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3.1 Regression Fundamentals

The end of the previous chapter introduces regression models as a computational device for the estimation
of treatment-control di¤erences in an experiment, with and without covariates. Because the regressor of
interest in the class size study discussed in Section 2.3 was randomly assigned, the resulting estimates have
a causal interpretation. In most cases, however, regression is used with observational data. Without the
bene�t of random assignment, regression estimates may or may not have a causal interpretation. We return
to the central question of what makes a regression causal later in this chapter.
Setting aside the relatively abstract causality problem for the moment, we start with the mechanical

properties of regression estimates. These are universal features of the population regression vector and its
sample analog that have nothing to do with a researcher�s interpretation of his output. This chapter begins
by reviewing these properties, which include:
(i) the intimate connection between the population regression function and the conditional expectation

function
(ii) how and why regression coe¢ cients change as covariates are added or removed from the model
(iii) the close link between regression and other "control strategies" such as matching
(iv) the sampling distribution of regression estimates

3.1.1 Economic Relationships and the Conditional Expectation Function

Empirical economic research in our �eld of Labor Economics is typically concerned with the statistical
analysis of individual economic circumstances, and especially di¤erences between people that might account
for di¤erences in their economic fortunes. Such di¤erences in economic fortune are notoriously hard to
explain; they are, in a word, random. As applied econometricians, however, we believe we can summarize and
interpret randomness in a useful way. An example of �systematic randomness�mentioned in the introduction
is the connection between education and earnings. On average, people with more schooling earn more
than people with less schooling. The connection between schooling and average earnings has considerable
predictive power, in spite of the enormous variation in individual circumstances that sometimes clouds this
fact. Of course, the fact that more educated people earn more than less educated people does not mean that
schooling causes earnings to increase. The question of whether the earnings-schooling relationship is causal
is of enormous importance, and we will come back to it many times. Even without resolving the di¢ cult
question of causality, however, it�s clear that education predicts earnings in a narrow statistical sense. This
predictive power is compellingly summarized by the conditional expectation function (CEF).
The CEF for a dependent variable, yi given a k�1 vector of covariates, Xi (with elements xki) is the

expectation, or population average of yi with Xi held �xed. The population average can be thought of as the
mean in an in�nitely large sample, or the average in a completely enumerated �nite population. The CEF
is written E [yijXi] and is a function of Xi. Because Xi is random, the CEF is random, though sometimes
we work with a particular value of the CEF, say E[yijXi=42], assuming 42 is a possible value for Xi. In
Chapter 2, we brie�y considered the CEF E[yijdi], where di is a zero-one variable. This CEF takes on two
values, E[yijdi = 1] and E[yijdi = 0]: Although this special case is important, we are most often interested
in CEFs that are functions of many variables, conveniently subsumed in the vector, Xi: For a speci�c value
of Xi, say Xi = x, we write E [yijXi = x]. For continuous yi with conditional density fy (�jXi = x), the
CEF is

E [yijXi = x] =

Z
tfy (tjXi = x) dt:

If yi is discrete, E [yijXi = x] equals the sum
P
t tfy (tjXi = x).

Expectation is a population concept. In practice, data usually come in the form of samples and rarely
consist of an entire population. We therefore use samples to make inferences about the population. For
example, the sample CEF is used to learn about the population CEF. This is always necessary but we
postpone a discussion of the formal inference step taking us from sample to population until Section 3.1.3.
Our �population �rst�approach to econometrics is motivated by the fact that we must de�ne the objects of
interest before we can use data to study them.1

Figure 3.1.1 plots the CEF of log weekly wages given schooling for a sample of middle-aged white men
from the 1980 Census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years
of schooling. The CEF in the �gure captures the fact that� the enormous variation individual circumstances

1Examples of pedagogical writing using the �population-�rst�approach to econometrics include Chamberlain (1984), Gold-
berger (1991), and Manski (1991).
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notwithstanding� people with more schooling generally earn more, on average. The average earnings gain
associated with a year of schooling is typically about 10 percent.

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes white
men aged 40-49 in the 1980 IPUMS 5 percent �le.

