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Further Topics in Econometrics
(Ec485/Ec518)

Panel Data Models

1 Static Models: Linear or Nonlinear?

The basic linear model is:

yit = x′itβ + εit, i = 1, · · · , N, t = 1, · · · , Ti (1)

Typically N is very large (several hundreds or even thousands) while Ti is quite
small (ranging from 2− 10 in most cases, and very rarely exceeding 20). If Ti = T
for every i, the panel data set is said to be “balanced”– otherwise it is “unbal-
anced.”

1.1 Preliminary Issues

Endogenously vs. Exogenously Unbalanced Data Sets An important is-
sue to determine at the outset is whether a panel data set is unbalanced due to
endogenous causes, i.e., causes related to the economic mechanism we are trying
to model. For example, if yit is earnings and the richer people are more likely to
drop out of the sample as time goes by because the value of their time is higher
than others’, that would be a case of an endogenously unbalanced data set. In
such a case, though the basic model we are trying to fit is the linear regression
(1), to take correct account of the fact that in such a case the relevant expression
would be the conditional expectation

E(yit|xit and individual i stays in the sample at period t)

we would need non-linear sample-selectivity methods. In other words, we would
need to model the discrete mechanism characterizing the dummy variable:

dit =

{
1 if individual i is in the sample in period t

0 otherwise

and the joint linear conditional model:

yit = x′itβ + εit observed iff dit = 1.
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Types of Explanatory Variables The set of explanatory variables xit may
include:

1. variables that vary across individuals and time periods, e.g., wage, age, and
years of experience;

2. variables that are time-invariant, i.e., vary only across individuals, e.g., race
and sex; and

3. variables that vary only over time but not across individuals, e.g., economy-
wide unemployment, minimum-wage level, and other macroeconomic factors.

Stacking of Vectors and Matrices In matrix notation, the model can be
written as:

y = Xβ + ε

where y and ε are
∑N

i=1 Ti×1 vectors (= NT×1 for balanced data sets), andX is a∑N
i=1 Ti×k (NT ×k respectively) matrix. The convention is to stack observations

in groups of all time observations for each individual, e.g.,
y = (y11, y12, · · · , y1T1 , y21, y22, · · · , y2T2 , · · · , yN1, yN2, · · · , yNTN )′

1.2 Unobserved Persistent Heterogeneity/Error Compo-
nents

The simple one-factor error components model is:

εit = αi + νit, αi ∼ i.i.d.over i, νit ∼ i.i.d. over i and t,

αi independent of every νjt,∀i, j, t,
with Eαi = 0, Eνit = 0, Eα2i = σ2α, and Eν

2
it = σ2ν . The presence of the time-

invariant random-effect αi implies the presence of persistent unobserved hetero-
geneity and the variance-covariance structure:

Eεitεjs =


σ2α + σ2ν for i = j and t = s

σ2α for i = j and t 6= s

0 if i 6= j.

Consequences Error-components structures imply violations of A4:Eεε = σ2I
in the form of (at least) serial correlation in the error terms. Hence OLS estimation
in such models will not be BLUE and will have a variance-covariance matrix not
equal to σ2(X ′−1.
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Macro or Time Effects The two-factor error components model is:

εit = αi+δt+νit, αi ∼ i.i.d. over i, δt ∼ i.i.d. over t , νit ∼ i.i.d. over i and t,

αi, νjt, and δt mutually statistically independent ∀i, j, t,
with Eαi = Eνit = Eδt = 0, Eα2i = σ2α, Eδ

2
t = σ2δ, and Eν

2
it = σ2ν . The pres-

ence of the individual-invariant δt random effect is meant to capture unobservable
macroeconomic or time-effects.

1.3 Alternative Estimators

OLS β̂ols is obtained by an OLS regression of yit on xit. The true error from this
model is εit = αi + νit, which is serially correlated within each individual block of
observations. Hence, this estimator will not be BLUE since A4 is violated.

