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Abstract

The paper discusses the major identi�cation issue of coherency conditions in LDV
models with endogeneity and �exible temporal and contemporaneous correlations in
the unobservables. Conditions for coherency as discussed in the existing literature
are reviewed and shown to be rather esoteric. Two novel methods for establishing
coherency conditions are presented, which have intuitive interpretations and are easy
to implement and generalize. The constructive consequence of the new approaches
is that they indicate how to achieve coherency in models traditionally classi�ed as
incoherent through the use of prior sign restrictions on model parameters. This allows
us to develop estimation strategies based on Conditional MLE for simultaneous LDV
models without imposing recursivity. Econometric applications are used to illustrate
the methods in practice and extensions are given to simultaneous ordered probit
models with multiple regions.
A set of extensive Monte-Carlo experiments are used to evaluate the properties of

the proposed Conditional MLE and the consequences of employing estimators that
make overly restrictive coherency assumptions about the DGP. These experiments
con�rm very substantive improvements in terms of estimation Mean-Squared-Error
by employing the CMLE developed in this paper. They also show that estimators
based on the Linear Probability approximation perform poorly in this context.
Our CMLE approach allows for the �rst time to obtain estimates of the reverse

as well as direct interaction terms in LDV models with simultaneity.
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Novel Approaches to Coherency Conditions in LDVModels

1 Introduction

The paper discusses the major identi�cation issue of coherency conditions in LDV
models with endogeneity and �exible temporal and contemporaneous correlations in
the unobservables. The econometric framework of LDV models with simultaneity
is presented in Section 2. In the same section we explain the identi�cation issue of
coherency in such LDV models with endogeneity and �exible temporal and contem-
poraneous correlations in the unobservables.
Conditions for coherency as discussed in the existing literature are reviewed in

Section 6 and shown be rather esoteric. Two novel methods for establishing co-
herency conditions are presented, one based on a graphical characterization, the sec-
ond through hypothetical Monte-Carlo DGP. The novel approaches have intuitive
interpretations and are easy to implement and generalize. The constructive con-
sequence of the new approaches is that they indicate how to achieve coherency in
models traditionally classi�ed as incoherent through the use of prior sign restrictions
on model parameters. This allows us to develop estimation strategies in section 7
based on Conditional MLE for simultaneous LDV models without imposing recur-
sivity. Thus one can obtain for the �rst time estimates of direct as well as reverse
interaction e¤ects in simultaneous LDVmodels, unlike in the existing literature where
recursivity had to be assumed. Econometric applications are used to illustrate the
methods in practice and extensions are given to simultaneous ordered probit mod-
els with multiple regions. Our CMLE approach allows for the �rst time to obtain
estimates of the reverse as well as direct interaction terms in LDV models with si-
multaneity.
The proposed Conditional MLE methodology is evaluated through an extensive

set of Monte-Carlo experiments described in Section 9. The experiments allow us
also to study the consequences of employing estimators that make overly restric-
tive coherency assumptions about the DGP. The �ndings con�rm very substantive
improvements in terms of estimation Mean-Squared-Error by employing the CMLE
developed in this paper. They also show that estimators based on the Linear Prob-
ability approximation perform poorly in this context. Section 11 concludes.

2 The Econometric Problem of �Coherency� in
LDV Models

In this section we present and study the fundamental identi�cation issue of coherency
of LDV models with endogeneity and �exible temporal and contemporaneous corre-
lations in the unobservables. Conditions for coherency as discussed in the existing
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literature are reviewed and shown to be rather esoteric. Two novel methods for es-
tablishing coherency conditions are presented, which have intuitive interpretations.
Alternative approaches for achieving coherency in models traditionally classi�ed as
incoherent through the use of prior restrictions on model parameters.

3 The General Simultaneous LDVModel with Two
Interactive Responses

Consider the general two-equation LDV model where limited dependent variables y1
and y2 are jointly determined through �lter functions � 1(�) and � 2(�) operating on
latent variables y�1 and y

�
2 respectively:

y1it = � 1 (y
�
1it � [h1(x01it�1; y2it
) + �1it]) (1)

y2it = � 2 (y
�
2it � [h2(x02it�2; y1it�) + �2it]) (2)

The (possibly non-linear) functions h1(�) and h2(�) are known up to parameter
vectors �1 and �2 and the two interaction coe¢ cients 
 and �. The interaction terms
y2it
 and y1it� appear in the respective latent variables y�1it and y

�
2it. The parameter

vector to be estimated is � � (�01; �01; 
; �; �21; �22; �)0 where � � correlation(�1it; �2it).
In the most general case, the sample is a panel data set indexed by i = 1; � � � ; N and
t = 1; � � � ; T .
The typical coherency condition in such models, necessary for the joint distribu-

tion (y1it; y2itjx1; x2; �) to be well-speci�ed is: 
 � � = 0. Gourieroux, La¤ont, and
Monfort (1980)[5] explain condition in terms of there being a valid function from
(�1it; �2it) to the observable endogenous variables (y1it; y2it). Lewbel (2007)[13] estab-
lishes NASC for coherency by approaching problem as requiring a valid reduced form
system for (y1it; y2it). For example, if � = 0 then the RF for y2it is:

y2it = � 2 (h2(x
0
2it�2) + �2it)

and hence the RF for y1it is given by:

y1it = � 1 (h1(x
0
1it�2; 
 � � 2 (h2(x02it�2) + �2it) + �1it)

3.1 General Explanation and Illustrative Applications

The leading case we focus on here is the binary threshold crossing response model
de�ned by:

� j(z) � 1(z > 0)
In terms of the two latent variables y�1 and y

�
2 and the observed binary indicators y1

and y2, and suppressing the observation indices:
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y1 =

�
1 if y�1 � x1�1 + 
y2 + �1 > 0
0 if y�1 � x1�1 + 
y2 + �1 � 0

(3)

y2 =

�
1 if y�2 � x2�2 + �y1 + �2 > 0
0 if y�2 � x2�2 + �y1 + �2 � 0

(4)

For a typical i observation, the probability Prob(y1it; y2itjX; �) is characterized by
the constraints on the unobservables:

(a1; a2)
0 < (�1; �2)

0 < (b1; b2)
0

through the con�guration:

y1it y2it a1 b1 a2 b2
1 1 �x1it�1 � 
 1 �x2it�2 � � 1
1 0 �x1it�1 1 �1 �x2it�2 � �
0 1 �1 �x1it�1 � 
 �x2it�2 1
0 0 �1 �x1it�1 �1 �x2it�2

In this case,

(y1; y2) 2 f(1; 1); (1; 0); (0; 1); (0; 0)g such that:

or:
(y1it; y2it) y�1it y�2it
(1; 1) x01it�1 + 
 + �1it > 0 , x02it�2 + � + �2it > 0
(1; 0) x01it�1 + �1it > 0 , x02it�2 + � + �2it < 0
(0; 1) x01it�1 + 
 + �1it < 0 , x02it�2 + �2it > 0
(0; 0) x01it�1 + �1it < 0 , x02it�2 + �2it < 0
In general, in the absence of coherency conditions, there will be overlaps and/or

gaps in the domain of (�1it + x01it�1; �2it + x
0
2it�2).

