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Abstract

The paper discusses the major identification issue of coherency conditions in LDV
models with endogeneity and flexible temporal and contemporaneous correlations in
the unobservables. Conditions for coherency as discussed in the existing literature
are reviewed and shown to be rather esoteric. Two novel methods for establishing
coherency conditions are presented, which have intuitive interpretations and are easy
to implement and generalize. The constructive consequence of the new approaches
is that they indicate how to achieve coherency in models traditionally classified as
incoherent through the use of prior sign restrictions on model parameters. This allows
us to develop estimation strategies based on Conditional MLE for simultaneous LDV
models without imposing recursivity. Econometric applications are used to illustrate
the methods in practice and extensions are given to simultaneous ordered probit
models with multiple regions.

A set of extensive Monte-Carlo experiments are used to evaluate the properties of
the proposed Conditional MLE and the consequences of employing estimators that
make overly restrictive coherency assumptions about the DGP. These experiments
confirm very substantive improvements in terms of estimation Mean-Squared-Error
by employing the CMLE developed in this paper. They also show that estimators
based on the Linear Probability approximation perform poorly in this context.

Our CMLE approach allows for the first time to obtain estimates of the reverse
as well as direct interaction terms in LDV models with simultaneity.
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Novel Approaches to Coherency Conditions in LDV Models

1 Introduction

The paper discusses the major identification issue of coherency conditions in LDV
models with endogeneity and flexible temporal and contemporaneous correlations in
the unobservables. The econometric framework of LDV models with simultaneity
is presented in Section 2. In the same section we explain the identification issue of
coherency in such LDV models with endogeneity and flexible temporal and contem-
poraneous correlations in the unobservables.

Conditions for coherency as discussed in the existing literature are reviewed in
Section 6 and shown be rather esoteric. Two novel methods for establishing co-
herency conditions are presented, one based on a graphical characterization, the sec-
ond through hypothetical Monte-Carlo DGP. The novel approaches have intuitive
interpretations and are easy to implement and generalize. The constructive con-
sequence of the new approaches is that they indicate how to achieve coherency in
models traditionally classified as incoherent through the use of prior sign restrictions
on model parameters. This allows us to develop estimation strategies in section 7
based on Conditional MLE for simultaneous LDV models without imposing recur-
sivity. Thus one can obtain for the first time estimates of direct as well as reverse
interaction effects in simultaneous LDV models, unlike in the existing literature where
recursivity had to be assumed. Econometric applications are used to illustrate the
methods in practice and extensions are given to simultaneous ordered probit mod-
els with multiple regions. Our CMLE approach allows for the first time to obtain
estimates of the reverse as well as direct interaction terms in LDV models with si-
multaneity.

The proposed Conditional MLE methodology is evaluated through an extensive
set of Monte-Carlo experiments described in Section 9. The experiments allow us
also to study the consequences of employing estimators that make overly restric-
tive coherency assumptions about the DGP. The findings confirm very substantive
improvements in terms of estimation Mean-Squared-Error by employing the CMLE
developed in this paper. They also show that estimators based on the Linear Prob-
ability approximation perform poorly in this context. Section 11 concludes.

2 The Econometric Problem of “Coherency” in
LDV Models

In this section we present and study the fundamental identification issue of coherency
of LDV models with endogeneity and flexible temporal and contemporaneous corre-
lations in the unobservables. Conditions for coherency as discussed in the existing



literature are reviewed and shown to be rather esoteric. Two novel methods for es-
tablishing coherency conditions are presented, which have intuitive interpretations.
Alternative approaches for achieving coherency in models traditionally classified as
incoherent through the use of prior restrictions on model parameters.

3 The General Simultaneous LDV Model with Two
Interactive Responses

Consider the general two-equation LDV model where limited dependent variables
and y, are jointly determined through filter functions 7;(-) and 74(-) operating on
latent variables yi and ¥ respectively:

Yt = T1 (yikit = [hl (xlu'tﬁp ?J2z’t’Y) + 51#]) (1)
Yoir = T2 Yoz = [ha(h;e B2, Y1000) + €2it]) (2)

The (possibly non-linear) functions h;(-) and hs(-) are known up to parameter
vectors [3; and /3, and the two interaction coeflicients v and 6. The interaction terms
Y2ty and y1,40 appear in the respective latent variables yj;, and y3;,,. The parameter
vector to be estimated is 6 = (3, 31,7, 0,0%, 0%, p) where p = correlation(eyi, €2it)-
In the most general case, the sample is a panel data set indexed by ¢ = 1,--- , N and
t=1,---,T.

The typical coherency condition in such models, necessary for the joint distribu-
tion (Y14, Yoit|r1, T2, 0) to be well-specified is: -6 = 0. Gourieroux, Laffont, and
Monfort (1980)[5] explain condition in terms of there being a valid function from
(€141, €2i¢) to the observable endogenous variables (yy;;, y2i1). Lewbel (2007)[13] estab-
lishes NASC for coherency by approaching problem as requiring a valid reduced form
system for (Y1, Y2it). For example, if 6 = 0 then the RF for yy;; is:

Yait = T2 (ha(2hyfs) + €2it)

and hence the RF for y,; is given by:

Y1t = T1 (ha (21382, 7 - T2 (ha(2h, B9) + €2it) + €14t

3.1 General Explanation and Illustrative Applications

The leading case we focus on here is the binary threshold crossing response model
defined by:

7;(2) =1(2 > 0)

In terms of the two latent variables y; and y; and the observed binary indicators y;
and 19, and suppressing the observation indices:



= Loaif yi=xbi+yy2+ea>0 (3)
' 0 of yi=xfi+7y2+e <0

_J 1 of Y3 =ofy+ 0y + €2 >0 (4)
£ 0 iof ys=wofy+0y1+€ <0

For a typical i observation, the probability Prob(yi, y2i| X, 0) is characterized by
the constraints on the unobservables:

(Ghaz)/ < (61, 62)/ < (bl, 52)/

through the configuration:

Y1t | Yoit | O by Qs by

1 1 —T1f — 7 | 00 —Toitfly — 0 0

1 0 —x1:31 00 —00 —x9;35 — 0 [In this case,
0 1 —00 —T1tf — Y —T2it35 o)

0 0 —00 —Z13t34 —0 —Z2it35

(y1,y2) € {(1,1),(1,0),(0,1),(0,0)} such that:

(6}

r

(yut’ y2it> Yt Yait

(1,1) T+ v+ e >0, 9By + 0+ € >0
(1,0) 2B + €1t >0 , ThufBy 0 4 €2 <0
(0,1) b+t e <0 Thi By + €20 >0
(0, 0) xllitﬁl + e < 0 , fL'IQZ»tﬁQ + €9 < 0

In general, in the absence of coherency conditions, there will be overlaps and/or
gaps in the domain of (€154 + ;81 €2it + Th; 55).

