustrate the direct approach can be extended

to incorporate unobserved state variables by adding an additional layer in which the

distribution of these unobserved states is estimated.

The second estimation approach is indirect building on the idea of two step esti-

mators. In the �rst step the choice probabilities bpT and transition probabilities bgT
are consistently estimated directly from the data by using the sample frequencies, a

Kernel smoother or some other consistent method. In the second step the parameter

vector � is estimated using the least squares criterion function

min
�2�

[bpT �	 (bpT ;bgT ;�)]0WT [bpT �	 (bpT ;bgT ;�)] : (8)

where WT is a symmetric positive de�nite weight matrix. The criterion function

is based on the equilibrium relationship evaluated at the �rst step probability es-

timates, bpT � 	 (bpT ;bgT ;�). The least squares estimator e�T (WT ) is the one that

sets the equilibrium relationship closest to zero in the metric associated with the

scalar product de�ned byWT . Under suitable regularity conditions the least squares

estimator e�T (WT ) is consistent and asymptotically normally distributed.

A number of two step estimators proposed in the literature correspond to di¤erent

choices of the weight matrix WT . These estimators include the pseudo maximum

2We include �g in the parameter vector � to permit the possibility that a parametric restriction

is placed on the state transition g.
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likelihood estimator discussed extensively in AN (2010) and methods of moments

estimators. As explained earlier, the equilibrium relationship bpT = 	 (bpT ;bgT ;�),
is not the only relationship characterizing equilibria. For example, the logarithmic

transformation can be applied on both sides of the equation. This transformation

is illustrated in BHN (2010). The optimal weight matrix WT exists and yields the

e¢ cient least squares estimators. It is characterized in AN (2010). The estimator

with the optimal weight matrix is equivalent to the maximum likelihood estimator.

The two survey papers discuss a number of issues associated with the estima-

tion method and give some applications. Next, I will comment on some issues and

explanations given in the two surveys which I found not entirely convincing.

3 Discussion and Comments

This section discusses some limitations and comments on potential problems with the

described framework. I will comment on (i) multiplicity of equilibria, (ii) unobserved

state variables, (iii) iterative schemes, (iv) the demand framework, and (v) data sets.

3.1 Multiplicity of Equilibria

The static games literature on entry during the late 1980s and early 1990s struggled

with the di¢ culties arising from equilibrium multiplicity inherent to games. The

aim of the static literature was to restrict the payo¤ space or to make additional

assumption in order to �nd a unique prediction that enables estimation. A key

advantage of the recent dynamic games literature is that the uniqueness concern can

be avoided by making use of the time dimension in the data.

Jofre-Bonet and Pesendorfer (2003) introduce the idea that two-step estimators

can be used to estimate a Markovian industry equilibrium. The California highway

paving industry is examined as one regional market in which the same players interact

over time. The observed outcomes, or data, are generated from play from one equi-

librium of the in�nitely repeated game. The Markovian framework enables the use

of repeated observations stemming from one market to obtain consistent estimates.

Thus, asymptotics is in the time dimension. By using the time dimension equilibrium

multiplicity concerns are entirely avoided.

Industry data frequently contain repeated observations of the same players at
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di¤erent time periods. The interpretation of the industry time series in terms of the

earlier described framework is a single realization from the equilibrium path. This is

a powerful new estimation technique especially well suited for industry data.

Some recent papers have extended the approach to estimate using data with both,

a time and cross sectional dimension. Cross sectional data bring along concerns about

multiplicity of equilibria, and unless the equilibrium is unique, the resulting estimates

may be inconsistent as is nicely illustrated in BHN (2010). The inconsistency arises

as the equilibrium is chosen endogenously in every market. The equilibrium choice

is made by market participants. The equilibrium choice is not observed and cannot

be ignored (or assumed away) by the econometrician. Therefore, �assuming that

the same equilibrium is played in distinct markets�does not address the problem.

To the contrary, proceeding on the basis of this �assumption�may yield inconsistent

estimates.

Let me illustrate the inconsistency concern in more detail. The assumption of an

unbounded error support implies that any outcome is possible in any equilibrium.

Equilibria di¤er only in the probability weight assigned to individual outcomes. Now,

pooling choices across distinct markets may not re�ect an equilibrium any longer as

the mixture of equilibria may not be an equilibrium in itself. So, parameter estimates

may become inconsistent if cross sectional data are pooled. The approach described

in AN (2010), which is based on �the assumption that the same equilibrium is played

in distinct markets,�su¤ers from this di¢ culty. The assumption is about endogenous

outcomes and not about model primitives. The assumption may not hold. The

approach may lead to inconsistent estimates.