4 Three Illustrative Models

These models, recently proposed in the literature, did not o¤er a detailed analysis
of their coherency. In this section we will use these models to illustrate how our
methods can be implemented in practice.

4.1 Illustrative Model 1: Simultaneous Determination of a
Binary Indicator and a Trinomial Ordered Indicator

Let us use a slightly more complicated simultaneous LDV model to illustrate the issue
of coherency, namely the binary & trinomial ordered probit model of Hajivassiliou
and Ioannides (2007)[7] that studies interactions between liquidity and employment
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constraints on individual households indexed by i at a given point in time indexed
by t. De�ne two latent dependent variables y�1it and y

�
2it and drop the it subscripts:

S =

�
1 if y�1 > 0 (liquidity constraint binding);
0 if y�1 � 0 (liquidity constraint not binding):

(5)

E =

8<:
�1 if y�2 � �� (overemployed)
0 if �� � y�2 < �+ (voluntarily employed)
+1 if �+ � y�2 (under-/unemployed):

(6)

y�1 = 1(y
�
2 < �

�)
11 + 1(�
� < y�2 < �

+)
12 + x
0
1�1 + �1

y�2 = 1(y
�
1 > 0)� + x2�2 + �2

Since (S;E) lie in f0; 1g�f�1; 0; 1g, the 6 possible con�gurations may be enumerated
as follows:

S E y�1 y�2
0 -1 
11 + x1�1 + �1 < 0, x2�2 + �2 < ��

0 0 x1�1 + �1 < 0, �� < x2�2 + �2 < �+

0 1 
12 + x1�1 + �1 < 0, �+ < x2�2 + �2
1 -1 
11 + x1�1 + �1 > 0, � + x2�2 + �2 < ��

1 0 x1�1 + �1 > 0, �� < � + x2�2 + �2 < �+

1 1 
12 + x1�1 + �1 > 0, �+ < � + x2�2 + �2
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In terms of the unobservables, the probability of a (y1; y2) observed pair is equiv-
alent to the probability:

(a1; a2)
0 < (�1; �2)

0 < (b1; b2)
0

where (�1; �2)0 � N(0;��), and a and b are given by:

S E a1 a2 b1 b2
0 -1 �1 �1 �(
11 + x1�1) �� � x2�2
0 0 �1 �� � x2�2 �x1�1 �+ � x2�2
0 1 �1 �+ � x2�2 �(
12 + x1�1) +1
1 -1 �(
11 + x1�1) �1 +1 �� � � � x2�2
1 0 �x1�1 �� � � � x2�2 +1 �+ � � � x2�2
1 1 �(
12 + x1�1) �+ � � � x2�2 +1 +1

The variance-covariance matrix captures the contemporaneous correlation be-
tween �1 and �2. Given the binary nature of S, �11 is normalized to 1. Subsection 8.1
below discusses how to specify this contemporaneous correlation as well as �exible
forms of serial correlation in panel data settings.
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4.2 IllustrativeModel 2: Simultaneous Determination of Two
Binary Indicators with Observable Dynamics

Next we consider the Currency and Banking Crises model of External Financing of
Falcetti and Tudela (2007)[4], to serve as an illustration of how to implement our
coherency approach.
De�ne two latent dependent variables C�it and B

�
it and two binary limited depen-

dent variables Cit and Bit as follows:

Cit =

(
1 ifC�it � xCit�C + 1

�P4
s=1Bi;t�s > 0

�
�C +Bit � 
 + �Cit > 0;

0 otherwise
(7)

Bit =

(
1 ifB�it � xBit�B ++1

�P4
s=1Ci;t�s > 0

�
�B + Cit � � + �Bit > 0;

0 otherwise;
(8)

where 1(�) is the usual indicator function. The dummy dependent variable Cit illus-
trates the occurrence of a currency crisis for country i in period t, while the dummy
Bit indicates a domestic banking crisis for the country in that time period.
Consider the probability expression: Prob(Ci5; Bi5; � � � ; CiTi ; BiTijxi; zi; Ci1; � � � ; Ci4; Bi1; � � � ; Bi4; �).

For a typical observation it:

(C;B) C�it > 0 B�it
(1,1) �Cit + x

C
it�

C + 1B(�)�C + 
 > 0 �Bit + x
C
it�

C + 1C(�)�B + � > 0
(1,0) �Cit + x

C
it�

C + 1B(�)�C > 0 �Bit + x
C
it�

C + 1C(�)�B + � > 0
(0,1) �Cit + x

C
it�

C + 1B(�)�C + 
 > 0 �Bit + x
C
it�

C + 1C(�)�B > 0
(0,0) �Cit + x

C
it�

C + 1B(�)�C > 0 �Bit + x
C
it�

C + 1C(�)�B > 0

and in terms of constraints on the unobservables, when writing �B = xB�B,
�C = xC�C :

(C,B) aC aB bC bB

(1,1) -�C-1B(�)�C-
 -�B-1C(�)�B-� 1
(1,0) -�C-1B(�)�C -1 1 -�B-1C(�)�B-�
(0,1) -1 -�B-1C(�)�B-� -�C-1B(�)�C-
 1
(0,0) -1 -1 -�C-1B(�)�C -�B-1C(�)�B
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4.3 IllustrativeModel 3: Simultaneous Determination of Two
Binary Indicators

Hajivassiliou and Savignac (2007)[9] use a joint binary probit model to study the
impact of �nancing constraints on a �rm�s decision and ability to innovate.
De�ne two latent dependent variables I�it and F

�
it and two binary limited dependent

variables Iit and Fit as follows:

I =

�
1 if I� � xI�I + 
F + �I > 0
0 otherwise

(9)

F =

�
1 if F � � xF�F + �I + �F > 0
0 otherwise

(10)

For a typical it observation, the probability Prob(Iit; FitjX; �) is characterized by the
constraints on the unobservables:

(aI ; aF )0 < (�I ; �F )0 < (bI ; bF )0

through the con�guration:

Iit Fit aC bC aB bB

1 1 �xIit�I � 
 1 �xFit�F � � 1
1 0 �xIit�I 1 �1 �xFit�F � �
0 1 �1 �xIit�I � 
 �xFit�F 1
0 0 �1 �xIit�I �1 �xFit�F
This model corresponds to the leading model we introduced at the beginning of

section 3.1.