4 Three Illustrative Models

These models, recently proposed in the literature, did not offer a detailed analysis
of their coherency. In this section we will use these models to illustrate how our
methods can be implemented in practice.

4.1 Illustrative Model 1: Simultaneous Determination of a
Binary Indicator and a Trinomial Ordered Indicator
Let us use a slightly more complicated simultaneous LDV model to illustrate the issue

of coherency, namely the binary € trinomial ordered probit model of Hajivassiliou
and Toannides (2007)[7] that studies interactions between liquidity and employment



constraints on individual households indexed by ¢ at a given point in time indexed
by t. Define two latent dependent variables ¥}, and y;;, and drop the it subscripts:

g { 1 if  yf >0 (liquidity constraint binding), (5)

0 if y; <0 (liquidity constraint not binding).

-1 if ys < A7 (overemployed)
E = 0 if X\ <y <A" (voluntarily employed) (6)
+1 if AT <3 (under-/unemployed).

yi =1y <A )y + 1 <yp < ANyt aif ta
vy = 1(y7 > 0)6 + 2255 + €2

Since (S, £) liein {0,1} x{—1,0, 1}, the 6 possible configurations may be enumerated
as follows:

S|FE yi Y5

0]-1 Y11 + $151 +e6 < 0, .CE252 + €2 < A
0] O Q?lﬁl + €1 < 0, A< 1'252 + €9 < A"
0| 1|yp+mfi+ea < 0, AT < T2y + €
1-1|yg+mpy+ea > 0, 0+ x9fy+€ < A
1 0 ZL‘161 + € > 0, A< 5+l‘262+62 < >\+
1 1 Y12 + 117161 +e¢ > 0, A< 8 + $2ﬁ2 + €




In terms of the unobservables, the probability of a (y1,y2) observed pair is equiv-
alent to the probability:

(a17a2)l < (617 62)/ < (bb bz)/

where (€1, €2) ~ N(0,%,), and a and b are given by:

S| E|a as by by

0]-1] —x —00 —(yi +@By) AT — 225,

0 0| —o0 AT — 1’262 _xlﬁl >\+ - 1'262

0] 1| -0 AT — T2y —(Yi2 +11B1)  +o0

L|-1] (v +718)) —o0 00 AT =0 —mfy
1 0 —.13161 AT —0— .73252 +00 )\+ —0— 13262
L] 1] —(yp+m1By) AT =8 — 9B, | +oo 00

The variance-covariance matrix captures the contemporaneous correlation be-
tween €; and €5. Given the binary nature of S, o1; is normalized to 1. Subsection 8.1
below discusses how to specify this contemporaneous correlation as well as flexible
forms of serial correlation in panel data settings.



4.2 TIllustrative Model 2: Simultaneous Determination of Two
Binary Indicators with Observable Dynamics

Next we consider the Currency and Banking Crises model of External Financing of
Falcetti and Tudela (2007)[4], to serve as an illustration of how to implement our
coherency approach.

Define two latent dependent variables C};, and B}, and two binary limited depen-
dent variables C}; and B;; as follows:

1 ifCh =58 +1 (34, Biys > 0) % + By -y +¢§ >0,
0 otherwise
{1 if By =aB8% + 41 (X, Ciy s > 0) P+ Ciy -+ €8 >0, ®)
it —

0 otherwise,

where 1(-) is the usual indicator function. The dummy dependent variable Cj; illus-
trates the occurrence of a currency crisis for country ¢ in period ¢, while the dummy
B;; indicates a domestic banking crisis for the country in that time period.
Consider the probability expression: Prob(Cs, Bis, - -+ , Ciry Bir | i, 2i, City -+, Ciay Bit,y - -+, Bia, 0).
For a typical observation it:

(C, B) ch >0 B
(1,1) ezt—i-xztﬁc—i-l ()¢ +~>0 elt—i-xztﬁc—i-l ()§B+5>0
(1,0) S + x§ 5C+1B()gc>o & +af 50+1 (VB +5>0
(0’1) ezt—i_xztﬂ +1B()C +’7>0 ezt_l_‘rﬁ +1 ()CB>O
(0,0) € + 258 +15(:)¢Y >0 B+ 258 +1c(:)¢% >0
and in terms of constraints on the unobservables, when writing u? = z85%,
c _ ,.CpC.

us =a~ g
(C,B) a® a® b¢ b?
(1.1) -uc—lg(')écév -uP-10()¢"-0 00 :
(1L0) | -uC1p( )¢ 0 x B16(-)¢P-0
(0,1) -00 P10 ()76 | -pC-1p(-)C S
(0.0) -00 -00 -pC-1p()¢" pP10(-)¢




4.3 Illustrative Model 3: Simultaneous Determination of Two
Binary Indicators

Hajivassiliou and Savignac (2007)[9] use a joint binary probit model to study the
impact of financing constraints on a firm’s decision and ability to innovate.

Define two latent dependent variables I}, and F}; and two binary limited dependent
variables I;; and Fj; as follows:

. * — Il I
I:{l if "=a'f +9F+¢€¢ >0 (9)

0 otherwise

. * — JFF F
F:{l if Fr=a"p" +6l4+€" >0 (10)

0 otherwise

For a typical it observation, the probability Prob(I;, Fi;|X,0) is characterized by the
constraints on the unobservables:

(CLI,(IF)/ < (E[,EF), < (bl,bF),

through the configuration:

I; | Fy | a© b¢ a®? bP

1|1 | =2l —9] —xkBF — 6| oo

1[0 | —zlp 00 —00 —zFpr —§
1l FQF

0 |1 —00 — Ty 1—7 —T; 00 -

0 |0 | —o0 —xk —00 —ak

This model corresponds to the leading model we introduced at the beginning of
section 3.1.

5 The Importance of Simultaneity and Sample Se-
lection

The findings of Hajivassiliou and Savignac (op.cit.) highlight the possibly huge im-
pact of allowing correctly for simultaneity in joint LDV models, which if ignored or
incorrectly specified, can lead to dramatic inconsistencies in the estimated coefficients.
In that study, the estimated coefficient of the ceteris paribus impact of a binding fi-
nancing constraint on a firm’s willingness and ability to innovate ranges from —1.29
to over +0.55, and reported statistically significant in all estimated versions!



