
Winter Term 2024

Classical Simulation-Based Inference

1 The Canonical LDV Model

y∗i = Xiβ + εi, yi = τ(y∗i ). (1)

εi = Γiη, Eεiεi ≡ Ωi(σ) = Γi(σ)Γi(σ)′. (2)

D(yi) = {y∗i |y = τ(y∗i )}. (3)

1.1 Examples of LDV Models —different τ(·) functions
Model 1: multinomial probit
Alternative j yields the (random) utility

y∗ij = xijβ + εij j = 1, · · · , J

and individual i chooses alternative k that satisfies

−∞ < y∗ik <∞, 0 < y∗ik − y∗ij <∞, (4)

The analyst observes the indicator yi ≡ arg maxj{y∗i1, · · · , y∗ij, · · · , y∗iJ}.

Applications —see Model 3 below.

Model 2: multivariate rank ordered probit
As with model 1, individual i chooses alternative k that offers the highest utility y∗ik.
The analyst, however, observes the full ranking of the J alternatives in terms of
the utility they yield, i.e., the analyst observes the J-dimensional vector of indices

yi ≡ (k1, · · · , kJ)′

such that
y∗ik1 ≤ y∗ik2 ≤ · · · ≤ y∗ikJ . (5)

Model 3: multiperiod (panel) probit
Binary:

(6)
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Multinomial:
yit = arg max

j
{y∗it1, · · · , y∗itj, · · · , y∗itJ} (7)

Illustrations:

• Applications (Fields):

— Finance —Portfolio optimization

— Marketing —purchasing decisions

— Political Science —voting behavior

— Psychology —decision trees

— Experimental Economics —Bayesian vs. Heuristic Behavior

• Specific Economic Applications:

— The Incidence of External Debt Crises of Developing Countries, Haji-
vassiliou (1994).

— Unemployment and Liquidity Constraints, Hajivassiliou and Ioannides
(1994).

— Health, Children, and Elderly Living Arrangements, Börsch-Supan,
Hajivassiliou, Kotlikoff, and Morris (1992).

Model 4: multiperiod (panel) Tobit

(8)

Illustration: The Extent of External Debt Crises of Developing Countries,
Hajivassiliou (1994).

1.2 Classical Estimation Methods

`i(θ; yi) =

∫
D(yi)

n(y∗i −Xiβ,Ωi) dy
∗
i , (9)

n(ε,Ω) = (2π)−T/2|Ω|−1/2 exp[−1

2
ε′Ω−1ε] (10)

`iθ(θ; yi) ≡
∂`i(θ; yi)

∂θ
= `i(θ; yi)E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}, (11)
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si(θ; yi) ≡
∂`n`i(θ; yi)

∂θ
= E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}

`iθ/`i =

∫
D(yi)

h(z,Xi, β,Ωi)n(z −Xiβ,Ωi) dz

`i
. (12)

i.i.d. observations across i.

`iθ ≡ `θ(θ; yi) ≡
∂`(θ; yi)

∂θ
= `(θ; yi)E{h(y∗i −Xiβ)|y∗i ∈ D(yi)},

si ≡ s(θ; yi) ≡
∂`n`(θ; yi)

∂θ
= `iθ/`i = E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}.

θ̂MLE.1 ≡ arg max
θ

1

N

∑
i

`n`i(θ),

or equivalently,

θ̃MLE.2 solves

{
1

N

∑
i

si(θ) =
1

N

∑
i

[`iθ(θ)/`i(θ)] = 0

}
.

NOTE: at θ∗ true, E{∂ln`i(θ
∗)

∂θ
} = E{h(y∗i −Xiβ

∗)|D(yi)} = 0.

1.3 The Intractability of the Classical Estimators

• Cross-sectional MNP with 10 choices.

• 2000 individuals.

• 20 explanatory variables.

• Unconstrained variance/covariance matrix for unobservable utilities.

• Implication: each loglikelihood function requires evaluating 2000 integrals
of dimension 9.

1. Classical MLE based on Numerical Quadrature will be inconsistent and
will require 3 months of CRAY-1 CPU!

2. SSML/GHK and MSS/Gibbs will be consistent and asymptotically nor-
mal and can be calculated with 24 hours of Sparc-10 CPU.
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Comparison: 49 vs. 100, i.e., about 2600 longer on the same machine. (or 1
day vs. 10 years!)