5 The Importance of Simultaneity and Sample Se-
lection

The �ndings of Hajivassiliou and Savignac (op.cit.) highlight the possibly huge im-
pact of allowing correctly for simultaneity in joint LDV models, which if ignored or
incorrectly speci�ed, can lead to dramatic inconsistencies in the estimated coe¢ cients.
In that study, the estimated coe¢ cient of the ceteris paribus impact of a binding �-
nancing constraint on a �rm�s willingness and ability to innovate ranges from �1:29
to over +0:55, and reported statistically signi�cant in all estimated versions!
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6 The Traditional Approach to Coherency Condi-
tions

To maintain the logical consistency of the model (known in the literature as �co-
herency�) y�1 should not depend on y

�
2 if y

�
2 depends on y

�
1 and vice-versa. Let us use

the slightly more complicated simultaneous LDV model of Hajivassiliou and Ioan-
nides (op.cit.) discussed in Section 4.1. We have seen there that the six possible
con�gurations of the unobservables (�1; �2)0 of the model correspond to:

S E a1 a2 b1 b2
0 -1 �1 �1 �(
11 + x1�1) �� � x2�2
0 0 �1 �� � x2�2 �x1�1 �+ � x2�2
0 +1 �1 �+ � x2�2 �(
12 + x1�1) +1
1 -1 �(
11 + x1�1) �1 +1 �� � � � x2�2
1 0 �x1�1 �� � � � x2�2 +1 �+ � � � x2�2
1 +1 �(
12 + x1�1) �+ � � � x2�2 +1 +1
Using traditional arguments, we obtain that a su¢ cient condition for coherency

of the model is: (
11 + 
12)� = 0 and 
11
12� = 0:

� To verify this condition, suppose (S;E) = (0; 0). This rules out (S;E) = (0;�1)
because x2�2 + �2 > �

�, and rules out (S;E) = (1; 0) because x1�1 + �1 < 0.

� But (1;�1) is not ruled out if the coherency conditions do not hold, since 
11
could be su¢ ciently negative and � su¢ ciently positive to imply the (1;�1)
conditions.

� Similarly, the (1; 1) possibility cannot be ruled out in the absence of the co-
herency conditions, since 
12 and � can be su¢ ciently positive.

� Such logical inconsistencies are prevented if either (a) � = 0 or (b) 
11 and 
12
are simultaneously 0.

Similar considerations can be employed to establish that the traditional coherency
condition for the joint binary probit models of Models 2 and 3 while assuming no
intertemporal endogeneity or dynamics are: 
 � � = 0:
This condition, of course, translates to the models (7)-(8) and (9)-(10) being

recursive. See Maddala and Lee (1976)[14].
It is very important to note that in case the joint binary probit model were

allowed to contain intertemporal endogeneity of the type contained in (7)-(8) and
the dynamic versions of (9)-(10) estimated by Hajivassiliou and Savignac (op.cit.)
[reported in their tables 3 and 4), the coherency condition is practically impossible to
generalize and verify using the traditional analysis given in the previous paragraph.
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6.1 Di¢ culties with the traditional approaches:

The �rst di¢ culty is that derivations of formal conditions using the traditional ap-
proach lack intuition. Second, they are practically impossible to generalize and verify
in moderately more complicated LDV models, especially in cases where the models
are allowed to contain intertemporal endogeneity of the type contained in (7)-(8) and
the dynamic versions of (9)-(10)
The third major di¢ culty that in practice, non-triangular or reverse triangular

cases are the most interesting from an economic point of view. Finally, the tradi-
tional approaches focus on establishing necessary conditions for coherency, which our
methods allow us to prove that they are not su¢ cient.
To overcome the �rst two di¢ culties, alternative ways for establishing coherency

are developed here, that are both intuitive and straightforward, as well as much more
generalizable. In addition, our methods allow us to resolve the last two di¢ culties
leading to estimation based on Conditional MLE for much more interesting practical
applications. It is shown in the next Section how to establish coherency without re-
cursiveness through the use of (a) endogeneity in terms of latent variables and/or (b)
sign restrictions on model parameters. The fact that our novel approach for the �rst
time eliminates the need to assume recursivity is quite important for the economic
problem studied in Hajivassiliou and Savignac (op.cit.): recursivity corresponds to the
key identifying assumption that innovation does not a¤ect �nancial distress directly
(� = 0). On a priori grounds, this assumption seems particularly dubious since inno-
vation may lead to more pro�ts and thus relax �nancial constraints (corresponding to
� > 0). An alternative possibility is that innovation may lead to higher investment
in intangible assets thus reinforcing binding �nancial constraints (corresponding to
� < 0). Both possibilities violate the traditional coherency condition.1

6.2 Novel Approach 1: Graphical

Let us illustrate the �rst approach using the Liquidity-Employment constraints appli-
cation of Hajivassiliou and Ioannides (op.cit.). It should be noted that this graphical
approach is related to that of [16] who studied the problem of coherency in bivariate
discrete models for games with multiple equilibria. Figure overleaf 1 gives the 6
possible regimes (S �E) = f1; 0g � f�1; 0; 1g in terms of the two latent variables y�1
and y�2 and the possible con�gurations in terms of parameters ��, �, �, 
11, and 
12.
y�1 is on the horizontal axis and y

�
2 on the vertical.

The �gure makes clear the role of the coherency condition (a) � = 0 or (b)

11 = 
12 = 0: in general, regions R2 and R6 exhibit double-counting (cross-hatched
area), as well as a white rectangle remains which makes the six regions not mutu-

1Note that throughout we expect 
 < 0, i.e., the higher the probability that a �rm faces a binding
�nancial constraint, the less likely it is that it is able to innovate. So the two possibilities translate
to: (a) 
 < 0, � > 0 and (b) 
 < 0, � < 0.
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ally exhaustive. These two logical incoherencies disappear when either � = 0 and/or

11 = 
12 = 0 hold.
We develop further our graphical approach in Section 7 below, and use it to

highlight the fundamental distinction between two types of incoherency, the �rst cor-
responding to overlap regions in latent variables space, while the second to empty
regions. We explain there that incoherencies of the latter type can be overcome
through additional prior restrictions on model parameters through the use of Condi-
tional MLE.