Fixed Effects or Within This is obtained by either (a) a regression of yit on
xit and a set of N dummy variables for each individual or, equivalently (proved
using partitioned regression theory) (b) a regression of yit − ȳi· on xit − x̄i· to get
β̂fe followed by the calculations α̂i,fe = ȳi· − x̄′i·β̂fe.
The true error term corresponding to this regression is εit − ε̄i· = νit − ν̄i·.
Assuming A1-A3 hold, β̂fe is unbiased and consistent as long as NT → ∞,

while the α̂i’s are unbiased but do not converge to the true αi’s unless Ti → ∞
for every i (since they are each based only on the Ti observations of individual i).

Random Effects or GLS This is obtained by an OLS regression of yit − λiȳi·
on xit − λix̄i·, where λi = 1 −

√
σ2ν

Tiσ2α+σ
2
ν
. In practice, we have to work with the

feasible GLS estimator that uses a consistent estimator λ̂i for λi based on consistent
estimators for σ2α and σ

2
ν . Assuming A1-A3 are satisfied and the error has indeed

a one-factor RE structure, this estimator will be asymptotically (as NT →∞) the
best linear consistent asymptotically normal estimator.
The true error term corresponding to this GLS regression is:

εit−λiε̄i· = (1−λi)αi + νit−λiν̄i·. This error satisfies A4, i.e., it is homoskedastic
and serially uncorrelated.

Between This investigates the variability between individuals and is calculated
through an OLS regression of ȳi· on x̄i·. The true error of this equation is ε̄i· =
αi + ν̄i·.
The main attractive feature of this approach is to allow us to obtain a consistent

estimator for σ2α – see below.
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1.4 Comparisons of Methods —Fixed vs. Random Effects

The Case of E(αi|xit) = 0 Among the four estimators defined above, the best
linear estimator asymptotically as NT →∞ is the feasible GLS/RE one, since the
implied error of the GLS regression satisfies A4.

The Case of E(αi|xit) 6= 0 This implies that A3R3 is violated because of the
correlation between αi and the regressors. Hence, all methods with the exception of
FE/Within will be inconsistent. Since β̂fe is obtained having eliminated the αi’s
through the FE transformation, the consistency of this estimator only requires
NT → ∞ irrespective of any possible correlation between α’s and x’s. Thus in
such a case, FE is the only available estimator that is consistent. Some notes
follow:

1. There is no need to carry out GLS as opposed to plain OLS estimation of
the FE-transformed model (i.e., yit− ȳi· on xit− x̄i·) to “correct”the induced
serial correlation in the resulting error νit − ν̄i·. This is because this error
has an idempotent covariance matrix, which implies that GLS and OLS will
give numerically the same answer in such a case.

2. Measurement errors in xit’s may be exacerbated through the FE transforma-
tion in case the measurement error fluctuates substantially over time, while
the explanatory variables do not. This is because in such a case the FE
transformation will result in regressors that contain a lot of noise and very
little signal.

3. The fixed-effects transformation will eliminate from the regression any vari-
ables that are time-invariant (just like it does to the α’s). In many situations
in practice, such variables are the ones of primary focus. Alternative meth-
ods that combine Instrumental Variable Estimation with the Fixed-Effects
transformation can overcome this problem.

1.5 First-Differences and Within/FE

Carrying out OLS on the first-differenced model:

∆yit = ∆x′itβ + ∆εit

also provides an estimator for β that does not rely on the properties of the αi’s,
since the ∆ transformation eliminates them. This approach, however, will gener-
ally be dominated by the Fixed-Effects approach since the latter, in addition to
eliminating the α’s, also implies error terms with an idempotent covariance matrix,
which eliminates any need for carrying out GLS estimation in preference to OLS.
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In contrast to this, the error ∆εit is a Moving-Average(1) error process with
MA parameter equal to −1; therefore, it has a (non-singular) variance-covariance
structure which would require either GLS estimation or at least correcting the
standard errors of the OLS estimator applied to the ∆ model.
The only exception occurs with a balanced set with T = 2 for all individuals.

In that case, the ∆ model and the Fixed-Effects model are numerically identical
models, since yi2 − yi1 = yi2 − 1

2
(yi1 + yi2).