6 The Traditional Approach to Coherency Condi-
tions

To maintain the logical consistency of the model (known in the literature as “co-
herency”) yi should not depend on y3 if y3 depends on yi and vice-versa. Let us use
the slightly more complicated simultaneous LDV model of Hajivassiliou and Ioan-
nides (op.cit.) discussed in Section 4.1. We have seen there that the six possible
configurations of the unobservables (€1, €2)" of the model correspond to:

S| E | a ao by by

0]-1 |- X —(y F71By) | AT — 220
010 —00 AT —29f3, -1, AT — 1503,

0| +1| - AT — 103, —(y19 + 2104) | +00

1|-1 | =(yq +x1f;) | —¢ +00 AT — 0 — 1903,
110 | -2 A" — 0 —x9f5 | +00 AT — 8 — 1,
L]+ —(ve +2181) | AT =6 — 228, | +00 +00

Using traditional arguments, we obtain that a sufficient condition for coherency
of the model is: (;; + 715)d = 0 and 7,750 = 0.

e To verify this condition, suppose (S, £) = (0,0). This rules out (S, F) = (0, —1)
because x203, + €2 > A7, and rules out (S, E) = (1,0) because x15; + ¢ < 0.

e But (1, —1) is not ruled out if the coherency conditions do not hold, since 7,
could be sufficiently negative and § sufficiently positive to imply the (1, —1)
conditions.

e Similarly, the (1,1) possibility cannot be ruled out in the absence of the co-
herency conditions, since 7,5, and d can be sufficiently positive.

e Such logical inconsistencies are prevented if either (a) 6 =0 or (b) v;; and 7,
are simultaneously 0.

Similar considerations can be employed to establish that the traditional coherency
condition for the joint binary probit models of Models 2 and 3 while assuming no
intertemporal endogeneity or dynamics are: v -9 = 0.

This condition, of course, translates to the models (7)-(8) and (9)-(10) being
recursive. See Maddala and Lee (1976)[14].

It is very important to note that in case the joint binary probit model were
allowed to contain intertemporal endogeneity of the type contained in (7)-(8) and
the dynamic versions of (9)-(10) estimated by Hajivassiliou and Savignac (op.cit.)
[reported in their tables 3 and 4), the coherency condition is practically impossible to
generalize and verify using the traditional analysis given in the previous paragraph.

10



6.1 Difficulties with the traditional approaches:

The first difficulty is that derivations of formal conditions using the traditional ap-
proach lack intuition. Second, they are practically impossible to generalize and verify
in moderately more complicated LDV models, especially in cases where the models
are allowed to contain intertemporal endogeneity of the type contained in (7)-(8) and
the dynamic versions of (9)-(10)

The third major difficulty that in practice, non-triangular or reverse triangular
cases are the most interesting from an economic point of view. Finally, the tradi-
tional approaches focus on establishing necessary conditions for coherency, which our
methods allow us to prove that they are not sufficient.

To overcome the first two difficulties, alternative ways for establishing coherency
are developed here, that are both intuitive and straightforward, as well as much more
generalizable. In addition, our methods allow us to resolve the last two difficulties
leading to estimation based on Conditional MLE for much more interesting practical
applications. It is shown in the next Section how to establish coherency without re-
cursiveness through the use of (a) endogeneity in terms of latent variables and/or (b)
sign restrictions on model parameters. The fact that our novel approach for the first
time eliminates the need to assume recursivity is quite important for the economic
problem studied in Hajivassiliou and Savignac (op.cit.): recursivity corresponds to the
key identifying assumption that innovation does not affect financial distress directly
(0 = 0). On a priori grounds, this assumption seems particularly dubious since inno-
vation may lead to more profits and thus relax financial constraints (corresponding to
d > 0). An alternative possibility is that innovation may lead to higher investment
in intangible assets thus reinforcing binding financial constraints (corresponding to
§ < 0). Both possibilities violate the traditional coherency condition.!

6.2 Novel Approach 1: Graphical

Let us illustrate the first approach using the Liquidity-Employment constraints appli-
cation of Hajivassiliou and Ioannides (op.cit.). It should be noted that this graphical
approach is related to that of [16] who studied the problem of coherency in bivariate
discrete models for games with multiple equilibria. Figure overleaf 1 gives the 6
possible regimes (S x E) = {1,0} x {—1,0, 1} in terms of the two latent variables y}
and y3 and the possible configurations in terms of parameters A, A, &, v,;, and 7y,.
y7 is on the horizontal axis and y; on the vertical.

The figure makes clear the role of the coherency condition (a) § = 0 or (b)
Y11 = Y12 = 0: in general, regions R2 and R6 exhibit double-counting (cross-hatched
area), as well as a white rectangle remains which makes the six regions not mutu-

'Note that throughout we expect v < 0, i.e., the higher the probability that a firm faces a binding
financial constraint, the less likely it is that it is able to innovate. So the two possibilities translate
to: (a) y< 0,4 >0and (b)y<0,d<0.

11



ally exhaustive. These two logical incoherencies disappear when either § = 0 and/or
Y11 = Y12 = 0 hold.

We develop further our graphical approach in Section 7 below, and use it to
highlight the fundamental distinction between two types of incoherency, the first cor-
responding to overlap regions in latent variables space, while the second to empty
regions. We explain there that incoherencies of the latter type can be overcome
through additional prior restrictions on model parameters through the use of Condi-
tional MLE.

6.3 Novel approach 2: DGP From First Principles

The second approach to incoherency consists of designing a data-generating algorithm
(on a computer or hypothetical) to simulate random draws from an LDV model’s
structure. Again let us use the Liquidity-Employment Constraints application of
Hajivassiliou and Ioannides (op.cit.) to illustrate the method. We draw €; and €
under the joint bivariate normal distribution with zero mean vector and variance-
covariance matrix ¥, and given z1/3; and x5/, attempt to generate y; and y;. This
is possible provided the coherency condition holds: If (a) § = 0, then latent y4 can be
drawn, then ldv y,, which together with €; and 13, determines the rhs of y7, thus
allowing y; to be drawn. Similarly, if (b) 7,; = 7,5 = 0, then y} can be drawn from
the first equation based on €; and x;/3;, which determines y;, thus giving 5 and hence
yo. It is not obvious, however, whether such data generation can be achieved in case
the coherency condition does not hold. This approach is related to the Gourieroux
et al. (op.cit.) condition that a function exist from €, €3 to yi, Y.