1.4 Simulation Estimation Methods

Consider a simulator ˜̀
i ≡ ˜̀

i(θ, R) for the likelihood contribution `i(θ), based on R
independent GHK/SRC simulations. Then, the SSML/GHK estimator is defined
by:

θ̂SSML ≡ arg max
θ

{
1

N

∑
i

ln ˜̀
i(θ, R)

}
.

Consider a simulator, s̃i ≡ s̃i(θ, R), for the score function si(·), satisfying y∗i ∈
D(yi), based on R independent draws according to rG Gibbs resamplings. Then,
the MSS1/GSS estimator:

θ̂MSS.1 solves

{
1

N

∑
i

s̃i(θ, R, rG) = 0

}
.

Consider a simulator ˜̀
iθ(θ, R) for the derivative of a likelihood contribution `iθ(θ),

based on R independent GHK/SRC draws, and a simulator ˜̀
i(θ, R) for the denom-

inator probability based on the same R GHK/SRC draws. Then, the MSS2/GHK
estimator is:

θ̃MSS.2 solves

{
1

N

∑
i

[˜̀iθ(θ, R)/˜̀
i(θ, R)] = 0

}
.

Not good idea (dominated):

θ̃MSS.3 solves

{
1

N

∑
i

[˜̀iθ(θ, R)/˜̀
i(θ, Rd)] = 0

}
.

A Simple Explanation of How Simulation Works

NB: Given the non-linearities involved, all estimation methods will involve
iterative search over the unknown θ.

Consider a trial parameter vector θ(n) at iteration n.
Maximum likelihood estimation requires the evaluation of

L(θ(n)) =
1

N

N∑
i=1

ln`i(θ
(n); yi).
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Method of Scoring seeks to evaluate

S(θ(n)) =
1

N

N∑
i=1

si(θ
(n); yi) =

1

N

N∑
i=1

`iθ(θ
(n); yi)

`i(θ
(n); yi)

.

Method of moments calculates

M(θ(n)) =
1

N

N∑
i=1

mi(θ
(n); yi) =

1

N

N∑
i=1

w(θ(n);Xi)
′(yi − g1i(θ(n);Xi),

where g1i(·) ≡ E(yi; θ
(n)) and w(·) is an instrument function. Finally, a Pseudo-ML

method evaluates the quadratic form

Q(θ(n)) =
1

N

N∑
i=1

(yi − g1i(θ(n);Xi))
′ · g2i(θ(n);Xi)

−1 · (yi − g1i(θ(n);Xi)),

where g1i(·) ≡ E(yi; θ
(n)) and g2i(·) ≡ V (yi; θ

(n)).

IF ANALYTICALLY or NUMERICALLY TRACTABLE:
`i(θ

(n); yi), `iθ(θ
(n); yi), si(θ

(n); yi), g1i(θ
(n); yi), and g2i(θ

(n); yi):
Computer routines can be written to evaluate these expressions as functions

of any possible trail parameter vector θ(n).

1.5 Estimation by Simulation

Relies on simulating routines ˜̀
i(θ

(n); yi, R), ˜̀
iθ(θ

(n); yi, R), s̃i(θ
(n); yi, R), g̃1i(θ

(n); yi, R),
and g̃2i(θ

(n); yi, R), defined as follows:

• Draw a set of R uniform J−dimensional random vectors
ũ1i , · · · , ũri , · · · , ũRi . By the assumptions of this model, the disturbance vector
εi is i.i.d. with density function fε(εi; θ

∗), with E(εi|Xi) = 0 and E(εiε
′
i|Xi) =

Ωi(σ).

• At the given trial parameter vector θ(n) = (β(n), σ(n))′, using the inverse of
the cumulative distribution function of ε, F−1ε (·), obtain a set of R ε̃i’s,

ε̃ri (σ
(n)) = F−1ε (ũri ; Ω(σ(n)),

which will imply a set of R simulated latent vectors ỹ∗ri (θ(n)), using the
specification yi = τ(y∗i ).

• From the R simulated ỹri vectors, calculate the empirical counterparts of the
`i(·) etc. functions and thus define the simulators ˜̀

i(θ
(n); yi, R), ˜̀

iθ(θ
(n); yi, R),
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s̃i(θ
(n); yi, R), g̃1i(θ

(n); yi, R),
and g̃2i(θ

(n); yi, R).