6.3 Novel approach 2: DGP From First Principles

The second approach to incoherency consists of designing a data-generating algorithm
(on a computer or hypothetical) to simulate random draws from an LDV model�s
structure. Again let us use the Liquidity-Employment Constraints application of
Hajivassiliou and Ioannides (op.cit.) to illustrate the method. We draw �1 and �2
under the joint bivariate normal distribution with zero mean vector and variance-
covariance matrix ��, and given x1�1 and x2�2 attempt to generate y

�
1 and y

�
2. This

is possible provided the coherency condition holds: If (a) � = 0, then latent y�2 can be
drawn, then ldv y2, which together with �1 and x1�1 determines the rhs of y

�
1, thus

allowing y1 to be drawn. Similarly, if (b) 
11 = 
12 = 0, then y
�
1 can be drawn from

the �rst equation based on �1 and x1�1, which determines y1, thus giving y
�
2 and hence

y2. It is not obvious, however, whether such data generation can be achieved in case
the coherency condition does not hold. This approach is related to the Gourieroux
et al. (op.cit.) condition that a function exist from �1; �2 to y1; y2.
As we will show in section 8.1 below, the approach extends naturally to cases

with intertemporal endogeneities in panel LDV models, and can be used to prove the
coherency of the classic multiperiod panel probit with state dependence (Heckman
(1981)[11]), as well as the general versions of illustrative models 2 and 3 with explicit
dynamic e¤ects.
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7 Identi�cation Under Additional Prior Sign Re-
strictions

The graphical approach we developed in the previous section highlights two distinct
cases of incoherency: the �rst type of incoherency corresponds to regions of the
observed endogenous variables of the model being overlapping, while the second to
regions that are empty. It is shown below (a) that overlapping region incoherency
can be transformed into empty region incoherency by rede�ning one of the observed
binary LDVs to its complement. And (b) that empty region incoherency can be
overcoming through conditional maximum likelihood (CMLE) of truncating the LDVs
to lie outside the incoherency regions.
The CMLE approach we propose here can also be motivated through the DGP

approach to establishing coherency, that we discussed in the previous subsection. In
that case, we need to consider DGPs truncated to lie on a speci�c region of the latent
variables space. A speci�c method for achieving this is given in technical Appendix
1 below.
It is also useful to note that our approach for establishing coherency through

the use of prior sign restrictions developed here is related to the recent approach
by Uhlig (2005)[17] for VAR identi�cation under prior sign restrictions on impulse
response functions.2Dagenais (1997)[3] also makes a distinction between alternative
types of incoherency regions.3

7.1 Latent Variable Endogeneity

For completeness, let us modify the two-equation LDV model (1)-(2) to make the
interaction terms be the latent variables instead of the limited counterparts:

y1it = � 1 (y
�
1it � [h1(x01it�1; y�2it
) + �1it])

y2it = � 2 (y
�
2it � [h2(x02it�2; y�1it�) + �2it])

Then:
y�1 = x1�1 + y

�
2
 + �1

y�2 = x2�2 + y
�
1� + �2

and
y�1 = x1�1 + 
 � [x2�2 + y�1� + �2] + �1
y�2 = x2�2 + � � [x1�1 + y�2
 + �1] + �2

2I am indebted to Alain Trognon for pointing out the potential of parameter sign restrictions
overcoming incoherency of the �empty region� type, and to Hashem Pesaran for bringing to my
attention Uhlig�s work on sign identi�cation.

3Unfortunately his work remains incomplete and unpublished due to his untimely death.
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Hence y�1 = RF1 and y
�
2 = RF2, allowing us to obtain y1 = �(RF1) and y2 = �(RF2).

We thus see that it is considerably more straightforward to establish coherency identi-
�cation of LDVmodels with latent variable interactions as opposed to limited variable
interactions.

7.2 Coherency through Sign Restrictions

We illustrate the Conditional MLE approach using the joint binary probit model:4

I =

�
1 if_I� � xI�I + 
F + �I > 0
0 otherwise

F =

�
1 if_F � � xF�F + �I + �F > 0
0 otherwise

Obviously, there exist four cases based on signs of 
; �:
4For the �rst equation, I� is used for the latent and I for the observed LDV as a mnemonic to

the Innovation side of the model of Hajivassiliou and Savignac (2007). Similarly, for the second
equation we use F � and F as a mnemonic to Financing Constraints.
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7.3 Case 1: 
 > 0; � > 0 � overlapping regions, incoherency

The Conditional MLE methodology is not directly applicable to this case:
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7.4 Case 2: 
 < 0; � < 0 � overlapping regions, incoherency

The Conditional MLE methodology is not directly applicable to this case either:
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7.5 Case 3: 
 > 0; � < 0 � empty regions, coherency through
conditioning

For this case, coherency can be achieved using CMLE by conditioning the observed
LDVs to lie outside the �empty�region of �gure 4, which has conditioning probability:

1� Prob(�
 < �1 + x1�1 < 0; 0 < �2 + x2�2 < ��)
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7.6 Case 4: 
 < 0; � > 0 � empty regions, coherency through
conditioning

For this case, coherency is also achievable through CMLE by conditioning to the LDVs
to lie outside the �empty�region of �gure 5, which has conditioning probability:

1� Prob(0 < �1 + x1�1 < �
; � < �2 + x2�2 < 0)
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7.7 To Show that Models with Overlapping Regions Remain
Incoherent Irrespective of LDV De�nitions

We have shown that in general, in the absence of coherency conditions, there will
be overlaps and/or gaps in the domain of (�1 + x01�1; �2 + x

0
2�2). At this point, a

researcher might be tempted to propose that the incoherency cases with overlapping
regions (Cases 1 and 2 above) may be overcome by rede�ning one of the two limited
dependent variables to their complement. According to this reasoning, since the
incoherency is caused in these cases because 
 and � are of the same sign, and since
changing y2, say, to its complement yN2 � (1 � y2) would result in �N � ��, then
coherency would be achieved since then 
 � �N < 0.
Such reasoning would be incorrect, however. We analyze here this idea and show

that such a rede�nition would maintain the overlapping-region incoherency. This
is because the yN2 � (1 � y2) rede�nition would also switch the sign of 
 and hence

N � �N > 0 just as 
 � � > 0.
Let us return to the bivariate binomial probit model in terms of the two latent

variables I� and FC� and the observed binary indicators I and FC, and suppressing
the observation index:

I =

�
1 if I� � x1�1 + 
FC + �1 > 0
0 if I� � x1�1 + 
FC + �1 � 0

(11)

FC =

�
1 if FC� � x2�2 + �I + �2 > 0
0 if FC� � x2�2 + �I + �2 � 0

(12)

Suppose we have incoherency because we believe 
 > 0 (in the Hajivassiliou-
Savignac study corresponding to binding FCs cause increasing chance of innovation
I) and that � > 0 (�rms who have high I i.e., innovate raise the chance the banks
will refuse them a loan so high FC). So 
 � � > 0. This is Case 1 analyzed in
subsection 7.3 as represented by Figure 2, and corresponding to the constraints on
the unobservables:

(a1; a2)0 < (�1; �2)0 < (b1; b2)0

such that:

I FC a1 b1 a2 b2 Shading Region
1 1 �x1�1 � 
 1 �x2�2 � � 1 horizontal R1
1 0 �x1�1 1 �1 �x2�2 � � swne R2
0 1 �1 �x1�1 � 
 �x2�2 1 nwse R3
0 0 �1 �x1�1 �1 �x2�2 vertical R4

Now consider the transformed model with NFC instead of FC. This trans-
formation still gives an overlapping region in the transformed variables, and hence
corresponds to an incoherent model. To see this, proceed as follows:
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In terms of the two latent variables I� and NFC� = �FC� and the observed
binary indicators I and NFC = 1� FC, and suppressing the observation index:

I =

�
1 if I� � x1�1 + 
NNFC + �1 > 0
0 if I� � x1�1 + 
NNFC + �1 � 0

(13)

NFC =

�
1 if NFC� � x2�N2 + �NI + �N2 > 0
0 if NFC� � x2�N2 + �NI + �N2 � 0

(14)

Given this transformation, we expect that 
N < 0 (high NFC means not very
binding constraints so cause dampening of I) and that �N < 0 (�rms who have high
I i.e., innovate raise the chance the banks will refuse them a loan so low NFC). So

N � �N > 0.

For a typical i observation, the probability Prob(y1i; y2ijX; �) is characterized by
the constraints on the unobservables:

(a1; a2)0 < (�1; �
N
2 )

0 < (b1; b2)0

through the con�guration:

I NFC a1 b1 a2 b2 Shading Region
1 0 �x1�1 1 �1 �xN2 �2 � �N horizontal R1
1 1 �x1�1 � 
N 1 �x2�N2 � �N 1 swne R2
0 0 �1 �x1�1 �1 �xN2 �2 nwse R3
0 1 �1 �x1�1 � 
N �xN2 �2 1 vertical R4
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7.8 E¢ cient Estimation through Conditional Maximum Like-
lihood

The optimal parametric estimation approach for the models with empty region in-
coherency (Cases 3 and 4 above) will be truncated conditional maximum likelihood,
employing the appropriate likelihood contributions that characterize correctly the
necessary conditioning that ensures that the LDVs stay out of the empty region of
incoherency. For example, assuming independence across observations i = 1; � � � ; N ,
the likelihood contribution in Case 3 will be:

li = Prob (�1; �2 : I = 1(I
� > 0) & F = 1(F � > 0)) = (1� Prob(�
 < �1 + x1�1 < 0; 0 < �2 + x2�2 < ��)

while for Case 4:

li = Prob (�1; �2 : I = 1(I
� > 0) & F = 1(F � > 0)) = (1� Prob(0 < �1 + x1�1 < �
; � < �2 + x2�2 < 0)

These likelihood contributions make it clear why approaches that ignore the co-
herency issue are inconsistent in general: the inconsistency would arise because the
conditioning probability expressions in the denominator are functions of the under-
lying parameters and data, and hence a¤ect critically the evaluation of the correct
likelihood function.
It should be noted also that Cases 1 and 2 may be handled in an analogous fashion

provided it is assumed �rst that the Data Generating Process that overcomes the
overlapping-regions incoherency is one where (�1i; �2i) are drawn from an unrestricted
bivariate normal distribution and then any draws falling into the overlap region are
rejected. To �nd the correct likelihood contributions in these two cases, note that:

p�11 + p
�
10 + p

�
01 + p

�
00 = S > 1

where S � 1 � d, the probability of the overlap region. In Case 1, the overlap
occurs between regions (1; 1) and (0; 0), while for Case 2 between regions (1; 0) and
(0; 1). Consequently, assuming an Accept/Reject DGP out of the overlap region, the
likelihood contribution for Case 1 is:

li =

8>><>>:
p11 = (p

�
11 � d)=(2� S)

p10 = p
�
10=(2� S)

p01 = p
�
01=(2� S)

p00 = (p
�
00 � d)=(2� S)

while for Case 2:

li =

8>><>>:
p11 = p

�
11=(2� S)

p10 = (p
�
10 � d)=(2� S)

p01 = (p
�
01 � d)=(2� S)

p00 = p
�
00=(2� S)
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8 Extensions to BivariateMultinomial Ordered Pro-
bit Cases

We now discuss how to extend our analysis to the case of two simultaneous (bivariate)
ordered probit equations with multiple regions.5 Suppose we have a model given by

y�1 = �
0
1x1 + �y2 + �1

y�2 = �
0
2x2 + �y1 + �2

y1 = I1(y
�
1)

y2 = I2(y
�
2)

where we de�ne

I1(y
�
1) 2 f1; 2; :::; n1g

I2(y
�
2) 2 f1; 2; :::; n2g

I1(y
�
1) = maxfijy�1 < s1ig

I2(y
�
2) = maxfijy�2 < s2ig

The sets fs1ig and fs2ig are n1 � 1 and n2 � 1 increasing transition values, and
s1n1i = s2n2 = 1, so that all very large values get mapped to the highest category.
Then

�y1 2 f�11; �12; :::; �1n2g
�y2 2 f�21; �22; :::; �1n1g

are interaction terms that take one of n2 and n1 discrete values depending on y2
and y1 respectively. The error terms, �1 and �2, are assumed to be normally distributed
conditional on lying outside of incoherent regions �that is, regions in which there is
not a single, unambiguous pair y1 and y2 that corresponds to them.
The bivariate binary probit is a subset of this case, with n1 = n2 = 2, s11 = s21 =

0, �11 = 
, �21 = �, using our usual notation.
As an illustration, consider the following �gure. Here, n1 = n2 = 3, and all the

�2i = 0 so that y1 does not a¤ect y2. As in the binary probit, the e¤ect of the
interaction terms are to shift the boundaries in ��s domain that map to particular
outcomes for y1 and y2. For example, the shaded area corresponds to y1 = 2, y2 = 2.
In this picture, there are no incoherent regions, since the system is triangular.