As we will show in section 8.1 below, the approach extends naturally to cases
with intertemporal endogeneities in panel LDV models, and can be used to prove the
coherency of the classic multiperiod panel probit with state dependence (Heckman
(1981)[11]), as well as the general versions of illustrative models 2 and 3 with explicit
dynamic effects.

12
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7 Identification Under Additional Prior Sign Re-
strictions

The graphical approach we developed in the previous section highlights two distinct
cases of incoherency: the first type of incoherency corresponds to regions of the
observed endogenous variables of the model being overlapping, while the second to
regions that are empty. It is shown below (a) that overlapping region incoherency
can be transformed into empty region incoherency by redefining one of the observed
binary LDVs to its complement. And (b) that empty region incoherency can be
overcoming through conditional maximum likelihood (CMLE) of truncating the LDVs
to lie outside the incoherency regions.

The CMLE approach we propose here can also be motivated through the DGP
approach to establishing coherency, that we discussed in the previous subsection. In
that case, we need to consider DGPs truncated to lie on a specific region of the latent
variables space. A specific method for achieving this is given in technical Appendix
1 below.

It is also useful to note that our approach for establishing coherency through
the use of prior sign restrictions developed here is related to the recent approach
by Uhlig (2005)[17] for VAR identification under prior sign restrictions on impulse
response functions.?Dagenais (1997)[3] also makes a distinction between alternative
types of incoherency regions.?

7.1 Latent Variable Endogeneity

For completeness, let us modify the two-equation LDV model (1)-(2) to make the
interaction terms be the latent variables instead of the limited counterparts:

Yiie = 71 (Y1 = [ (35/1#,517 YsiY) + €1it))
Yoir = T2 (Yoi = [h2(‘r/2it627 Y1i:0) + €2it))
Then:
i =18ty t e

Yo = T2y + Y10 + €

and
i =10+ v (228, F Y0+ €] + &

Yy = Taf3 + 0 - [118, + Y53y + €1] + €2

2T am indebted to Alain Trognon for pointing out the potential of parameter sign restrictions
overcoming incoherency of the “empty region” type, and to Hashem Pesaran for bringing to my
attention Uhlig’s work on sign identification.

3Unfortunately his work remains incomplete and unpublished due to his untimely death.

14



Hence y; = RF) and y3 = RF5, allowing us to obtain y; = 7(RF}) and y, = 7(RF5).
We thus see that it is considerably more straightforward to establish coherency identi-
fication of LDV models with latent variable interactions as opposed to limited variable
interactions.

7.2 Coherency through Sign Restrictions
We illustrate the Conditional MLE approach using the joint binary probit model:*

1 if I"=a'p"+yF+€e >0
I = — .
0 otherwise

1 if Fr=afpr +6I+€e7 >0
F = — .
0 otherwise

Obviously, there exist four cases based on signs of v, §:

4For the first equation, I* is used for the latent and I for the observed LDV as a mnemonic to
the Innovation side of the model of Hajivassiliou and Savignac (2007). Similarly, for the second
equation we use F* and F' as a mnemonic to Financing Constraints.

15



7.3 Case 1: 7> 0,6 > 0 — overlapping regions, incoherency
The Conditional MLE methodology is not directly applicable to this case:

16
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7.4 Case 2: 7< 0,6 <0 — overlapping regions, incoherency

The Conditional MLE methodology is not directly applicable to this case either:
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7.5 Case 3: v > 0,0 < 0 — empty regions, coherency through
conditioning

For this case, coherency can be achieved using CMLE by conditioning the observed
LDVs to lie outside the “empty” region of figure 4, which has conditioning probability:

1—PT0b(—7<61+[E161 <0,0<62+l’262 < —(S)

20
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7.6 Case 4: v < 0,0 > 0 — empty regions, coherency through
conditioning

For this case, coherency is also achievable through CMLE by conditioning to the LDVs
to lie outside the “empty” region of figure 5, which has conditioning probability:

1 —Prob(0 < e +x15; < —7,0 < €2+ 2235 < 0)

22
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7.7 To Show that Models with Overlapping Regions Remain
Incoherent Irrespective of LDV Definitions

We have shown that in general, in the absence of coherency conditions, there will
be overlaps and/or gaps in the domain of (e + 25, € + x453,). At this point, a
researcher might be tempted to propose that the incoherency cases with overlapping
regions (Cases 1 and 2 above) may be overcome by redefining one of the two limited
dependent variables to their complement. According to this reasoning, since the
incoherency is caused in these cases because v and ¢ are of the same sign, and since
changing ys, say, to its complement yy' = (1 — y,) would result in 6N = —4, then
coherency would be achieved since then v - 6" < 0.

Such reasoning would be incorrect, however. We analyze here this idea and show
that such a redefinition would maintain the overlapping-region incoherency. This
is because the Y = (1 — 1) redefinition would also switch the sign of v and hence
AN 6N > 0 just as v - 6 > 0.

Let us return to the bivariate binomial probit model in terms of the two latent
variables I* and F'C* and the observed binary indicators I and F'C', and suppressing
the observation index:

[ 1 if I"=x16,+vFC+¢€¢ >0
10 if I"=x8,+9FC+6 <0

o [ 1 if FC =+l +e>0

(11)

(12)

Suppose we have incoherency because we believe v > 0 (in the Hajivassiliou-
Savignac study corresponding to binding F'C's cause increasing chance of innovation
I) and that 6 > 0 (firms who have high I i.e., innovate raise the chance the banks
will refuse them a loan so high FC'). So «-d > 0. This is Case 1 analyzed in
subsection 7.3 as represented by Figure 2, and corresponding to the constraints on
the unobservables:

(a17a2)/ < (61,62)/ < (61,52),

such that:
I|FC|adt bt a’ b? Shading | Region
1]1 —x18, — 77 | 0© —x9f3y — 0 00 horizontal R1
110 -1/, 00 —00 —T385 — 0 swne R2
0|1 —00 —x18, — —9[3 00 nwse R3
00 —00 —11/34 —00 —T9f3y vertical R4

Now consider the transformed model with NFC instead of FC. This trans-

formation still gives an overlapping region in the transformed variables, and hence
corresponds to an incoherent model. To see this, proceed as follows:
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In terms of the two latent variables I* and NFC* = —F(C* and the observed
binary indicators [ and NFC =1 — F'C, and suppressing the observation index:

= 1 if I"=x2,.8, +7Y"NFC+¢ >0 (13)
T 0 if I"=a4.8,+Y"NFC 46 <0
1 if NFC*=aofY + NI +eb >0
NFC_{O if NFC*=umpy +0"I+€) <0 (14)

Given this transformation, we expect that vV < 0 (high NFC means not very
binding constraints so cause dampening of I) and that 6 < 0 (firms who have high
I i.e., innovate raise the chance the banks will refuse them a loan so low NFC'). So
AN N > 0.