• Keeping the same uniform random variates, ũri’s, a new trial para-
meter vector θ(n) will imply a new set of simulated ε̃ri (σ

(n)), leading to new
ỹ∗i and hence new values for ˜̀

i, etc.

The iterative search algorithms will keep trying different parameter
vectors θ to satisfy the relevant criterion.

1.6 A Cautionary Tale:

SML (Lerman and Manski (1981)):
θ̂LM = arg maxθ

1
N

∑
i ln

˜̀
i(θ, R),

such `i are simulated unbiasedly (E ˜̀
ir = `i) and consistently withR (˜̀i(θ, R)→p

`i(θ) as R→∞). Empirical choice probabilities as the simulating function ˜̀
i.

This simulator is:

• discontinuous function of the parameters and variates

• and not bounded away from 0 and 1.

1.7 Key Advantages of MSS over Leading Competitor
(MSM)

• Applicable to any LDV model that can be written as a set of linear inequal-
ity constraints on the underlying latent variables, the distribution of which
belongs to the linear exponential class.

• Asymptotically effi cient.
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2 Smooth Simulators for MSS Estimation

2.1 The Smooth Recursive Conditioning Simulator (GHK)

• Consider the T × 1 random variate vector Y ∗ distributed as N(µ∗,Ω)
and consider the event E ≡ {a∗ ≤MY ∗ ≤ b∗}, where −∞ ≤ a∗ < +∞,
−∞ < b∗ ≤ +∞, a∗ < b∗, the matrix M is non-singular, and the matrix Ω
is positive definite.

• Define a ≡ a∗ −Mµ∗, b ≡ b∗ −Mµ∗, µ ≡ Mµ∗, and let L be the (lower-
triangular) Cholesky decomposition of Σ ≡MΩM ′ ≡ LL′.

• For a vector e, let e<j denote the subvector of the first j−1 components, and
for a matrix A, let Aj,<j denote a vector containing the first j − 1 elements
of row j.

• Draw sequentially e1 ∼ N(0, 1) s.t. a1 ≤ l11 · e1 ≤ b1, e2 ∼ N(0, 1) s.t.
a2 ≤ l21 ·e1+l22 ·e2 ≤ b2 , · · · , and eT ∼ N(0, 1) s.t. aT ≤ lT1 ·e1+ · · ·+lTT ·
eT ≤ bT . These univariate truncated normal variates are drawn according
to the following smooth scheme: Let U be a uniform (0,1) random variable
and let Φ(·) denote the standard normal N(0, 1) cumulative distribution
function. Define the random variable e ≡ Φ−1((Φ(b) − Φ(a)) · U + Φ(a)),
where −∞ ≤ a < b ≤ ∞. As Proposition 1 proves, e is distributed N(0, 1)
conditional on a ≤ e ≤ b.

• Now let e ≡ (e1, · · · , eT )′ and define

Q1 ≡ Prob(a1/l11 ≤ e1 ≤ b1/l11),

Qt(e1, · · · , et−1) ≡ Prob((at−Lt,<t·e<t)/ltt ≤ et ≤ (bt−Lt,<t·e<t)/ltte1, · · · , et−1).

`(y,X; β,Ω) =

∫
a∗(y)≤M(y)·z≤b∗(y)

n(z −Xβ,Ω) dz

= Prob[a∗(y) ≤M(y) · Y ≤ b∗(y); Y ∼ N(Xβ,Ω)]

= Prob[a(y,X, β,Ω) ≤ L(y,Ω) · ν ≤ b(y,X, β,Ω); ν ∼ N(0, I)].

˜̀(e; y,X; β,Ω;R) =
1

R

R∑
r=1

T∏
t=1

Qt(e1r, · · · , et−1,r).

As Lemma 1 establishes, the simulator ˜̀(e; y,X; β,Ω;R) is:
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1. an unbiased estimator of `(y,X; β,Ω);

2. a smooth, i.e., a continuous and differentiable function of the model
parameters β and Ω and the underlying uniform random deviates.

