
Ec485 Lecture 1, LT2023

PANEL DATA MODELS
(or Longitudinal or Time-Series/Cross-Section)

and an INTRODUCTION TO SIMULATION-BASED INFERENCE

1 Preliminary Issues:

1.1 At least double-indexed data

Panel or Longitudinal or Time-series/Cross-section Data are such where a unit of observation s subsumes at least
two indices/dimensions of sampling. E.g.,

s = 1, · · · , S
ys x′s εs s = it where i = 1, · · · , N cross-section side

t = 1, · · · , Ti time-series side

NB: Throughout our discussion, we will focus on “Large N, small T”asymptotics with N → ∞ while maxi Ti ≈
small and finite.
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1.2 Organization of the data – three alternatives with two dimensions:

1.2.1 t “fastest”:

{ys} =


y1
...
ys
...
yS

 =


y11
...
yit
...

yNTN

 =



y11
y12
...
y1t
...

y1T1
−−−
y21
y22
...
y2t
...

y2T2
−−−
...
yN1
...

yNTN



...



IID


...



TID
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1.2.2 i “fastest”:

{ys} =


y1
...
ys
...
yS

 =


y11
...
yit
...

yNTN

 =



y11
y21
...
yi1
...
yN1
−−−
y12
y22
...
yi2
...
yN2
−−−
...
yN1
...

yNTN



...



IID


...



TID


3



1.2.3 data organized as they come but double-indexed ID variables:

{ys} =


y1
...
ys
...
yS

 ...


iid(1)
...

iid(s)
...

iid(S)

 ...


tid(1)
...

tid(s)
...

tid(S)


= Sx1 vector y ... Sx1 vector IID ... Sx1 vector TID

.
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1.3 (3) Balanced (Ti = T ) vs. Unbalanced Data Sets (Ti varies with i)

Balanced: S = N × T :


y1
...
ys
...
yS

 =



y11
y12
...
y1t
...
y1T
−−−
y21
y22
...
y2t
...
y2T
−−−
...
yN1
...

yNT
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Unbalanced: S =
∑N

i=1 Ti :


y1
...
ys
...
yS

 =



y11
y12
...
y1t
...

y1T1
−−−
y21
y22
...
y2t
...

y2T2
−−−
...
yN1
...

yNTN
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1.3.1 (3b) (related issue) Use PADDINGwithMissing Data Code (MDC) – Then every Unbalanced
PDS becomes Balanced

New single constant T = maxi Ti .

1.3.2 (3c) (related issue) DROP OBSERVATIONS to make Balanced

Example: new single constant T = mini Ti.
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(4) Lagged variables in Panel Data

LAG1


y0
...

ys−1
...

yS−1

 =



y10
y11
...

y1,t−1
...

y1,T1−1
−−−
y1T1
y21
...

y2,t−1
...

y2,T2−1
−−−
...

yN−1,TN
...

yN,TN−1



=



MDC
y11
...

y1,t−1
...

y1,T1−1
−−−
y1T1
y22
...

y2,t−1
...

y2,T2−1
−−−
...

yN−1,TN
...

yN,TN−1



vs. XTLAG1


y0
...

ys−1
...

yS−1

 =



y10
y11
...
y1t
...

y1,T1−1
−−−
y20
y22
...

y2,t−1
...

y2,T2−1
−−−
...

−−−
yN0
...

yN,TN−1



=



MDC
y11
...
y1t
...

y1,T1−1
−−−
MDC
y22
...

y2,t−1
...

y2,T2−1
−−−
...

−−−
MDC
...

yN,TN−1


In sum, the LAG1 variable will contain a single Missing Value, whereas the XTLAG1 variable will contain N Mising
Values.
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1.4 (5) Linear vs. Nonlinear models (additive vs nonadditive, index vs general)

s = 1, · · · , S i = 1, · · · , N and t = 1, · · · , Ti
Linear ys = x′sβ + εs yit = x′itβ + εit

Additively Nonlinear Index ys = f(x′sβ) + εs yit = f(x′itβ) + εit
Additively Nonlinear ys = g(x′s, β) + εs yit = g(x′it, β) + εit

Non-additively Nonlinear ys = h(x′s, β, εs) yit = h(x′it, β, εit)
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1.5 (6) Combination of (1) and (3): Endogenous Data Availability