For a typical i observation, the probability Prob(y;, y2:| X, 0) is characterized by
the constraints on the unobservables:

(Cl,l, CL2>, < (617 Eé\[)/ < (bla bz)/

through the configuration:

I | NFC |d b a’ b? Shading | Region
10 —x13, 00 —00 —23, — 0" | horizontal | R1
101 —118, — N | 00 —xof8y — 0 00 swne R2
010 —00 —x10, —00 —z' 3, nwse R3
01 —00 —118; — Y —al B, 00 vertical R4
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7.8 Efficient Estimation through Conditional Maximum Like-
lihood

The optimal parametric estimation approach for the models with empty region in-
coherency (Cases 3 and 4 above) will be truncated conditional mazximum likelihood,
employing the appropriate likelihood contributions that characterize correctly the
necessary conditioning that ensures that the LDVs stay out of the empty region of
incoherency. For example, assuming independence across observations ¢ =1,--- , N,
the likelihood contribution in Case 3 will be:

l; = Prob(e1,eo : [ =1(I">0) & F=1(F*>0)) /(1 — Prob(—y < €1 + x13; < 0,0 < €3 + w35 < —
while for Case 4:
l; = Prob (e, o : [ =1(I">0) & F=1(F*>0)) /(1 — Prob(0 < €1 + 18, < =7, < €3 + 2335 < 0)

These likelihood contributions make it clear why approaches that ignore the co-
herency issue are inconsistent in general: the inconsistency would arise because the
conditioning probability expressions in the denominator are functions of the under-
lying parameters and data, and hence affect critically the evaluation of the correct
likelihood function.

It should be noted also that Cases 1 and 2 may be handled in an analogous fashion
provided it is assumed first that the Data Generating Process that overcomes the
overlapping-regions incoherency is one where (€1, €5;) are drawn from an unrestricted
bivariate normal distribution and then any draws falling into the overlap region are
rejected. To find the correct likelihood contributions in these two cases, note that:

Pi1 TPl +Po1 + P =95 >1

where S — 1 = d, the probability of the overlap region. In Case 1, the overlap
occurs between regions (1,1) and (0,0), while for Case 2 between regions (1,0) and
(0,1). Consequently, assuming an Accept/Reject DGP out of the overlap region, the
likelihood contribution for Case 1 is:

pu = (pi; —d)/(2-295)
[ — P10 = Pio/(2 = 5)
' Po1 = p31/(2 - S)
poo = (pgo — d)/(2 = S)

while for Case 2:
P11 = pﬁ/@ - S)
[ = Po= (Plo —d)/(2=5)
' por = (pgy — d)/(2 = 5)
Poo = PBO/(Z - S)
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8 Extensions to Bivariate Multinomial Ordered Pro-
bit Cases

We now discuss how to extend our analysis to the case of two simultaneous (bivariate)
ordered probit equations with multiple regions. Suppose we have a model given by

y; - ﬂllxl + (SyQ + €1
y)2k :6,2$2+5y1 )

v = 1i(yy)
ya = Ir(y3)
where we define
[l<yi) € {1727 "'7”1}
IQ(y;) € {1a27 --'7n2}
N(y7) = max{ily] < si;}
Ir(y;) = max{ily; < sa;}

The sets {s1;} and {sy;} are n; — 1 and ny — 1 increasing transition values, and
Sinyi = San, = 00, so that all very large values get mapped to the highest category.
Then

0y, € {011,012, ., 01y }
Oy, € {021,022, -+, O1my )

are interaction terms that take one of ny and n; discrete values depending on s
and y; respectively. The error terms, €; and €, are assumed to be normally distributed
conditional on lying outside of incoherent regions — that is, regions in which there is
not a single, unambiguous pair y; and y, that corresponds to them.

The bivariate binary probit is a subset of this case, with n; = ny = 2, 511 = s91 =
0, 011 = 7y, 021 = J, using our usual notation.

As an illustration, consider the following figure. Here, n; = ny = 3, and all the
d2; = 0 so that y; does not affect y5. As in the binary probit, the effect of the
interaction terms are to shift the boundaries in €’s domain that map to particular
outcomes for y; and y,. For example, the shaded area corresponds to y; = 2, yo = 2.

In this picture, there are no incoherent regions, since the system is triangular.
To proceed to determine the regions of incoherency in the non-triangular case, for

®The research assistance of Ryan Giordano has been especially helpful for this section.
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Figure 7: Coherency of Joint Ordered Response Models

simplicity we will assume that the interaction terms are small enough so that sy(;11)—
517 > 0g(j41) — 015 for all 7 and j, and that a similar condition holds for the transition
values and interaction terms of 5. That is to say, the interaction terms are small
relative to the threshold values. If this is not the case, counting overlaps becomes
more complicated.

If this condition holds, then each intersection of threshold values becomes analo-
gous to the binary bivariate probit case, except that neighbouring interaction terms
now determine whether there is an empty region or overlap. For example, consider
the following situation. Here,

ny=3
N9 = 2
011 <0
012 >0
091 >0
022 < 0
0o3 >0
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Figure 8: Coherency of Joint Ordered Response Models 11

When we draw in the shaded regions for the first corner, it is evident that there
is an empty region. This is because 012 — d1; > 0 has the same a different sign from
029 — 091 < 0. Indeed, if we were to take

!/ /
21 = —511’1 — 01122 = —52302 - 52171 =012 — 011

Yo = 092 — 021

then the situation would be identical to the bivariate binary probit with the role of
the exogenous variables played by z; and 25, and the relevant interaction terms being
v, and . Here, for similar reasons, we will see an overlap at the second intersection:

Having observed this, it is easy to define a procedure to calculate the overall
likelihood with coherency incorporated. For a particular outcome, one first calculates
its incoherent probability (the probability of (e;,€2) landing in its bounding box).
Then one checks each of its corners for overlaps with neighbouring regions, subtracting
the probability of any overlap regions. Finally, one needs to divide by the total
probability of a coherent draw, which equals one minus the sum of the probabilities
of all the empty and overlapping regions.