2.2 An Outline of the GHK Method

P (y∗ ∈ A) =

∫
a∗<Qy∗<b∗

n(y∗)dy∗ =

∫
a<Ls∗<b

n(s∗)ds∗ =

∫
a<Le∗<b

n(e∗)

g(e∗)
g(e∗)de∗

But:

g(e∗) ≡ n(e∗)

p(a < Le∗ < b)
=

ΠM
j n(e∗j)

ΠM
j Prob(λj < ẽj < λ̄j)

Therefore:
n(e∗)

g(e∗)
= ΠM

j=1Prob(λj < ẽj < λ̄j)

since n(e∗) = n(s∗).
Definitions:

y∗ ∼ N(µ,Σ), s∗ ∼ N(0, I), LL′ = QΣQ′∗ −Qµ, b = b∗ −Qµ

and e∗ is drawn according to the sequential scheme:

ẽ∗j ∼ N(0, 1) truncated on λj < ẽj < λ̄j

where uj ∼ U [0, 1] and

e∗ ≡ Φ−1 ([Φ(b)− Φ(a)] · uj + Φ(a)) .

2.3 The Gibbs Resampling Simulator (GSS)

Developed for and has been applied to the problems of image reconstruction,
neural networks and expert systems.

• Let the T × 1 variate random vector Z describe the distribution of Y ∗ ∼
N(Xβ,Ω) truncated on the event E ≡ a∗ ≤M · Y ∗ ≤ b∗.

• Assume,without loss of empirical generality, that the truncation region
(a∗, b∗) is compact, equivalent to −∞ < a < b < +∞.

• Gibbs sampling: Markovian updating scheme: Given an arbitrary starting
set of values Z(0)1 , Z

(0)
2 , · · · , Z(0)T , we draw Z

(1)
1 ∼ [Z1|Z(0)2 , · · · , Z(0)T ], then

Z
(1)
2 ∼ [Z2|Z(1)1 , Z

(0)
2 · · · , Z

(0)
T ], Z(1)3 ∼ [Z3|Z(1)1 , Z

(1)
2 , Z

(0)
3 · · · , Z

(0)
T ], · · · , and
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so on, up to
Z
(1)
T ∼ [ZT |Z(1)1 , · · · , Z(1)T−1]. Thus each variable is “visited”in the “natural”
order and a cycle in this scheme requires T random variate generations. Af-
ter rG such iterations we would arrive at Z(rG) ≡ (Z

(rG)
1 , · · · , Z(rG)T ).

Proposition 3: Z(rG) asymptotically has the true joint distribution of Z
as rG grows without bound.

• Let Z(rG)r be a vector drawn according to the Gibbs scheme after rG resam-
plings. Define a simulator for the logarithmic score, si, by s̃i(Z(rG), y,X, β,Ω, n, R) ≡
1
R

∑
r h(Z

(rG)
r , y,X, β,Ω), where R is the (finite) number of terminal simula-

tions drawn, and rG the number of Gibbs resamplings used for each simula-
tion.

2.4 Results:

1. s̃i is a continuous function of parameters and random draws;

2. s̃i is unbiased for the true si asymptotically with rG;

3. the MSS/GSS estimator is CUAN provided rG rises at a rate at least as fast
as logN .

Theory of GSS
Geman and Geman (1984): finite sites and states problem. Given our interest

in the continuous normality case, we need new results. We exploit results in Orey
(1971) about the behavior of Markov chains:

Consider a set A with positive Lebesgue measure. We give five definitions:

Definition 1 A Markov process is irreducible if the probability that the process
ever visits the set A, starting from any x, is positive.

Definition 2 A Markov process is recurrent if the probability that it ever visits
the set A, starting from any point x, is 1.

Definition 3 A Markov process is aperiodic if with positive probability it goes
from x to set A in one move.

Definition 4 A Markov process is uniformly recurrent if the probability of reach-
ing state A within n transitions is bounded below by a positive number, uniformly
in the starting point x.
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Definition 5 A density f(x) is an invariant of the Markov process if it describes
the distribution of the outcomes of the process irrespective of the number of tran-
sitions.

