Signalling

Jörn-Steffen Pischke

LSE

October 19, 2018

Pischke (LSE) Singalling October 19, 2018 1 / 23

Introduction

Signalling is an alternative explanation for the schooling - earnings correlation

- Human capital
 - schooling -> productivity -> wage
- Signalling
 - productivity -> schooling
 - productivity -> wage

Pischke (LSE) Singalling October 19, 2018 2 / 23

Model

Worker

$$U(W, S, A) = W - C(S, A)$$

 $C(S, A) = \text{cost of schooling}$
 $C_S(S, A) > 0, C_{SS}(S, A) > 0$
 $C_{SA}(S, A) < 0$

The cost of schooling increases in the level of schooling but is lower for the more able.

Production

$$Y(S,A) = \text{output}$$

 $Y_S(S,A) \ge 0, Y_{SS}(S,A) \le 0$
 $Y_A(S,A) > 0$

A is private information of the worker.

Structure of Equilibrium

Bayesian Nash Equilibrium

- $\textbf{ 0} \ \, \text{Worker hypothesizes a wage schedule} \ \, \widetilde{W}\left(\mathcal{S}\right)$
 - chooses $S^*(A)$
 - 4 If

$$\frac{dS^*}{dA} > 0$$

we can invert the relationship to get A(S)

Competition among firms leads to a market wage schedule

$$W(S) = Y(S, A(S))$$

BNE: Correct conjectures in equilibrium

$$\widetilde{W}(S) = W(S)$$

4 / 23

Solving the Model

Worker's problem

$$\max_{S} W(S) - C(S, A)$$
FOC:
$$W'(S) - C_{S}(S, A) = 0$$
SOC:
$$W''(S) - C_{SS}(S, A) < 0$$

Implicitly differentiate FOC:

$$W''(S) - C_{SS} - C_{SA} \frac{dA}{dS} = 0$$

$$\frac{dA}{dS} = \frac{W'' - C_{SS}}{C_{SA}}$$

$$W'' - C_{SS} < 0 \text{ by SOC}$$

$$C_{SA} < 0 \text{ by assumption}$$

$$\Rightarrow \frac{dS}{dA} > 0$$

Keep Solving the Model

Zero profit condition

$$W(S) = Y(S, A(S))$$

Implicitly differentiate:

$$W'(S) = Y_S(S, A(S)) + Y_A(S, A(S)) \frac{dA}{dS}$$

Combine with FOC

$$W'(S) = C_S(S, A)$$

to get

$$C_S = Y_S + Y_A \frac{dA}{dS}$$

$$\underbrace{Y_S - C_S}_{\text{First Best} = 0} = -Y_A \frac{dA}{dS} < 0$$

Equilibrium in the Signalling Model

schooling

 Pischke (LSE)
 Singalling
 October 19, 2018
 7 / 23

How to think of this

The C(S, ...) function is an indifference curve in W - S space.

• Take U = W - C and hold U fixed:

$$0 = dW - C_S(S,.)dS$$

$$\frac{dW}{dS} = C_S(S,.) > 0$$

$$\frac{d^2W}{dS^2} = C_{SS}(S,.) > 0$$

Different abilities have indifference curves with different slopes:

$$\frac{d^2W}{dSdA}=C_{SA}(S,A)<0$$

Pischke (LSE) Singalling October 19, 2018 8 / 23

Indifference Curves in the Signalling Model

schooling

Adding Output

schooling

Schooling in the Human Capital Model

schooling

Schooling in the Signalling Model

What is the W(S) Function?

Lang and Kropp (1986): Compulsory Schooling

14 / 23

Lang and Kropp (1986): Evidence

Lang and Kropp (1986) suggest that the signalling model implies spillovers from compulsory schooling on those getting more schooling anyway.