We have investigated the theoretical probabilities for the model made coherent
in this fashion, and compared them to the actual frequency probabilities from the
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Figure 9

The

postulated accept-reject DGP described in the first paragraph of this section.

two sets of probabilities generated in these investigations matched one another very

satisfactorily.
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8.1 Establishing the Coherency of Panel LDV Models with
Intertemporal Endogeneities using DGP Approach

Extending the analysis to a panel data set, Hajivassiliou (2007)[6] explains how the
probability of a pair (S, E;;) in subsection 4.1, a pair (Cj, B;;) in subsection 4.2, and
a pair (I;;, Fj;) in subsection 4.3, can be represented in terms of the linear inequality:

(a17a2)' < (61, 62), < (bla b2),

where the error vector has a flexible autocorrelation structure. For example, one-
factor random effect assumptions will imply an equicorrelated block structure on X,
while our most general assumption of one-factor random effects combined with an
AR(1) process for each error implies that >, combines equicorrelated and Toeplitz-
matrix features. Consequently, the approach incorporates fully (a) the contempora-
neous correlations in €, (b) the one-factor plus AR(1) serial correlations in ¢;, and (c)
the dependency of S;; on F;; and vice versa. The coherency issue expands naturally
to the panel sequence of data, by thinking of each (correlated) time-period for a given
individual ¢ as a distinct probit equation and then dealing with the independent
cross-section of equations across individuals. Details of the analysis can be found in
Hajivassiliou (op.cit.).

Our hypothetical DGP method presented in Subsection 6.3 for establishing co-
herency is now applied to the canonical panel data Probit model with state-dependence,
first analyzed by Heckman (op.cit.). Let us begin with the simplified case of the initial
condition being exogenous:

yir = 1(A\yir—1 + v + € > 0) (15)
Yir—1 = 1(A\yir—o + xir_18 + €,7-1 > 0) (16)
(17)

Yio = L(Ayi1 + 328 + €2 > 0) (18)

;1 = exogenous (19)

Let ¥ = VCou(eir, - ,€1,un). Suppose first the €; has the one-factor (equicor-
related) error components structure ¢; = «; + v;;. Conditional on «;, these T'— 1
equations are independent (since they only depend on the i.i.d. vys. Hence draw
an «; and an independent ;5. Then use the exogenous ¥;; outcome to generate y;s.
This completes equation 18 which allows to move recursively to generating y;3, then
Yia, €tc. until y;r is generated. This establishes the coherency of the model.

Now consider the more general case when y;; cannot be assumed as exogenous.
We then supplement the system with an initial condition equation:

yn = Lxpn& + -+ 2y +ui >0
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The following remarks are in order: First note that equation 1 is a generalization
of the Barghava and Sargan (1982)[1] approach. Second, one-factor random effect
assumptions will imply an equicorrelated block structure on the top left T'—1x T —1
block of ¥, while more general assumptions of one-factor random effects combined
with an AR(1) or ARMA(p,q) processes for each e error implies that > combines
equicorrelated and Toeplitz-matrix parts. The last row and last column of ¥ giving
the variance of uq; and its covariances with all €;; allow the flexibility stipulated by
Heckman (1981b)[12]. Define the Cholesky lower triangular times upper triangular
factorization of 3 = C'C’. Given the assumed normality, the error vector can be
written:

(€, u1:)" = Cv; vi~ N(Or, I7) (20)
Dropping the 7 index:

yr = Y Ayr—1 + 0B + cpivs + erave + -+ - + err_1vr—1 + cprvp > 0) (21)

yr—1 = L Ayr—2 + xp_18 + cr_11v1 + ¢r_12V2 + - - + cpr_1vr—1 > 0) 22

(22)
(23)
Y2 = L(Ay1 + 228 + coav2 + ety (24)
yin = L(@a& + - + zirép + v > 0) (25)

This recursive representation establishes the coherency of the model: given a
random draw of v;1,--- ,v;r, an unambiguous DGP rule can be defined to establish

sequentially y;1 — vie — - yir—1 — Yir-

33



9 Monte-Carlo Experiments: Design

As we showed in the previous section, we obtain a coherent non-recursive model with
interaction dummy included on each side, provided we believe the feedback terms
have opposite signs on the two sides. We also showed how to handle the cases of
the feedback terms having the same sign through the additional assumption of the
accept-reject DGP.

The experiments were designed to illustrate the importance of coherency on the
following nine estimation approaches:

(a) likelihood estimation that incorrectly forces the old coherency condition to
hold, i.e., assuming recursivity when in fact both feedback terms are present (estima-
tors E-TRWN=assuming J = 0 and E-TRNW=assuming v = 0);

(b) unrestricted likelihood estimation, which ignores the resulting incoherency due
to the empty or overlap region(s) (estimator E-INCO);

(c) restricted likelihood estimation conditioning on the data lying outside the
empty region(s) of incoherency (estimators E-SQPM=assuming (7 > 0,6 < 0) and
E-SQMP=assuming (v < 0,6 > 0));

(d) restricted likelihood estimation conditioning on the data lying outside the
overlap region(s) of incoherency (estimators E-SQPP=assuming (7 > 0,6 > 0) and
E-SQMM=assuming (7 < 0,6 < 0)).

(e) LPOLS: (linear probability) ordinary least squares estimation of each bi-
nary probit equation ignoring the possible endogeneity of the interaction terms; and
LP2SLS: applying two-stage least squares recognizing that the two interaction terms
on the RHS of each probit equation can be endogenous.

We generate six “true” models:

e DGP-TRWN (§ = 0)

DGP-TRNW (y = 0)

e DGP-SQPM (v > 0,5 < 0)
e DGP-SQMP (7 < 0,8 > 0)
e DGP-SQPP (y > 0,0 > 0) and
e DGP-SQMM (v < 0,5 < 0),

and in each case, calculate the nine estimators E-TRWN, E-TRNW, E-INCO, E-SQPM,
E-SQMP, E-SQPP, E-SQMM, LPOLS, and LP2SLS.
The generating equations are:

ystarl = z1[nobs, kxl] x betal + gamma * y2 + epsl, yl = 1(ystarl > 0)

ystar2 = x2[nobs, kx2] x beta2 + delta * y1 + eps2, y2 = 1(ystar2 > 0)
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9.1 ~ unrestricted, 6 =0
ystarl = z1[nobs, kxl] x betal + gamma * y2 + epsl, yl = 1(ystarl > 0)
ystar2 = x2[nobs, kx2] * beta2 + eps2, y2 = 1(ystar2 > 0)

Given the recursivity of the v - = 0 restriction in this case, ystar2 is generated
first, which gives y2. This is then plugged into the RHS of the ystarl equation thus
allowing ystarl and y1 to be obtained.