In the Gibbs sampler application, one transition corresponds to one updating
cycle: start from (Y

(0)
1 , · · · , Y (0)

J ), draw Ỹ1 from [Ỹ1|Y (0)
2 , · · · , Y (0)

J ], draw Ỹ2 from
[Ỹ2|Ỹ1, Y (0)

3 , · · · , Y (0)
J ], · · · , draw Ỹj from [Ỹj|Ỹ1, · · · , Ỹj−1, Y (0)

j+1, · · · , Y
(0)
J ], · · · , draw

ỸJ from [ỸJ |Ỹ1, · · · , ỸJ−1], where the Ỹ ′s are drawn from the correct univariate
conditional normal truncated density, as described in Proposition 2(a). These
drawings are done according to the scheme of Proposition 1. Specifically, let
[Ỹj|Ỹ−j] denote the conditional distribution of Ỹj conditional on the (J − 1) × 1

vector excluding the j − th random variable. From Proposition 2(a), Ỹj |̃Y−j ∼
N(µj|−j,Σj|−j) conditional on a∗ ≤M · Ỹ ≤ b∗, where µj|−j = µj + Ωj,−j · Ω−1−j,−j ·
(Ỹ−j − µ−j), µk ≡ (Xβ)k, and Σj|−j = Ωjj − Ωj,−j · Ω−1−j,−j · Ω−j,j. Then it follows
that the truncated multivariate normal distribution Y conditional on the compact
region a∗ ≤MY ≤ b∗ will be an invariant of this process.

Proposition 6 For compact support B ≡ [a, b], −∞ < a < b < ∞ , the joint
density of (Y

(n)
1 , · · · , Y (n)

J ) converges in L1 norm to the true joint density, n(z −
Xβ,Ω, ā, b̄) at a geometric rate in n.

Proof (sketch):

• Define p(n, x, y) for (x, y) ∈ B to be the density of Y (n) starting from Y (0) =
x; (given constructively above)

• Also by construction, p is continuous on B, p(1, x, y) > 0, and p(n, x, y) =∫
p(n − 1, x, z) · p(1, z, y)dz > 0 for n > 1. Since, by assumption, B is

compact, p(1, x, y) is bounded positive on B.

• It follows the process is uniformly recurrent with the truncated multivariate
normal n(z −Xβ,Ω, ā, b̄) as its invariant.

• Then, Theorem 7.2 in Orey (1971) implies that the L1 distance ‖p(n, Y (0), y)−
n(z −Xβ,Ω, ā, b̄)‖ converges to 0 at a geometric rate as n→∞˙ �

Need compact support: For example, consider the one-factor model εi =
αζ̇ + ui, where ζ and ui are independent standard normal variates, and α is a
parameter. In this model, as α→∞, the rate of convergence of the Gibbs sampler
from an initial density to the limiting density is slower and slower.
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3 Main Asymptotic Properties of MSS Estima-
tion

Summary of Conclusions:

1. The SSML/GHK estimator will be consistent and uniformly asymptotically
normal (CUAN) with the number of observations N →∞, as long as R rises
at least as fast as

√
N .

2. The MSS/GSS estimator will be CUAN as N →∞, for any finite number of
simulations R provided the number of Gibbs resamplings rG used to calculate
each simulation rises at least as fast as logN .

3. The MSS/GHK-Ratio estimator (using the GHK/SRC simulator to sim-
ulate the numerator likelihood derivatives and the denominator likelihood
probabilities R times) will be CUAN as long as R rises at least as fast as√
N .

4. MSS/AR (based on acceptance-rejection arguments —Devroye (1986)): CUAN
and asymptotically effi cient as N → ∞ for any (finite) R. Problem: Dis-
continuous function.

NOTE: Same underlying random variates, used to simulate the h(·), `(·), and
`(·) functions, be used throughout the iterative searches.

Theorem 7 Assume that:

1. the parameter θ is contained in a compact set Θ, and that the true value θ∗

is in the interior of Θ;

2. the score si(θ) is continuously differentiable on Θ;

3. the score and its derivatives, and the simulated score, are dominated by a
function independent of θ with finite first and second order moments;

4. Eisi(θ) = 0 if and only if θ = θ∗, and that J = −Eisiθ(θ∗) is positive
definite, where Ei denotes expectation with respect to the distribution of the
observations;

5. observations and simulators are i.i.d. across observations;
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6. (a) the simulation bias

BN(θ) =
1√
N

N∑
i=1

[Eis̃i(θ)− si(θ)], (13)

converges to zero in probability, uniformly in θ, and

(b) the simulation residual process

ζN(θ) =
1√
N

N∑
i=1

ξi(θ), with (14)

ξi(θ) ≡ [s̃i(θ)− Eis̃i(θ)− s̃i(θ∗) + Eis̃i(θ
∗)].

is stochastically equicontinuous

Then, MSS satisfies θ̂N
p→ θ∗ and

√
N(θ̂N − θ∗)

d→ Z ∼ N (0, J−1 + J−1QJ−1),
where Q = E[s̃i(θ

∗)− Eis̃i(θ∗)][s̃i(θ∗)− Eis̃i(θ∗)]′ .