To proceed to determine the regions of incoherency in the non-triangular case, for

5The research assistance of Ryan Giordano has been especially helpful for this section.
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Figure 7: Coherency of Joint Ordered Response Models

simplicity we will assume that the interaction terms are small enough so that s1(i+1)�
s1i > �2(j+1)� �1j for all i and j, and that a similar condition holds for the transition
values and interaction terms of y2. That is to say, the interaction terms are small
relative to the threshold values. If this is not the case, counting overlaps becomes
more complicated.
If this condition holds, then each intersection of threshold values becomes analo-

gous to the binary bivariate probit case, except that neighbouring interaction terms
now determine whether there is an empty region or overlap. For example, consider
the following situation. Here,

n1 = 3

n2 = 2

�11 < 0

�12 > 0

�21 > 0

�22 < 0

�23 > 0
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Figure 8: Coherency of Joint Ordered Response Models II

When we draw in the shaded regions for the �rst corner, it is evident that there
is an empty region. This is because �12 � �11 > 0 has the same a di¤erent sign from
�22 � �21 < 0. Indeed, if we were to take

z1 = ��01x1 � �11z2 = ��02x2 � �21
1 = �12 � �11

2 = �22 � �21

then the situation would be identical to the bivariate binary probit with the role of
the exogenous variables played by z1 and z2, and the relevant interaction terms being

1 and 
2. Here, for similar reasons, we will see an overlap at the second intersection:
Having observed this, it is easy to de�ne a procedure to calculate the overall

likelihood with coherency incorporated. For a particular outcome, one �rst calculates
its incoherent probability (the probability of (�1; �2) landing in its bounding box).
Then one checks each of its corners for overlaps with neighbouring regions, subtracting
the probability of any overlap regions. Finally, one needs to divide by the total
probability of a coherent draw, which equals one minus the sum of the probabilities
of all the empty and overlapping regions.
We have investigated the theoretical probabilities for the model made coherent

in this fashion, and compared them to the actual frequency probabilities from the

30



Figure 9: coherency of joint ordered Response Models III

postulated accept-reject DGP described in the �rst paragraph of this section. The
two sets of probabilities generated in these investigations matched one another very
satisfactorily.
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8.1 Establishing the Coherency of Panel LDV Models with
Intertemporal Endogeneities using DGP Approach

Extending the analysis to a panel data set, Hajivassiliou (2007)[6] explains how the
probability of a pair (Sit; Eit) in subsection 4.1, a pair (Cit; Bit) in subsection 4.2, and
a pair (Iit; Fit) in subsection 4.3, can be represented in terms of the linear inequality:

(a1; a2)
0 < (�1; �2)

0 < (b1; b2)
0

where the error vector has a �exible autocorrelation structure. For example, one-
factor random e¤ect assumptions will imply an equicorrelated block structure on ��,
while our most general assumption of one-factor random e¤ects combined with an
AR(1) process for each error implies that �� combines equicorrelated and Toeplitz-
matrix features. Consequently, the approach incorporates fully (a) the contempora-
neous correlations in �it, (b) the one-factor plus AR(1) serial correlations in �i, and (c)
the dependency of Sit on Eit and vice versa. The coherency issue expands naturally
to the panel sequence of data, by thinking of each (correlated) time-period for a given
individual i as a distinct probit equation and then dealing with the independent
cross-section of equations across individuals. Details of the analysis can be found in
Hajivassiliou (op.cit.).
Our hypothetical DGP method presented in Subsection 6.3 for establishing co-

herency is now applied to the canonical panel data Probit model with state-dependence,
�rst analyzed by Heckman (op.cit.). Let us begin with the simpli�ed case of the initial
condition being exogenous:

yiT = 1(�yi;T�1 + xiT� + �iT > 0) (15)

yi;T�1 = 1(�yi;T�2 + xi;T�1� + �i;T�1 > 0) (16)

... (17)

yi2 = 1(�yi1 + xi2� + �i2 > 0) (18)

yi1 = exogenous (19)

Let � � V Cov(�iT ; � � � ; �i1; ui1). Suppose �rst the �it has the one-factor (equicor-
related) error components structure �it = �i + �it. Conditional on �i, these T � 1
equations are independent (since they only depend on the i.i.d. �its. Hence draw
an �i and an independent �i2. Then use the exogenous yi1 outcome to generate yi2.
This completes equation 18 which allows to move recursively to generating yi3, then
yi4, etc. until yiT is generated. This establishes the coherency of the model.
Now consider the more general case when yi1 cannot be assumed as exogenous.

We then supplement the system with an initial condition equation:

yi1 = 1(xi1�1 + � � �+ xiT �T + ui1 > 0
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The following remarks are in order: First note that equation 1 is a generalization
of the Barghava and Sargan (1982)[1] approach. Second, one-factor random e¤ect
assumptions will imply an equicorrelated block structure on the top left T �1�T �1
block of �, while more general assumptions of one-factor random e¤ects combined
with an AR(1) or ARMA(p,q) processes for each � error implies that � combines
equicorrelated and Toeplitz-matrix parts. The last row and last column of � giving
the variance of u1i and its covariances with all �it allow the �exibility stipulated by
Heckman (1981b)[12]. De�ne the Cholesky lower triangular times upper triangular
factorization of � = CC 0. Given the assumed normality, the error vector can be
written:

(�0i; u1i)
0 = C�i �i � N(0T ; IT ) (20)

Dropping the i index:

yT = 1(�yT�1 + xT� + cT1�1 + cT2�2 + � � �+ cT;T�1�T�1 + cTT�T > 0) (21)

yT�1 = 1(�yT�2 + xT�1� + cT�1;1�1 + cT�1;2�2 + � � �+ cT;T�1�T�1 > 0) (22)

... (23)

y2 = 1(�y1 + x2� + c22�2 + c21�1 (24)

yi1 = 1(xi1�1 + � � �+ xiT �T + c11�i1 > 0) (25)

This recursive representation establishes the coherency of the model: given a
random draw of �i1; � � � ; �iT , an unambiguous DGP rule can be de�ned to establish
sequentially yi1 ! yi2 ! � � � yi;T�1 ! yiT .
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9 Monte-Carlo Experiments: Design

As we showed in the previous section, we obtain a coherent non-recursive model with
interaction dummy included on each side, provided we believe the feedback terms
have opposite signs on the two sides. We also showed how to handle the cases of
the feedback terms having the same sign through the additional assumption of the
accept-reject DGP.
The experiments were designed to illustrate the importance of coherency on the

following nine estimation approaches:
(a) likelihood estimation that incorrectly forces the old coherency condition to

hold, i.e., assuming recursivity when in fact both feedback terms are present (estima-
tors E-TRWN=assuming � = 0 and E-TRNW=assuming 
 = 0);
(b) unrestricted likelihood estimation, which ignores the resulting incoherency due

to the empty or overlap region(s) (estimator E-INCO);
(c) restricted likelihood estimation conditioning on the data lying outside the

empty region(s) of incoherency (estimators E-SQPM=assuming (
 � 0; � � 0) and
E-SQMP=assuming (
 � 0; � � 0));
(d) restricted likelihood estimation conditioning on the data lying outside the

overlap region(s) of incoherency (estimators E-SQPP=assuming (
 � 0; � � 0) and
E-SQMM=assuming (
 � 0; � � 0)).
(e) LPOLS: (linear probability) ordinary least squares estimation of each bi-

nary probit equation ignoring the possible endogeneity of the interaction terms; and
LP2SLS: applying two-stage least squares recognizing that the two interaction terms
on the RHS of each probit equation can be endogenous.
We generate six �true�models:

� DGP-TRWN (� = 0)

� DGP-TRNW (
 = 0)

� DGP-SQPM (
 � 0; � � 0)

� DGP-SQMP (
 � 0; � � 0)

� DGP-SQPP (
 � 0; � � 0) and

� DGP-SQMM (
 � 0; � � 0),

and in each case, calculate the nine estimators E-TRWN, E-TRNW, E-INCO, E-SQPM,
E-SQMP, E-SQPP, E-SQMM, LPOLS, and LP2SLS.
The generating equations are:

ystar1 = x1[nobs; kx1] � beta1 + gamma � y2 + eps1; y1 = 1(ystar1 > 0)

ystar2 = x2[nobs; kx2] � beta2 + delta � y1 + eps2; y2 = 1(ystar2 > 0)
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9.1 
 unrestricted, � = 0

ystar1 = x1[nobs; kx1] � beta1 + gamma � y2 + eps1; y1 = 1(ystar1 > 0)

ystar2 = x2[nobs; kx2] � beta2 + eps2; y2 = 1(ystar2 > 0)

Given the recursivity of the 
 � � = 0 restriction in this case, ystar2 is generated
�rst, which gives y2. This is then plugged into the RHS of the ystar1 equation thus
allowing ystar1 and y1 to be obtained.

9.2 
 � 0; � � 0
0 � eps1 + x1 � b1 � gamma;�delta � eps2 + x2 � beta2 � 0 (26)

Accept-reject methods are used to generate the data so that these restrictions are
satis�ed.
Analogous Accept/Reject DGP for the 
 � 0; � � 0 case. Also see appendix

1 for an exact algorithm for generating draws from truncated normal distributions
restricted to lie on region (26).

9.3 
 � 0; � � 0
�gamma � eps1 + x1 � b1 � 0; 0 � eps2 + x2 � beta2 � �delta

Accept-reject methods are used to generate the data so that these restrictions are
satis�ed.
Analogous Accept/Reject DGP for the 
 � 0; � � 0 case.

10 Monte Carlo Experiments: Findings

We performed 24 Monte-Carlo experiments, indexed by MCxyz as follows:

� 

x = 1 0 0
x = 2 0:8 0
x = 3 0:8 1
x = 4 0:8 �1

��1;�2
y = 1 0:3
y = 2 �0:3

x11 x12 x13 x21 x22 x23
z = 1 const �2(1) Bernoulli(0:7) const x12 DoubleExponentialSS
z = 2 const �2(1) Bernoulli(0:9) const x12 DoubleExponentialSS
z = 3 const �2(1) Bernoulli(0:7) const x12 DoubleExponentialLS
z = 4 const �2(1) Bernoulli(0:9) const x12 DoubleExponentialLS
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where DoubleExponential stands for a Double Exponential distribution with
mean 0 with asymmetric two sides, SS for �small skewness� and LS with �large
skewness.�
All trials used 2000 observations and 200Monte-Carlo trials were averaged in each

case. In all experiments, the true beta parameters were set at: �1 =
�
0:8; �0:5; �0:3

�0
and �2 =

�
�0:3; 0:7; �0:4

�0
: In Appendix 2 below, we give the complete listing

of the regime probabilities in all 32 experiments we carried out.
The full tables presenting the detailed Monte-Carlo results in terms of various

estimation criteria (root-mean-squared error, absolute bias, absolute median bias,
variance, interquartile range, and nine-decile range) can be obtained from the author
upon request. Here we summarize the results in terms of three dimensional bar
charts in four-part Figures 10-16 below. A given chart graphs the performance of
each estimation algorithm in terms of a given estimation criterion (e.g., RMSE etc.)
with the best performing algorithm normalized to 100. The other methods are then
given as a fraction of that best. For example, if method A is the best with RMSE=25,
and methods B and C have RMSE equal to 75 and 125 respectively, method A will
be reported as 100, B as 0.333 (one third as good since 3 times as high RMSE), and
C as 0.20 (one �fth as good since 5 times as high RMSE).
We �rst give a very drastic summary of the main �ndings:

� The Conditional Truncated MLE proposed in this paper performs very satis-
factorily, being the only consistent estimator for the reverse feedback cases, and
only small sacri�ces in terms of e¢ ciency in the recursive DGPs when it is not
strictly necessary.

� The linear probability estimators, LPOLS and LOP2SLS, perform very badly in
all cases with endogenous interaction terms, thus suggesting that the inherent
non-linearities of the bivariate probits cannot be safely ignored.

� Conditional Truncated MLE also works well for the overlap region incoherency
cases.

� Unrestricted likelihood estimation ignoring the resulting incoherency due to the
empty or overlap region(s) (estimator E-INCO) is by far the worst performing
estimator, dominated even by equation by equation univariate estimators which
ignore the other side of the model.

More analytically:

� The four-part Figures 10 present the overall RMSE results with each method�s
performance averaged across all estimated parameters. The CMLE estimator
dominates all other methods in impressive fashion when the true DGP possesses
the opposite-signs restriction 
 � � � 0. It also performs very satisfactorily in
case the true model is recursive, achieving almost as good a performance as the
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ideal recursive estimator for that case. Even in the case of no interaction terms
being present in the true DGP (
 � � = 0), the CMLE estimator loses out in
terms of RMSE only because of the higher estimation variance in view of not
imposing two true restrictions.

� The four-part Figures 11 report relative RMSE performance for the � interaction
parameter, whereas Figures 12, 13, and 14 give the results for the �11, �22, and
� respectively. CMLE also impresses in these sets of results in a similar ranking
to the previous point.

� The four-part Figures 14 present the overall results in terms of absolute bias
instead of RMSE, whereas Figures 15 give the overall results in terms of absolute
median bias. The �rst set establishes that the CMLE estimator heads and
shoulders above all the alternatives in terms of bias, and whenever it is less
clearly the preferred estimator, this only caused by higher estimation variance.

� Figures 15 allow one to draw conclusions about the extend of non-symmetry
of the distributions of the alternative estimators. No dramatic changes in the
rankings of estimator performance are apparent in this regard.