NB: even an apparently Linear model is in fact Nonlinear if Endogenous Data Availability – Distinction between
Latent and (observed) Limited Dependent Variables.
Modelling Framework: Sample Selection or Selectivity or Endogenous Data Availability or Endogenous Attrition
Two-equation Latent variables model:

y∗it = x′itβ + εit

d∗it = z′itγ + uit

Observation LDV Rule:

Dit =

{
1 iff d∗it = z′itγ + uit > 0
0 iff d∗it = z′itγ + uit ≤ 0

and

yit =

{
y∗it iff d∗it = z′itγ + uit > 0

MDC iff d∗it = z′itγ + uit ≤ 0

NB: Distinction between Censored Selectivity and Truncated Selectivity:

Selectivity with Censoring

yit =

{
y∗it iff Dit = 1

MDC iff Dit = 0
and

Dit, xit, and zit always observed

Selectivity with Truncation

yit =
{
y∗it iff Dit = 1 and

Dit, xit, and zit observed *only* when Dit = 1
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NB: Fundamental Point: If uit&εit are *not* *independent*, then

E(yit|X) 6= x′itβ and E(yit|X,Z) 6= x′itβ *BUT*

E(yit|X,Z) = g(x′it, z
′
it, δ)

where the parameter vector δ is related to β, γ, σ2ε , σ
2
u, and ρεu.
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1.6 (7) Types of variables w.r.t. i and t indices:

xjs = xjit vs. zjs = zji vs. wjs = wjt
default time-invariant individual-invariant (e.g., economy-wide/macro)

.
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1.7 (8) Error-Components/Factor-Analytic structures:

1.7.1 Error-components with single time-invariant factor:

εs = εit = αi + νit = αs + νs

NOTE: αi is termed the “unobserved persistent heterogeneity”.

Basic assumptions:

αi ∼
iid over i

?(0, σ2α)

νit ∼
iid over i and t

?(0, σ2ν)

and αi,ν`t independent/uncorrelated for all i, `, t

NB: Key conclusion: V Cov(ε|regressors) is a Block-Diagonal matrix with Diagonal blocks equal to:
σ2α + σ2ν σ2α · · · σ2α

σ2α + σ2ν
. . .

...
. . . σ2α

σ2α + σ2ν


and Off-Diagonal blocks between individuals i and n equal to 0Ti×Tn . This is called the “equi-correlated” error
components model.
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Error-components with two factors (one time-, one individual-invariant):

εs = εit = αi + ζt + νit = αs + ζs + νs

.where

αi ∼
iid over i

?(0, σ2α)

νit ∼
iid over i and t

?(0, σ2ν)

ζt ∼
iid over t

?(0, σ2ζ)

and αi,ν`t,ζq mutually independent/uncorrelated for all i, `, t, q

The V Cov(ε|regressors) matrix has a similar block structure with σ2α+σ2ν +σ2ζ on the main diagonal, and either
σ2α, σ

2
ζ , or σ

2
α + σ2ζ in the elements of the off-diagonal blocks depending on the values of i, `, t.

.
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2 Random Effect “vs.”Fixed Effects

Common misconception: the approaches are frequently thought of as *alternative* DGPs. A much more appropriate
framework is to think of them as the *same* DGP, but alternative Estimation Approaches
Common DGP with one-factor error-components model as in (1.8) above:

yit = x′itβ + z′iγ + εit = x′itβ + z′iγ + αi + νit

RE Approaches: in *RED*: [.]+[.]

yit = x′itβ + z′iγ + εit = [x′itβ + z′iγ] + [αi + νit]

FE Approaches in *BLACK*: (.) + (.)

yit = x′itβ + z′iγ + εit = (x′itβ + z′iγ + αi) + (νit)

FE-(BLACK): The four classic regression assumptions A1, A2, A3, A4 take the form:

A1 no perfect multicollinearity among the regressors X and Z rank(X,Z) = kx + kz
A2 linear additive model y = Xβ + Zγ + ε
A3 regressor exogeneity X and Z exogenous w.r.t. ε
A4 V Cov(error|regressors) V Cov(ε|X,Z)

RE-[RED]: Now the four classic regression assumptions A1, A2, A3, A4 take the form: (D is the full set of N
variable intercepts dummies, one for each individual)