Proof (sketch):
Regularity assumptions: functions pk(x, θ), ck(x, θ), a(x, θ), and B(x, θ) are

all continuously differentiable in θ, and that these functions and their derivatives
are dominated by a square-integrable function m(x).

Corollary 8 If the simulation process is unbiased, or if the bias in an observation
is dominated by a positive function independent of θ whose expectation is of order
(1/
√
N), then the simulation bias converges to zero.

In the canonical LDV model, the simulation process is:

1. unbiased for MSS/AR for any R;

2. the bias is suitably dominated for MSS/GHK-Ratio as long as
√
N
R
→ 0;

and

3. the bias is suitably dominated for MSS/GSS as long as logN
rG
→ 0).

Corollary 2. Assume that the simulator s̃i(θ) is probably Lipschitz on Θ.
Then, the simulation residual process is stochastically equicontinuous.

In the canonical LDV model:

1. the GHK simulator is continuously differentiable;
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2. the Gibbs simulator is continuously differentiable; and

3. the AR simulator is probably Lipschitz.

This implies that Stochastic Equicontinuity holds for all three MSS estimators.
Proof of Corollary 2 (sketch):

Without loss of generality, assume Θ ∈ [0, 1]k. For any integer j, partition this
cube into 2kj small cubes with sides of length 2−j. Let Θj be a set containing one
point selected from each cube that intersects Θ. These points can be selected so
that Qδ(θ) ≤ Kδγ for θ ∈ Θj. Define θj(θ) to be the mapping from θ into the point
in Θj that is in the same region of the partition; then |θ − θj(θ)| ≤ 2−j ≡ βj < 1.
Define the function

Bij(θ) = CASES

and note that this function is region-wise constant on partition j. Using the
Lipschitz hypothesis, one has |s̃i(θ)− s̃i(θj(θ))| ≤ Bij(θ). Also, for j large enough
so that βj < δo,

E Bij(θ)
2 ≤ Ei{(1−Qβj(θj(θ))m

2
iβ

2
j +Qβj(θj(θ))2m

2
i }

≤ Ei{m2
iβ

2
j + 2m3

iβj} ≤ 3βjEim
3
i ≡ δ2j .

Define δ2j = 2Eim
3
i for βj ≥ δo . Then,∑∞

j=2[logN j]
1/2(δj−1 − δj) =

∑∞
j=2[kj log2]1/2(2−(j−1) − 2−j) · 3Eim3

i < +∞ .
Then, the condition for the Ossiander result holds, and stochastic equicontinuity
follows.
Consider the special case. GHK and GSS are continuously differentiable on Θ,

so they are Lipschitz with probability one.
Now consider the AR simulator. Given a fixed sequence of random generators

vr for r = 1, 2, · · · , the acceptance-rejection procedure can be described as one in
which trials are rejected until the criterion vr ∈ D(xi, θ, di) is met, then s̃i(θ) =
h(vr, θ, xi, di, yi) for the accepted vr. Given θ ∈ Θ and δ > 0, let Nδ(θ) denote
a δ-neighborhood of θ. Let Rδ(xi, θ, di) denote the probability that a trial will
lead to rejection for all θ′ ∈ Nδ(θ), equal to the integral of the truncated standard
normal density over the intersection of D(xi, θ

′, di)
c for θ′ in the neighborhood.

Let Aδ(xi, θ, di) denote the probability that a trial will lead to acceptance for
all θ′ ∈ Nδ(θ), equal to the integral of the truncated standard normal density
over the intersection of D(xi, θ

′, di) for θ
′ in the neighborhood. The probability of

acceptance on the same trial for all θ′ ∈ Nδ(θ) is thenAδ(xi, θ, di)/(1−Rδ(xi, θ, di)).
Suppose that pk(x, θ) · v ≤ ck(x, θ) for k = 1, · · · , K defines the set D(x, θ, d).