9.2 v>0,6<0
0 <epsl +zl1xbl < gamma, —delta < eps2 + x2 x beta2 < 0 (26)

Accept-reject methods are used to generate the data so that these restrictions are
satisfied.

Analogous Accept/Reject DGP for the v > 0,5 > 0 case. Also see appendix
1 for an exact algorithm for generating draws from truncated normal distributions
restricted to lie on region (26).

9.3 v<0,0>0
—gamma < epsl +x1 %01 < 0,0 < eps2 + 22 x beta2 < —delta

Accept-reject methods are used to generate the data so that these restrictions are
satisfied.

Analogous Accept/Reject DGP for the v < 0,6 < 0 case.

10 Monte Carlo Experiments: Findings

We performed 24 Monte-Carlo experiments, indexed by MCxyz as follows:

o |

r=1|0 0 Peyes

r=210810 y=11]03

+=3]08|1 y=2]-03

r=408| -1

T11 T12 T13 T21 T2 | T23

z=1| const | x*(1) | Bernoulli(0.7) | const | x15 | Double Exponential S.S
z=2| const | x*(1) | Bernoulli(0.9) | const | x15 | Double Exponential S.S
z =3 const | x*(1) | Bernoulli(0.7) | const | x13 | Double Exponential LS
z =4 const | x*(1) | Bernoulli(0.9) | const | x12 | Double Exponential LS
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where Double Exponential stands for a Double Exponential distribution with
mean 0 with asymmetric two sides, SS for “small skewness” and LS with “large
skewness.”

All trials used 2000 observations and 200 Monte-Carlo trials were averaged in each
case. In all experiments, the true beta parameters were set at: 8, = ( 0.8, —0.5, —0.3 )’

and (8, = ( -0.3, 0.7, =04 ),. In Appendix 2 below, we give the complete listing
of the regime probabilities in all 32 experiments we carried out.

The full tables presenting the detailed Monte-Carlo results in terms of various
estimation criteria (root-mean-squared error, absolute bias, absolute median bias,
variance, interquartile range, and nine-decile range) can be obtained from the author
upon request. Here we summarize the results in terms of three dimensional bar
charts in four-part Figures 10-16 below. A given chart graphs the performance of
each estimation algorithm in terms of a given estimation criterion (e.g., RMSE etc.)
with the best performing algorithm normalized to 100. The other methods are then
given as a fraction of that best. For example, if method A is the best with RMSE=25,
and methods B and C have RMSE equal to 75 and 125 respectively, method A will
be reported as 100, B as 0.333 (one third as good since 3 times as high RMSE), and
C as 0.20 (one fifth as good since 5 times as high RMSE).

We first give a very drastic summary of the main findings:

e The Conditional Truncated MLE proposed in this paper performs very satis-
factorily, being the only consistent estimator for the reverse feedback cases, and
only small sacrifices in terms of efficiency in the recursive DGPs when it is not
strictly necessary.

e The linear probability estimators, LPOLS and LOP2SLS, perform very badly in
all cases with endogenous interaction terms, thus suggesting that the inherent
non-linearities of the bivariate probits cannot be safely ignored.

e Conditional Truncated MLE also works well for the overlap region incoherency
cases.

e Unrestricted likelihood estimation ignoring the resulting incoherency due to the
empty or overlap region(s) (estimator E-INCO) is by far the worst performing
estimator, dominated even by equation by equation univariate estimators which
ignore the other side of the model.

More analytically:

e The four-part Figures 10 present the overall RMSE results with each method’s
performance averaged across all estimated parameters. The CMLE estimator
dominates all other methods in impressive fashion when the true DGP possesses
the opposite-signs restriction v -9 < 0. It also performs very satisfactorily in
case the true model is recursive, achieving almost as good a performance as the
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ideal recursive estimator for that case. Even in the case of no interaction terms
being present in the true DGP (y - = 0), the CMLE estimator loses out in
terms of RMSE only because of the higher estimation variance in view of not
imposing two true restrictions.

e The four-part Figures 11 report relative RMSE performance for the ¢ interaction
parameter, whereas Figures 12, 13, and 14 give the results for the ,;, (4, and
p respectively. CMLE also impresses in these sets of results in a similar ranking
to the previous point.

e The four-part Figures 14 present the overall results in terms of absolute bias
instead of RMSE, whereas Figures 15 give the overall results in terms of absolute
median bias. The first set establishes that the CMLE estimator heads and
shoulders above all the alternatives in terms of bias, and whenever it is less
clearly the preferred estimator, this only caused by higher estimation variance.

e Figures 15 allow one to draw conclusions about the extend of non-symmetry
of the distributions of the alternative estimators. No dramatic changes in the
rankings of estimator performance are apparent in this regard.

It may be noted that the dismal performance of the two estimators based on the
Linear Probability approximation would have been alleviated had the average partial
probability derivatives been calculated instead of the latent variable coefficients. This
is because the LP estimators by construction a constant probability derivative with
respect to an explanatory variable, irrespective of the observation values. In our
view, such calculations would not be especially interesting since in most empirical
LDV studies, investigators wish to allow for such probability derivatives to vary over
the range of observations.
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11 Conclusions

The paper discussed the major identification issue of coherency conditions in LDV
models with endogeneity and flexible temporal and contemporaneous correlations in
the unobservables. The econometric framework of LDV models with simultaneity was
presented and the identification issue of coherency in such LDV models with endo-
geneity and flexible temporal and contemporaneous correlations in the unobservables
was analyzed.

Conditions for coherency as presented in the existing literature were reviewed and
shown to be rather esoteric. Two novel methods for establishing coherency condi-
tions were presented, one based on a graphical characterization, the second through
hypothetical Monte-Carlo DGP. The novel approaches have intuitive interpretations
and are easy to implement and generalize. The constructive consequence of the new
approaches is that they indicate how to achieve coherency in models traditionally
classified as incoherent through the use of prior sign restrictions on model parame-
ters. This allowed us to develop estimation strategies based on Conditional MLE for
simultaneous LDV models without imposing recursivity. Thus one can obtain for the
first time estimates of direct as well as reverse interaction effects in simultaneous LDV
models, unlike in the existing literature where recursivity had to be assumed. Econo-
metric applications were used to illustrate the methods in practice and extensions are
given to simultaneous ordered probit models with multiple regions.