Cross-sectional data can be used to test the null hypothesis that the same equi-

librium is played in distinct cross-sectional markets. The test approach is nicely

illustrated in BHN (2010). If the time dimension for each market is su¢ ciently long,

then the null hypothesis of identical conditional choice probabilities in distinct mar-

kets can be tested with suitable statistical tests. If the null is not rejected, then the

data may be pooled to obtain more precise estimates. Yet, it needs to be emphasized

that this approach yields consistent estimates as the time dimension gets large but

not as the cross sectional dimension gets large.

3.2 Unobserved State Variables
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Unobserved state variables may arise when the researcher has access to less infor-

mation than was available to the market participants. We shall consider single and

multi-agent situations.

Unobserved state variables for single agent models can be built into the described

framework by creating an outer loop in the likelihood procedure. This approach is

described in AN (2010).

Unobserved state variables for games cause trickier problems as now it matters

who observes what. Two cases can be distinguished: First, suppose the state variables

are known to all players but not to the econometrician. Second, the state variables

are not known to all players but instead private information. The �rst case �ts nicely

into the described framework of estimating dynamic games as is illustrated in BHN

(2010). As long as there is a way to estimate the choice probabilities consistently,

payo¤ parameters can be inferred using the earlier described method.

The second case, when unobserved states are persistent and not known to other

players but private information, is very tricky as in this case the Markovian restriction

has no �bite�. In this case players try to infer other players state based on past

play which gives rise to a model of learning going beyond the Markovian framework

analyzed in the literature and discussed in the two surveys.

3.3 Recursive Schemes

The recursive scheme discussed in section 3 of AN (2010) has serious shortcomings.

First, it does not work well in applications. Second, it may yield inconsistent esti-

mates. Finally, the recursive scheme is not e¢ cient.

Lyapunov stability of the best response mapping is not a convincing equilibrium

selection rule in private information games. Iterative application of the best response

mapping is reasonable for complete information games, such as a Cournot game, in

which strategies are observable. Here players make their choices based on private

information and strategies are not observable. Thus, the concept of �learning�from

observing other players�play is not describable in a simple way and goes well beyond

the Markovian framework.

Some numerical methods to calculate Markovian equilibria are based on updating

the best response mapping. These numerical papers su¤er from the same di¢ culty

as they do not �nd the set of all equilibria but only those equilibria that correspond

to a stable �xed point in the best response mapping.
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3.4 Dynamic Demand

The survey AN (2010) discusses a dynamic demand model which builds on the clas-

sic characteristic space model for static discrete choices. The dynamic element is

incorporated by adding-on a dynamic equation in some way.

Strong functional form assumptions are the building block for the static characteristic-

space discrete-choice demand model. The functional form assumptions determine

the indirect utility and the nature in which the econometric error term enters the

framework. These functional form assumptions impose restrictions on the underlying

preferences of agents. Yet, the link between these functional form assumption and

neoclassical demand theory is not well understood, not even in a static context. In

a sense the static discrete choice demand model is a black box that is di¢ cult to

understand already.

Incorporating dynamics into this framework by adding a dynamic storable goods

relationship or some other dynamic element is a challenge. Recent research incorpo-

rates a parametric dynamic equation into the static model in some way without being

well grounded in dynamic choice theory. The model parameters of the microeconomic

model are then estimated by comparing the moments of the simulated micro model

to the observed data sometimes at the aggregate level. Yet, it is unclear what drives

the parameter estimates as the model framework tends to lack transparency.

3.5 Data

The two surveys describe a number of new empirical methods for single-industry

time-series data. A natural question to ask is whether these methods provide a good

�t. Are some methods better than others? How well do these methods perform with

�eld data? A typical paper in this literature makes some simulations or studies an

application to show that the method is feasible. Individual applications are based on

new data sets or on new simulations making a comparison across papers very di¢ cult

and intractable.

My suggestion, or rather an appeal, is to create a few standardized industry data

sets and to test these methods on these standardized data sets. Other applied �elds

in economics, such as labor economics, agree on a few basic data sets. Methods have

to prove themselves on these data sets and can be compared directly. The dynamic

games literature and IO in general would become much more tractable if researchers
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studied a few key industries with publicly shared data. The features of the individual

methods are then readily comparable.
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