A1 no perfect multicollinearity among the regressors X and D
rank(X,D) = kx + kz +N

NB : Z is dropped
since perfectly collinear with D

A2 linear additive model y = Xβ + Zγ + ε = Xβ +Dα + ν

A3 regressor exogeneity
X and D exogenous w.r.t. ν

(no Z regressors)
A4 V Cov(error|regressors) V Cov(ν|X,D)
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2.1 *FE-TYPE estimators: the αi’s are eliminated through suitable transfor-
mation or conditioned upon or estimated through suffi cient statistics

Key fact: Parameters estimated (either explicitly or implicitly): β (kx) and a1, · · · , aN (N), σ2ν (1)

2.1.1 FE1: FD

***Apply OLS on FD model:
∆yit = ∆x′itβ + 0 + 0 + ∆νit

NB1: No estimates of γ are possible by the approach since Z has dropped out.
NB2: ∆νit is a non-invertible MA(1) process, with known parameter −1. Hence OLS will not be BLUE and we

will need to calculate Robust SEs/VCovs

2.1.2 FE2: Quasi-differencing/Within

***Apply OLS on Quasi-Differenced model:

Qy = QXβ +QZγ +Qα +Qν = QXβ +Qν

where Qy has typical element

{Qy}it = yit − ȳi· ≡ yit −
Ti∑
t=1

yit

Consequently, the Q transformation eliminates all time-invariant terms – in particular α and Z.
NB1: No estimates of γ are possible by the approach since Z has dropped out.
NB2: The transformation Q is idempotent (and symmetric, hence a projection matrix). Therefore, the

V Cov(ν|X) = Qσ2νINTQ
′ = σ2νQ
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which is *singular* (it has deficient rank). Therefore its generalized inverse will be *itself* and so the GLS estimator
to take into account the non-spherical distribution of ν will be *identical* to plain OLS! To see this formally:

plain OLS : β̂FE2 = β̂W = ((QX)′(QX))
−1

(QX)′(Qy)

GLS :
(

(QX)′ (V Cov(ν|X))geninv (QX)
)−1

(QX)′ (V Cov(ν|X))geninv (Qy)

= ((QX)′Q(QX))
−1

(QX)′Q(Qy) = β̂FE2 = β̂W

NB3: The FE2 model is *numerically* *identical* to the Variable Intercepts OLS model:

y = Xβ +Dα + ν

because by the Frisch-Waugh-Lovell theorem, linear regression partitioning gives that:

β̂V Iols = ((MDX)′(MDX))
−1

(MDX)′(MDy) : MD ≡ INT −D(D′D)−1D′ = Q

= ((QX)′(QX))
−1

(QX)′(Qy) = β̂FE2 = β̂W
{α̂V Iols}i = ȳi· − x̄′i·β̂FE2
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2.2 *RE-TYPE estimators:

Key fact: Parameters estimated: β (kx), γ (kz), σ2α (1), and σ2ν (1)

Consider model
y = [Xβ + Zγ] + [α + ν] = [Xβ + Zγ] + [ε] ≡ Wθ + ε

RE1: pooled OLS

θ̂RE1 =

(
β̂RE1
γ̂RE1

)
= (W ′W )−1W ′y

NB: This will *not* be BLUE and its *Robust* SEs/VCov must be calculated to allow for the Clustering exhibited
by the *block-diagonal* V Cov(ε|X,Z) ≡ σ2εΩ.
RE2: "the RE"-GLS estimator

θ̂RE2 = θ̂REgls =

(
β̂REgls
γ̂REgls

)
= (W ′Ω−1W )−1W ′Ω−1y

NB1: This estimator will be BLUE and will have the correct SEs/VCov.
NB2: In 1972, Fuller and Battese showed that calculating Ω−1, which is computationally burdensome, can be

avoided. Instead, the rotation Ω−1/2′ yields the equivalent very straightforward expressions:

Ω−1/2′y = {yit − λiȳi·}
Ω−1/2′X = {xit − λix̄i·}
Ω−1/2′Z = {(1− λi)zi}

where λi = 1−

√
σ2ν

σ2ν + Tiσ2α

Hence the RE2-GLS estimator can be obtained by applying plain OLS on the Ω−1/2′-transformed variables.
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