The proposed Conditional MLE methodology was evaluated through an extensive
set of Monte-Carlo experiments. The experiments allowed us also to study the conse-
quences of employing estimators that make overly restrictive coherency assumptions
about the DGP. The findings confirmed very substantive improvements in terms of
estimation Mean-Squared-Error by employing the CMLE developed in this paper.
They also showed that estimators based on the Linear Probability approximation
perform poorly in this context.

Our CMLE approach allows for the first time to obtain estimates of the reverse
as well as direct interaction terms in LDV models with simultaneity.
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12 Appendix 1: Generating standard Normal vari-
ates truncated to lie outside |\, )]

We present here a method for generating truncated normal variates to ensure the

coherency of the non-recursive model under prior sign restrictions:
Let z ~ N(0,1) and define 7 ~ z|{z ¢ [A, A]} Then cdf (2) : F(z) = ®(z) and

D(z) .
TNV
(A . <
cdf (1) : F(7) = m()l)c}w ifA<z<A

D(2)—P(N)+2(Q) 3
) 150 if z > A\

The procedure is exact for a univariate z truncated on {z ¢ [\, A]}, but it will not
work for higher dimensions. For DGPs with higher dimensions, accept-reject methods
are preferable, though others exist (e.g., Gibbs resampling — see Hajivassiliou and
McFadden (1998) for an explanation.
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13 Appendix 2: Regime

Carlo Experiments

Probabilities in Monte-

Yo=1|Y,=0
Yi=1]pn P1o P1.
Y, = Po1 Poo Po.
Pi Po

Experiment | py P1o Po1 Poo Po- p1. D1 D0

mclll 0.2812 | 0.2716 | 0.1759 | 0.2711 | 0.4470 | 0.5529 | 0.4572 | 0.5427
mcll2 0.2736 | 0.2589 | 0.1845 | 0.2829 | 0.4674 | 0.5325 | 0.4581 | 0.5418
mcll3 0.2696 | 0.2840 | 0.1748 | 0.2714 | 0.4463 | 0.5536 | 0.4445 | 0.5554
mcll4 0.2598 | 0.2728 | 0.1844 | 0.2829 | 0.4673 | 0.5326 | 0.4442 | 0.5557
mcl21 0.2262 | 0.3273 | 0.2316 | 0.2147 | 0.4464 | 0.5535 | 0.4579 | 0.5421
mcl22 0.2175 | 0.3162 | 0.2400 | 0.2261 | 0.4662 | 0.5337 | 0.4576 | 0.5424
mcl23 0.2219 | 0.330 | 0.2229 | 0.2242 | 0.4472 | 0.5527 | 0.4449 | 0.5551
mcl24 0.2130 | 0.321 | 0.2306 | 0.2350 | 0.4657 | 0.5342 | 0.4437 | 0.5563
mc211 0.4054 | 0.148 | 0.1751 | 0.2706 | 0.4458 | 0.5541 | 0.5806 | 0.4419
mc212 0.3920 | 0.141 | 0.1852 | 0.2816 | 0.4669 | 0.5330 | 0.5772 | 0.4227
mc213 0.3772 | 0.176 | 0.1757 | 0.2709 | 0.4466 | 0.5533 | 0.5530 | 0.4470
mc214 0.3661 | 0.167 | 0.1835 | 0.2829 | 0.4665 | 0.5334 | 0.5497 | 0.4503
mc221 0.3515 | 0.201 | 0.2317 | 0.2153 | 0.4471 | 0.5528 | 0.5833 | 0.4167
mc222 0.3381 | 0.196 | 0.2405 | 0.2252 | 0.4658 | 0.5341 | 0.5786 | 0.4213
mc223 0.3275 | 0.225 | 0.2219 | 0.2251 | 0.4471 | 0.5528 | 0.5495 | 0.4505
mc224 0.3141 | 0.218 | 0.2327 | 0.2349 | 0.4676 | 0.5323 | 0.5468 | 0.4532
mc311 0.5523 | 0.157 | 0.0652 | 0.22 0.2899 | 0.7100 | 0.6175 | 0.3824
mc312 0.5441 | 0.149 | 0.0696 | 0.2368 | 0.3064 | 0.6935 | 0.6138 | 0.3862
mc313 0.5163 | 0.185 | 0.0663 | 0.2319 | 0.2983 | 0.7016 | 0.5826 | 0.4173
mc314 0.5080 | 0.177 | 0.0712 | 0.2429 | 0.3142 | 0.6857 | 0.5793 | 0.4207
mc321 0.5155 | 0.218 | 0.0998 | 0.1659 | 0.2658 | 0.7341 | 0.6154 | 0.3845
mc322 0.5070 | 0.211 | 0.1058 | 0.1758 | 0.2816 | 0.7183 | 0.6128 | 0.3871
mc323 0.4818 | 0.240 | 0.0942 | 0.1836 | 0.2778 | 0.7221 | 0.5761 | 0.4238
mc324 0.4726 | 0.233 | 0.1007 | 0.1931 | 0.2939 | 0.7060 | 0.5734 | 0.4266
mc411 0.1903 | 0.163 | 0.3520 | 0.2937 | 0.6457 | 0.3542 | 0.5423 | 0.4576
mc412 0.1773 | 0.155 | 0.3607 | 0.3066 | 0.6674 | 0.3325 | 0.5381 | 0.4619
mc413 0.1773 | 0.190 | 0.3403 | 0.2919 | 0.6322 | 0.3677 | 0.5176 | 0.4823
mc414 0.1638 | 0.181 | 0.3506 | 0.3036 | 0.6543 | 0.3456 | 0.5145 | 0.4854
mc421 0.1430 | 0.223 | 0.4017 | 0.2317 | 0.6334 | 0.3665 | 0.5447 | 0.4552
mc422 0.1308 | 0.216 | 0.4096 | 0.2432 | 0.6529 | 0.3470 | 0.5405 | 0.4595
mc423 0.1331 | 0.244 | 0.3829 | 0.2392 | 0.6221 | 0.3778 | 0.5161 | 0.4839
mc424 0.1201 | 0.237 | 0.3909 | 0.2515 | 0.6425 | 0.3574 | 0.5111 | 0.4889
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