1.6 Estimation of σ2α and σ2ε

Assuming a balanced sample,1 the OLS s2fe obtained from the Fixed-effects regres-
sion is a consistent estimator for the variance of νit−ν̄i·, which is σ2ν+ 1

T
σ2ν−2 1

T
σ2ν =

T−1
T
σ2ν . Hence, a consistent estimator for σ

2
ν is: σ̂

2
ν ≡ T

T−1s
2
fe.

Note that practically the same answer (for large NT ) can be obtained by
recognizing that the fixed-effect regression has NT − N − k degrees of freedom
instead of the NT − k assumed by the OLS package. Hence, a consistent (and
unbiased) estimator for σ2ν is:

NT−k
N(T−1)−ks

2
fe.

A consistent estimator for σ2α can then be obtained using the s
2
ols,B from the

Between regression by recognizing that the Between regression error term ε̄i· =
αi + ν̄i· has variance σ2α + 1

T
σ2ν . Hence, we define σ̂

2
α ≡ σ2B − 1

T
σ̂2ν . (Note that

this estimate might turn out to be negative, since it is obtained from two separate
regressions. In such a case, one should conclude that the best guess for σ2α is then
0, i.e., the error term is a pure i.i.d. innovation satisfying A4.)

1.7 Wu-Hausman Tests

Suppose we have two alternative estimators, θ̂I and θ̂II , for a true parameter vector
θ. Further suppose that if a particular hypothesis H0 is correct, both estimators
are consistent and asymptotically normal with variance-covariance matrices VI and
VII , and matrix of covariances between the two estimators VI,II . Finally suppose
that if the null hypothesis is false the two estimators converge to different answers
– for example, one of them might remain consistent while the other one becomes
inconsistent, or both of them might become inconsistent but idiosyncratically so.
Then the Wu-Hausman quadratic form:

Q = (θ̂I − θ̂II)′(VI + VII − VI,II − VII,I)−1(θ̂I − θ̂II)
1If it is not, we can artificially balance it solely for the purposes of obtaining the σ estimates

by working only with mini Ti for each individual. Of course, estimation of the β’s should use the
complete, unbalanced data set.
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under H0 converges in distribution to a χ2(k), where k is the number of elements
in θ.
In the case that one of the estimators, say β̂I , is effi cient under H0, from the

Rao-Blackwell theorem it follows that VI,II = VII,I = VI . Hence, the variance-
covariance expression in the middle of Q simplifies to VII − VI .
Applying this approach to the linear panel data problem, we can use the Q

statistic based on any pair of estimators for β out of β̂fe, β̂gls, and β̂B. For large
NT , the three alternative Q statistics can be shown to be numerically equivalent,
in small samples differing only due to imperfections in estimating σ2ν and σ

2
α. Given

that β̂gls is effi cient under
H0 : αi and νit mean-independent of xit
and that VB,FE = 0 (since the variability in yit− ȳi· is orthogonal to the variability
in ȳi·), it follows that:

V (β̂B − β̂fe) = V (β̂B) + V (β̂fe),

V (β̂B − β̂gls) = V (β̂B)−
V (β̂gls), V (β̂gls − β̂fe) = V (β̂fe)− V (β̂gls).

1.8 Estimation with Time Effects

The two-factor error components model:

εit = αi + δt + νit

can be analyzed in one of two ways:
(1) We can treat both α and δ as random effects and work with the GLS transfor-
mation:

yit − λiȳi· − θtȳ·i − ζy··
where λ, θ, and ζ are functions of Ti, N , σ2α, σ

2
δ, and σ

2
ν . Alternatively:

(2) We can treat αi as a random effect while the δt’s as fixed effects to be estimated
using a dummy variable for each time-period. This approach is very straightfor-
ward and has the additional advantage that few degrees of freedom are lost by the
fixed-effects assumption for the δ’s, since there are only T of them. The fixed-
δt, random-αi approach is particularly useful in non-linear panel data
models.
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2 Linear Dynamic Models

The basic model (with a single lagged dependent variable) is:

yit = θyi,t−1 + x′itβ + εit (2)

The main issues can be illustrated with the simple one-factor error-components
model
εit = αi + εit.