- L&K find evidence for spillovers in a panel of US states over time
- Acemoglu and Angrist (2000) found some similar evidence
 - but we saw not robust to state trends
- Chevalier, Harmon, Walker, and Zhu (EJ 2004) find no spillovers for England

Conceptually: in general equilibrium, spillovers could also arise in a HC model because of relative supply changes or complementarities

Bedard (2001): Change in College Access

Like L&K: Look for a comparative statics implication of signalling not shared by the human capital model.

- Three schooling levels: dropouts, high school graduates, and college graduates
- Continuous ability types
- No return to schooling, wages are average productivities of types
- Constraint: not everybody who wants to go to college gets to go (e.g. credit constraint)

What happens to schooling choices when the constraint changes?

 Pischke (LSE)
 Singalling
 October 19, 2018
 16 / 23

The Bedard (2001) Model

17 / 23

Bedard (2001): Implications

Remember wages are average productivities of types. What happens when we relax the constraint?

- Some previously constrained types now go to college
 - fewer high school grads
 - average ability of high school grads falls, high school wage falls
- A_{HS} goes up, some high school grads now decide to drop out
 - A_C goes down, some high school grads now decide to go to college (not interesting as college directly affected by constraint)
- Empirical Implementation
 - NLS Young Men and Women (1960s 70s)
 - Measure of constraint: whether there is a college in the local labour market

Bedard (2001): Basic Results

TABLE 1
Descriptive Statistics

	ENTIRE SAMPLE		Men		Women	
	Men (1)	Women (2)	Access (3)	No Access (4)	Access (5)	No Access (6)
Average score on KWW test (%):						
High school dropouts	50.4	57.0	51.3*	48.8	58.2*	54.9
High school graduates	55.3	70.2	55.7	54.7	70.5	70.0
University enrollees	61.8	79.1	62.4	60.8	80.0	78.1
Mean years of education	13.3	13.0	13.4	13.2	13.1	13.0
Distribution of education choices (%):						
High school dropouts	21.6	19.6	22.3	20.5	21.3*	17.3
High school graduates	30.9	47.8	28.5	34.6	44.5	52.2
University enrollees	47.6	32.6	49.2	44.9	34.2	30.5
Sample size	3,203	2,693	1,972	1,231	1,563	1,130

Tyler, Murnane, and Willett (2000): GED taking

In 1996, about 10% of 18-24 year olds held a General Educational Development Certificate (GED) instead of a high school diploma.

- The GED is a uniform test throughout the US
- Passing standards differ by state
 - 40-44 is a passing score in Texas but not in New York or Florida
- Idea: compare GED holders and non-holders with the same scores
 - score: controls for human capital
 - GED: signal of completing educational credential
- Why might passing the GED be a signal?
 - Costs: \$50 fee, a full day to take the exam, the average GED taker studies for 20 hours
 - not all high school dropouts attempt the GED
 - attempting is relatively cheap, passing might only be possible for higher ability dropouts

Tyler, Murnane, and Willett (2000): Basic Results

Experiment 4					
-	_	Low-High			
Low	High	contrast			
tes					
9628	7849	1779			
(361)	(565)	(670)			
9981	9676	305			
(80)	(65)	(103)			
Difference-in-differences					
for whites					
	State r stand Low tes 9628 (361) 9981 (80) -different	State passing standard is Low High tes 9628 7849 (361) (565) 9981 9676 (80) (65) -differences			

Tyler, Murnane, and Willett (2000): Effects over Time

Tyler, Murnane, and Willett (2000): Interpretation

- Returns for whites are \$1,000 to \$1,500 on baseline earnings around \$8,000, a 10-20% return
- OLS returns are in the order of 15%, suggesting that the entire return to the GED is that of a signal
- Zero effects on minorities
 - Many dropouts in prison are required to take the GED. Blacks are more likely to be in prison. Employers may infer a criminal record for them from a GED.
- Returns seem to build up over time
 - Not consistent with signalling (see Farber and Gibbons, QJE, 1996)
- Is the effect due to post-secondary schooling or training?
 - GED holders in Texas accumulate about 7 college credits or 0.2 of a year, at a 10 % return that is 2 percentage points