The compactness of the support of v, the continuous differentiability of pk and c
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in θ, and the dominance assumption, implies by Taylor’s expansions that

|pk(x, θ′) · v − pk(x, θ) · v| ≤ m(x) · |θ′ − θ| ≤ m(x) · δ,

|c(x, θ′)− c(x, θ)| ≤ m(x) · |θ′ − θ| ≤ m(x) · d.
It then follows that the probability that the simulator has a discontinuity in Nδ(θ)
satisfies

Qiδ(θ) = 1− Aδ(xi, θ, di)/(1−Rδ(xi, θ, di))

≤ P ({v|pk(x, θ) · v − ck(x, θ)| ≤ 2m(x) · δ, k = 1, · · · , K})
P ({v|pk(x, θ) · v − ck(x, θ) ≤ 0, k = 1, · · · , K}) .

But pk(x, θ) · v is standard normal, implying

Qiδ(θ) ≤
∑K

k=1 [Φ(ck(xi, θ) + 2m(xi)δ)− Φ(ck(xi, θ)− 2m(xi) · δ)]∏K
k=1 Φ(ck(xi, θ))

.

This implies that the AR simulator is probably Lipschitz. �
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3.1 Schematic Outline of Proof

θ̂MSS :
1√
N

∑
i

s̃i(θ̂MSS) = 0

1√
N

∑
i

s̃i(θ̂MSS) =

1√
N
{

si(θ
∗) (15)

+s̃i(θ
∗)− si(θ∗) (16)

+si(θ̂)− si(θ∗) (17)

+s̃i(θ̂)− si(θ̂)− s̃i(θ∗) + si(θ
∗) (18)

}
Classical Terms:

(15) : Asymptotically Normal

(17) : proportional to
√

(N)(θ̂ − θ∗)
Simulation-Induced Terms:

(16): Simulation Bias ≡ 1√
N
{Es̃i(θ)− si(θ)}

(18): Simulation Residual Process ≡
1√
N
{Es̃i(θ)− si(θ)− Es̃i(θ∗) + si(θ

∗)}
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4 Simulation-Based Testing

Consider the classic inference problem on an unknown parameter vector θ of di-
mension p× 1. We wish to devise tests for (a) a set of r linear hypotheses denoted
by Rθ = q, where the known matrix R is of dimension r×p and q denotes the r×1
vector of known real numbers; and for (b) a set of r nonlinear restrictions denoted
by g(θ) = 0 where 0 has dimension r × 1 and the (at least twice continuously
differentiable) function g(·) from Rp → Rr.
Suppose that, using the simulation methods discussed above, we have obtained

a simulation-based estimator for θ which possesses good asymptotic properties,
e.g., CUAN, Asymptotically Best CUAN, etc. The fundamental point made by
Hajivassiliou (2001) was that to devise test procedures based on the classic “Trin-
ity” of testing approaches, we will need to evaluate only once the “trinity” test
statistics using the simulation-based estimator θ̂. This is in sharp contrast to
carrying out simulation-based estimation, where the estimation criterion function
(Method-of-Moments distance metric, Log Likelihood Function, etc.) will need to
be evaluation thousands or millions of times before we converge to the solution.
Consequently, we can afford to perform a very large number of replications in

our evaluation of the simulated test statistic based on θ̂, therefore guaranteeing
very high precision in the evaluation-by-simulation of the simulated statistics.

4.1 Simulated Wald Statistics

4.2 Simulated Likelihood Ratio Statistcs

4.3 Simulated Lagrange Multiplier Statistics
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5 Research in Progress and Future Directions

• Distributed Computing —“Supercomputing for Poor Researchers.”
Hajivassiliou (1995); Traub (1995); Traub and Pashkov (1995).

• Deterministic vs. Random Rules: Wozniakowski (1991), Traub and
Wozniakowski (1995), Hajivassiliou (1995), Hajivassiliou and Rust (1995).

• Finance: pricing derivatives. Traub and Pashkov (1994). Pricing 10-year
Mortgage Cash flows —360 dimensional integrals.

• Investment: Financing decisions of firms. Hajivassiliou and Ioannides
(1995).

• Entry and Exit: Endogenous Attrition of firms. Corres, Hajivassiliou and
Ioannides (1994).

c© Vassilis Hajivassiliou, LSE 1997-2024
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