2.1 Consequences for OLS, RE/GLS, Between, and FE/W
Estimators

In the dynamic case, all four estimation approaches we have discussed above suffer
from endogeneity or a violation of A3R3, which leads to inconsistency. This is
because:

1. The regressor yi,t−1, which depends on the error εi,t−1 = αi + νi,t−1, is corre-
lated with the current error εit = αi + νi,t because of the presence of αi in
both. Hence OLS will be inconsistent.

2. The regressor yi,t−1 − λ̂ȳi·, which depends on the error
εi,t−1 − λ̂ε̄i· = (1− λ̂)αi + νi,t−1 − λ̂ν̄i·, is correlated with the current error
εi,t− λ̂ε̄i· = (1− λ̂)αi + νit− λ̂ν̄i·, because of the presence of αi in both, and
because Eνisν̄i· 6= 0 and Eν̄2i· 6= 0 (unless if Ti → ∞). Hence GLS will be
inconsistent.

3. The between estimator is not useful in this case because ȳi· would appear
both as a dependent variable and as a regressor.

4. The regressor yi,t−1− ȳi·, which depends on the error εi,t−1− ε̄i· = νi,t−1− ν̄i·,
is correlated with the current error εit − ε̄i· = νit − ν̄i· because of the serial
correlation in νit − ν̄i·. Hence Fixed Effects will also be inconsistent unless
Ti →∞ for all i, in which case the transformed error becomes just νit since
ν̄i· will converge in probability to Eνit = 0.

2.2 Treatment of Initial Conditions

If we consider all observations i = 1, · · · , N , t = 1, · · · , Ti, we see that given the
lagged dependent variable that appears as a regressor we are missing one initial
condition yi0 for each of the N individuals. Given this, we can drop all t = 1
observations and work instead with t = 2, · · · , Ti. This treatment still leaves open
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the question as to how to hadnle the endogeneity of the lagged dependent variables
appearing as regressors.

2.3 MLE/IVE + RE Approaches

Assuming for simplicity we have a balanced panel data set, we can view it as a
cross-sectional data set with N observations on a system of T − 1 equations:

yiT = θyi,T−1 + x′iTβ + εiT

yi,T−1 = θyi,T−2 + x′i,T−1β + εi,T−1

· · · (3)

yi2 = θyi1 + x′i2β + εi2

This system exhibits (1) cross-equation restrictions (θ and β constant throughout);
(2) correlations across the errors of different equations at a given i (as implied by,
say, the one-factor error structure assumed for εit); and (3) common parameter
restrictions between the RHS expressions and the variance-covariance matrix of
the ε’s.
This system is not complete because it contains T y’s (yiT , · · · , yi1) but has

only T − 1 equations to determine them. To correct this we can adopt one of two
approaches:
Approach 1: we assume that yi1 is predetermined/exogenous for each i and hence
think of this as a system of T − 1 equations determining the T − 1 endogenous
variables yiT , · · · , yi2, where the set of exogenous variables are xiT , · · · , xi2 and
yi1.
Approach 2: we assume that yi1 is an endogenous variable and add a reduced-
form equation to determine it without introducing earlier exogenous variables, by
writing:

yi1 = xi1ζ1 + · · ·+ xiT ζT + ui1 (4)

This is not a behavioural equation since it includes x’s not available at time 1
but an equation describing the best linear way of explaining yi1 in terms of all
available exogenous variables in the system. Thus we get a system of T equations
determining the T endogenous variables yiT , · · · , yi1, where the set of exogenous
variables is xiT , · · · , xi2. The error ui1 also contains the error we commit in trying
to explain yi1 not through the true mechanism that generated it but through the
linear prediction given by (4).
Once we adopt either approach, we can apply suitable MLE and/or IVE es-

timation of the system of equations like Full Information MLE and Three-Stage-
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Least-Squares.2

2.4 First Differencing + IVE Approaches

We have seen that the Fixed Effects transformation will not overcome the endo-
geneity of the lagged dependent variable with respect to the error term because
even though it eliminates the time-invariant αi, it induces a serial correlation struc-
ture in the ν’s in the form of νit− ν̄i·. But we have seen earlier that an alternative
way of eliminating the αi is to use the first-differencing transformation∆ to obtain:

∆yit = θ∆yi,t−1 + ∆x′itβ + ∆νit (5)