An important complement to the CEF is the law of iterated expectations. This law says that an
unconditional expectation can be written as the population average of the CEF. In other words

E [yi] = EfE [yijXi]g; (3.1.1)

where the outer expectation uses the distribution of Xi. Here is proof of the law of iterated expectations
for continuously distributed (Xi;yi) with joint density fxy (u; t), where fy (tjXi = x) is the conditional
distribution of yi given Xi = x and gy(t) and gx(u) are the marginal densities:

EfE [yijXi]g =

Z
E [yijXi = u] gx(u)du

=

Z �Z
tfy (tjXi = u) dt

�
gx(u)du

=

Z Z
tfy (tjXi = u) gx(u)dudt

=

Z
t

�Z
fy (tjXi = u) gx(u)du

�
dt =

Z
t

�Z
fxy (u; t) du

�
dt

=

Z
tgy(t)dt:

The integrals in this derivation run over the possible values of Xi and yi (indexed by u and t). We�ve laid
out these steps because the CEF and its properties are central to the rest of this chapter.
The power of the law of iterated expectations comes from the way it breaks a random variable into two

pieces.

Theorem 3.1.1 The CEF-Decomposition Property

yi = E [yijXi] + "i,

where (i) "i is mean-independent of Xi, i.e., E["ijXi] = 0;and, therefore, (ii) "i is uncorrelated with any
function of Xi.
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Proof. (i) E["ijXi] = E[yi � E [yijXi] j Xi] = E [yijXi] � E [yijXi] = 0;(ii) This follows from (i): Let
h(Xi) be any function of Xi. By the law of iterated expectations, E[h(Xi)"i] = Efh(Xi)E["ijXi]g and by
mean-independence, E["ijXi] = 0:
This theorem says that any random variable, yi, can be decomposed into a piece that�s �explained by

Xi�, i.e., the CEF, and a piece left over which is orthogonal to (i.e., uncorrelated with) any function of Xi.
The CEF is a good summary of the relationship between yi and Xi for a number of reasons. First, we

are used to thinking of averages as providing a representative value for a random variable. More formally,
the CEF is the best predictor of yi given Xi in the sense that it solves a Minimum Mean Squared Error
(MMSE) prediction problem. This CEF-prediction property is a consequence of the CEF-decomposition
property:

Theorem 3.1.2 The CEF-Prediction Property.
Let m (Xi) be any function of Xi. The CEF solves

E [yijXi] = argmin
m(Xi)

E
h
(yi �m (Xi))2

i
;

so it is the MMSE predictor of yi given Xi:

Proof. Write

(yi �m (Xi))2 = ((yi � E [yijXi]) + (E [yijXi]�m (Xi)))2

= (yi � E [yijXi])2 + 2 (E [yijXi]�m (Xi)) (yi � E [yijXi])
+ (E [yijXi]�m (Xi))2

The �rst term doesn�t matter because it doesn�t involve m (Xi). The second term can be written h(Xi)"i,
where h(Xi) � 2 (E [yijXi]�m (Xi)), and therefore has expectation zero by the CEF-decomposition prop-
erty. The last term is minimized at zero when m (Xi) is the CEF.
A �nal property of the CEF, closely related to both the CEF decomposition and prediction properties,

is the Analysis-of-Variance (ANOVA) Theorem:

Theorem 3.1.3 The ANOVA Theorem

V (yi) = V (E [yijXi]) + E [V (yijXi)]

where V (�) denotes variance and V (yijXi) is the conditional variance of yi given Xi:

Proof. The CEF-decomposition property implies the variance of yi is the variance of the CEF plus the
variance of the residual, "i � yi � E [yijXi] since "i and E [yijXi] are uncorrelated. The variance of "i is

E
�
"2i
�
= E

�
E
�
"2i jXi

��
= E [V [yijXi]]

where E
�
"2i jXi

�
= V [yijXi] because "i � yi � E [yijXi].

The two CEF properties and the ANOVA theorem may have a familiar ring. You might be used to
seeing an ANOVA table in your regression output, for example. ANOVA is also important in research on
inequality where labor economists decompose changes in the income distribution into parts that can be
accounted for by changes in worker characteristics and changes in what�s left over after accounting for these
factors (See, e.g., Autor, Katz, and Kearney, 2005). What may be unfamiliar is the fact that the CEF
properties and ANOVA variance decomposition work in the population as well as in samples, and do not
turn on the assumption of a linear CEF. In fact, the validity of linear regression as an empirical tool does
not turn on linearity either.

3.1.2 Linear Regression and the CEF

So what�s the regression you want to run?

In our world, this question or one like it is heard almost every day. Regression estimates provide a valuable
baseline for almost all empirical research because regression is tightly linked to the CEF, and the CEF
provides a natural summary of empirical relationships. The link between regression functions � i.e., the
best-�tting line generated by minimizing expected squared errors � and the CEF can be explained in at
least 3 ways. To lay out these explanations precisely, it helps to be precise about the regression function we