It may be noted that the dismal performance of the two estimators based on the
Linear Probability approximation would have been alleviated had the average partial
probability derivatives been calculated instead of the latent variable coe¢ cients. This
is because the LP estimators by construction a constant probability derivative with
respect to an explanatory variable, irrespective of the observation values. In our
view, such calculations would not be especially interesting since in most empirical
LDV studies, investigators wish to allow for such probability derivatives to vary over
the range of observations.
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11 Conclusions

The paper discussed the major identi�cation issue of coherency conditions in LDV
models with endogeneity and �exible temporal and contemporaneous correlations in
the unobservables. The econometric framework of LDV models with simultaneity was
presented and the identi�cation issue of coherency in such LDV models with endo-
geneity and �exible temporal and contemporaneous correlations in the unobservables
was analyzed.
Conditions for coherency as presented in the existing literature were reviewed and

shown to be rather esoteric. Two novel methods for establishing coherency condi-
tions were presented, one based on a graphical characterization, the second through
hypothetical Monte-Carlo DGP. The novel approaches have intuitive interpretations
and are easy to implement and generalize. The constructive consequence of the new
approaches is that they indicate how to achieve coherency in models traditionally
classi�ed as incoherent through the use of prior sign restrictions on model parame-
ters. This allowed us to develop estimation strategies based on Conditional MLE for
simultaneous LDV models without imposing recursivity. Thus one can obtain for the
�rst time estimates of direct as well as reverse interaction e¤ects in simultaneous LDV
models, unlike in the existing literature where recursivity had to be assumed. Econo-
metric applications were used to illustrate the methods in practice and extensions are
given to simultaneous ordered probit models with multiple regions.
The proposed Conditional MLE methodology was evaluated through an extensive

set of Monte-Carlo experiments. The experiments allowed us also to study the conse-
quences of employing estimators that make overly restrictive coherency assumptions
about the DGP. The �ndings con�rmed very substantive improvements in terms of
estimation Mean-Squared-Error by employing the CMLE developed in this paper.
They also showed that estimators based on the Linear Probability approximation
perform poorly in this context.
Our CMLE approach allows for the �rst time to obtain estimates of the reverse

as well as direct interaction terms in LDV models with simultaneity.

38



12 Appendix 1: Generating standard Normal vari-
ates truncated to lie outside [�; ��]

We present here a method for generating truncated normal variates to ensure the
coherency of the non-recursive model under prior sign restrictions:
Let z � N(0; 1) and de�ne � � zjfz =2 [�; ��]g Then cdf(z) : F (z) = �(z) and

cdf(�) : F (�) =

8>><>>:
�(z)

1��(��)+�(�) if z < �;
�(�)

1��(��)+�(�) if � < z � ��;
�(z)��(��)+�(�)
1��(��)+�(�) if z > ��:

The procedure is exact for a univariate z truncated on fz =2 [�; ��]g, but it will not
work for higher dimensions. For DGPs with higher dimensions, accept-reject methods
are preferable, though others exist (e.g., Gibbs resampling � see Hajivassiliou and
McFadden (1998) for an explanation.
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13 Appendix 2: Regime Probabilities in Monte-
Carlo Experiments

Y2 = 1 Y2 = 0
Y1 = 1 p11 p10 p1�
Y1 = 1 p01 p00 p0�

p�1 p�0
Experiment p11 p10 p01 p00 p0� p1� p�1 p�0
mc111 0.2812 0.2716 0.1759 0.2711 0.4470 0.5529 0.4572 0.5427
mc112 0.2736 0.2589 0.1845 0.2829 0.4674 0.5325 0.4581 0.5418
mc113 0.2696 0.2840 0.1748 0.2714 0.4463 0.5536 0.4445 0.5554
mc114 0.2598 0.2728 0.1844 0.2829 0.4673 0.5326 0.4442 0.5557
mc121 0.2262 0.3273 0.2316 0.2147 0.4464 0.5535 0.4579 0.5421
mc122 0.2175 0.3162 0.2400 0.2261 0.4662 0.5337 0.4576 0.5424
mc123 0.2219 0.330 0.2229 0.2242 0.4472 0.5527 0.4449 0.5551
mc124 0.2130 0.321 0.2306 0.2350 0.4657 0.5342 0.4437 0.5563
mc211 0.4054 0.148 0.1751 0.2706 0.4458 0.5541 0.5806 0.4419
mc212 0.3920 0.141 0.1852 0.2816 0.4669 0.5330 0.5772 0.4227
mc213 0.3772 0.176 0.1757 0.2709 0.4466 0.5533 0.5530 0.4470
mc214 0.3661 0.167 0.1835 0.2829 0.4665 0.5334 0.5497 0.4503
mc221 0.3515 0.201 0.2317 0.2153 0.4471 0.5528 0.5833 0.4167
mc222 0.3381 0.196 0.2405 0.2252 0.4658 0.5341 0.5786 0.4213
mc223 0.3275 0.225 0.2219 0.2251 0.4471 0.5528 0.5495 0.4505
mc224 0.3141 0.218 0.2327 0.2349 0.4676 0.5323 0.5468 0.4532
mc311 0.5523 0.157 0.0652 0.22 0.2899 0.7100 0.6175 0.3824
mc312 0.5441 0.149 0.0696 0.2368 0.3064 0.6935 0.6138 0.3862
mc313 0.5163 0.185 0.0663 0.2319 0.2983 0.7016 0.5826 0.4173
mc314 0.5080 0.177 0.0712 0.2429 0.3142 0.6857 0.5793 0.4207
mc321 0.5155 0.218 0.0998 0.1659 0.2658 0.7341 0.6154 0.3845
mc322 0.5070 0.211 0.1058 0.1758 0.2816 0.7183 0.6128 0.3871
mc323 0.4818 0.240 0.0942 0.1836 0.2778 0.7221 0.5761 0.4238
mc324 0.4726 0.233 0.1007 0.1931 0.2939 0.7060 0.5734 0.4266
mc411 0.1903 0.163 0.3520 0.2937 0.6457 0.3542 0.5423 0.4576
mc412 0.1773 0.155 0.3607 0.3066 0.6674 0.3325 0.5381 0.4619
mc413 0.1773 0.190 0.3403 0.2919 0.6322 0.3677 0.5176 0.4823
mc414 0.1638 0.181 0.3506 0.3036 0.6543 0.3456 0.5145 0.4854
mc421 0.1430 0.223 0.4017 0.2317 0.6334 0.3665 0.5447 0.4552
mc422 0.1308 0.216 0.4096 0.2432 0.6529 0.3470 0.5405 0.4595
mc423 0.1331 0.244 0.3829 0.2392 0.6221 0.3778 0.5161 0.4839
mc424 0.1201 0.237 0.3909 0.2515 0.6425 0.3574 0.5111 0.4889
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