This equation has a MA(1) error that does not contain αi. Given this structure,
the regressor ∆yi,t−1 is correlated with the error since it depends on ∆νi,t−1. But
earlier lags∆yi,t−`, ` > 1 are good instrumental variables in that they are correlated
with ∆yi,t−1 but are not correlated with the MA(1) error ∆νit. Similarly earlier
lags of y levels, yi,t−`, ` > 1 are also valid instruments.
Hence, an appropriate estimation approach in this context is Instrumental Vari-

ables estimation that pays proper attention to the MA(1) nature of the ∆νit error
term. An important point made by Arellano and Bond is that to improve the effi -
ciency of the IV estimator one should recognize that the list of valid instruments
grows for later observations for a given individual, since additional lags become
available as valid instruments.
To understand the properties of the “First Differencing + IVE Approach,” it

is useful to consider the following three scenarios about the νit error term:

1. νit ∼ i.i.d. over both i and t;

This is the classic case analyzed by Arellano and Bond. Valid instruments
for AB are values of yi,t−q, q ≥ 2. As we move further down the time periods
of a given individual, additional lags of y become valid

instruments. Hence, the effi cient IV/GMM estimator uses instruments with
a triangular structure, resetting once a new individual is considered.

2. νit = ξit + λξi,t−1 with ξit ∼ i.i.d. i.i.d. over both i and t;

This is an easy generalization: now valid instruments for AB are values of
yi,t−q, q ≥ 3.

2The seminal work here is by Barghava and Sargan, who show how to develop useful tests
using this approach of several interesting hypotheses, namely (a) the random effects assumption;
(b) stationarity of the error terms; (c) correct specification of the model in terms of stability over
time; and (d) possible exogeneity of the initial conditions.
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3. νit = ρνi,t−1 + ξit with |ρ| < 1 and ξit ∼ i.i.d. over both i and t.

This case renders the AB approach inconsistent in general, because all ear-
lier lags of the dependent variable y are no longer valid instruments: The
variables yi,t−q, are correlated with the regressor yi,t−1 for *any* q. IVE may
be salvaged in this case, provided one uses suitable lags of the *explanatory*
variables as instruments. Doing so, however, is not in the spirit of the
original AB approach.
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Panel Data Estimation: A Road Map

Part I: Linear Panel Data Models

Endogenous Ti? Non­Linear
Modelling

Static (serial correlation in eit) Dynamic (lagged y's in RHS)

RE
approach
(X's and Z's
not
correlated
with eit)

(or enough good
X's and Z's)

Bhargava and
Sargan Dynamic
RE (can test
exogeneity,
stationarity, model
stability, RE)

FE approach

First difference
to eliminate
alpha
IV/GMM ­­
Arellano and
Bond
(problem if
wrong SC model
­> instruments
wrong)

pooled
OLS

RE for efficiency

Possible
correlation
between
regressors and
alpha?
(Hausman tests)

FE or
Hausman­Taylor IV
for more efficient
beta's and
gamma's

RE plus model for
correlation
between regressor
time­means and
alpha

LM test for Serial
Correlation (persistent
alpha and/or ARMA nu)

Yes

Yes Yes

Yes

No

No

No

/

c© Vassilis Hajivassiliou, LSE 1998-2020
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Part II: Non-Linear Panel Data Models

Linear Model plus
Endogenous Ti

Inherently
Non­linear Model

Is the selection
Constant over
Time? FE (Mills

ratio can
be
thought of
as in
alpha)

Parametric
Estimation?

Manski etc.
for dit part
(less worked
out for yit
part)

I.i.d. or
simple
RE?

Classical
MLE or
Heckit
(Possibly
Num.Quadrature)

Simulation­Based
Estimation

Que 1: Which
Category?

Que 2:
Parametric
Estimation?

Semi­parametric
Estimation (if
already worked
out)

Model
Dynamic
Properties of
RHS vars and
errors

Simulation­
Based
Estimation

Classical MLE:
no SC in error
except RE (but
in general
cannot do FE)

Yes
No /

Yes

Yes

Yes

Yes

No

No

No

c© Vassilis Hajivassiliou, LSE 1998-2023
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2.5 Dynamic Nonlinear TSCS Models

Consider the dynamic linear regression model for balanced data:

yit = δyi,t−1 + x′itβ + z′iγ + εit , i = 1, · · · , N , t = 1, · · · , T (6)

where εit follows the one factor error components model: εit = αi + νit with αi
modelling individual unobserved persistent heterogeneity. Two analogous nonlin-
ear models can be considered that are additive in the error εit:

yit = δyi,t−1 + g(x′itβ + z′iγ) + εit , i = 1, · · · , N , t = 1, · · · , T (7)

and

yit = g(δyi,t−1 + x′itβ + z′iγ) + εit , i = 1, · · · , N , t = 1, · · · , T (8)

A more general model that is non-additive in the error term is:

yit = h(δyi,t−1 + x′itβ + z′iγ + εit) , i = 1, · · · , N , t = 1, · · · , T (9)

It is important to realize two facts: first, the nonlinearity of model (7) is quite
straightforward to analyze, it being a benign generalization of the linear dynamic
model (6). This is because the lagged term δyi,t−1 = · · · + εi,t−1 resulting in a
model that is additive in both current as well as past error terms.
The second fact is that the nonlinearity in model (8) is not straighforward,

making the model closer in diffi culty to the nonadditive nonlinear model (9). As
explained already, the lagged term δyi,t−1 = · · · + εi,t−1. Consequently, the third
model is additive in the current error but non-additive in earlier error(s), making
it similar to the fourth model which is non-additive in the current error.
Given these two facts, we proceed by starting with the non-dynamic case, i.e.,

by setting δ = 0. Since models (7) and (7) are now equivalent and have no lagged
terms, they are additive in the error term. Hence, the models can be analyzed by
combining RE and FE or ∆ transformations with NLLS instead of OLS, or GMM
in place of IV as necessary. The key thing to remember is that the FE and RE
operators must be applied to the non-linear function g(.) and *not* the nonlinear
function evaluated at the FE- or RE-transformed data.
I.e., using g((xit − λix̄i·)

′β + (1 − λi)z
′
iγ) would be wrong for RE, while we

should use instead:
g(x′itβ + z′iγ)− λig(x′i,t−1β + z′iγ) for the non-linear term.
We now consider the dynamic models for δ 6= 0. The simpler model (7) is

additive in both the current as well as past error terms. We must be careful,
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however, because of the presence of the additive dynamic term +δyi,t−1, it is not
appropriate to combine the usual RE or FE transformations together with NLLS
to account for the presence of the g(.) term, just like the linear case where OLS to
the transformed models would lead to inconsistency because of the endogeneity of
all transformations of the +δyi,t−1 term. For example, applying first differencing
to eliminate the alpha term, gives:

yit − yi,t−1 = g(xit, β, zi, γ)− g(xi,t−1, β, zi, γ) + δ(yi,t−1 − yi,t−2) + νit − νi,t−1

Hence, one cannot apply NLLS to this model because of the MA(1) of the
resulting error term. Instead, one should use NLIV/GMM based on yi,t−2, yi,t−3, ...
terms as valid instrumental variables.
Proceeding to Model (8), we now encounter a very significant additional com-

plication: the non-linearity now encompasses also the yi,t−1 part. The presence of
the lagged term under the non-linear function makes this model non-additive in
the error term (at least with the αi present in all periods). Hence RE- or FE- plus
NLLS will *not* work for this model, but we need to use instead MLE that takes
into account correctly the non-trivial Jacobian of the y −→ error transformation.
As noted already, the final Model (9) is also non-additive in the (current) error

term. In a similar vein, we need MLE because NLLS+RE or +FE will not work.
Finally, please note that another possibility exists for estimating consistently

the “non-additive in error(s)”Models (8) and (9) would be as follows: assuming,
as with MLE, that the regressors are *strongly* exogenous w.r.t. the error term,
implies that lagged Xs are valid instruments for the (endogenous) lagged ys that
appear as regressors. Hence NLIV/GMM could be used instead. Such methods
would be consistent but not fully effi cient – effi ciency is reserved for full MLE.

c© Vassilis Hajivassiliou, LSE 1998-2023
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