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1 INTRODUCTION

Maximization of the expectation of a time-separable lifetime utility index that ranks lifetime
consumption bundles, subject to well-defined investment opportunities, lends itself neatly
to a dynamic programming formulation [Samuelson (1969); Merton (1969; 1971); Bewley
(1977)]. Yet, it was only relatively recently that the problem with a general utility function
in continuous time was solved explicitly [Karatzas, Lehoczky, Sethi and Shreve (1986)].!
Here we assume individuals receive endowments in the form of labor income, but are pro-
hibited from borrowing against that income: they may not hold negative wealth.?2 A dual
approach enables us to interpret the optimal solution of the liquidity-constrained problem as
an unconstrained problem under an implicit, individual-specific, set of Arrow-Debreu state
prices.?

Under uncertainty, duality theory confers the additional advantage that the partial dif-
ferential Hamilton-Jacoby equation obtained by dynamic programming for the dual problem
in continuous time is linear and thus easier to solve than the well-known one for the primal
problem.

In the present paper we suitably adapt new research tools developed primarily by finance
theorists who have explored decisions under uncertainty in the presence of alternative sets
of institutional restrictions, such as incompleteness of asset markets and prohibition of short
sales. We show that a dual framework provides a firm link with the theory of marginal
utility of wealth-constant demand functions, or Frisch demands | Browning, Deaton and Irish
(1985) ]. This extension has been shown by applied theorists to be essential for empirical
applications of demand theory in dynamic settings. This connection has not been made
previously and is explored further here. We characterize the optimal policy by means of a

threshold value of assets, below which expenditure exhausts all beginning-of-period assets.

1See Zeldes (1989h) and Deaton (1991) for numerical approaches.

2Dybvig and Huang (1988) prove that a nonnegativity-of-wealth constraint precludes arbitrage oppor-
tunities when quite general trading strategies are considered in continuous time models. See also Cox and
Huang (1989), Dybvig and Huang (1988), and Karatzas, Lehoczky and Shreve (1987).

On a bit of history, Cox and Huang was available as a working paper as of 1986. Karatzas et al. were
unaware of this work and worked independently. They differ from Cox and Huang by their avoidance
of Ly theory. Our ability to rule out getting something for nothing by imposing a constraint that may
be institutionally motivated is particularly welcome. Somewhat more general is the approach of He and
Pearson (1991a,b) who assume incomplete markets and include short-sale constraints. Karatzas, Lehoczky,
Shreve and Xu (1991) go further than He and Pearson by using duality theory and local martingale methods
developed by Xu (1990) and Xu and Shreve (1990). See Karatzas, et al. (1991) for further details on the
relationship of their work with He and Pearson’s work.

3See Artle and Varayia (1978), Pissarides (1978), and Jackman and Sutton (1982) who were the first
to show in deterministic settings that the optimal consumption policy takes the form of a sequence of
subproblems defined over subhorizons where consuming all income as it is received alternates with optimizing
over several subperiods.



Our model allows us to characterize fully the informational requirements of Frisch demand
theory in the presence of liquidity constraints.

Extensions to standard problems of optimization by firms readily follow and some impli-
cations for econometric modelling are also pursued further. The dual variable of interest in
the case of firms is interpreted as the marginal value of capital, known as marginal q, which
under certain identifying assumptions [ Hayashi (1982) | may be observable. Such a linkage
with the g—theory of investment enhances the attractiveness of duality theory. In either
case, duality leads to stochastic difference equations which is linear in the unknown (dual)
variable.

Our work is closely related to Deaton (1991) and, in addition, combines ideas from He and
Pages (1993) and He and Pearson (1991a; 1991b). Both Deaton (1991), who uses discrete
time, and He and Pages (1993), who use continuous time, articulate the threshold value
of wealth but work with only a scalar decision variable. He and Pearson (1991a) employ
a discrete-time state-space representation of uncertainty to analyze consumption and asset
demands but do not touch upon the threshold value of assets. Our emphasis on the usefulness
of duality in solving a particular problem in finite time also distinguishes our paper from
Bewley (1977) * and Chamberlain and Wilson (1984), both of whom emphasize limiting
results when the number of periods tends to infinity. The linkage with the ¢—theory of

investment is straightforward but new.

2 THE MODEL

We consider decisions of individuals who live finite lifetimes of length 7" in an economy
that runs for a countable number of discrete periods ¢ € {0,1,...,7}. Uncertainty in this
economy is characterized by means of a probability space (2, N, P), where an element
w € {2 stands for a particular realization of the relevant random variables in this economy
from 1 to 7. Information in this economy is represented by a sequence of partitions of
2, {N;,|t=0,1,...,T}. The interpretation of this information structure is that at time
t the agent knows which cell of NV; contains the true state. Information increases through
time; Ny is at least as fine as IV;. It is standard to take Ny as the trivial partition, Ny = §2,
and Nr the discrete partition, i.e., Ny = {w | w € §2). The o-field of events generated by
N; is denoted by N;, and N = {N;; t € {0,1,...,T}} is the filtration generated by the
sequence of partitions {N;;t € {0,1,...,T}}. P is the associated probability measure; for

4Bewley (1977) allows for many commodities and a much more general stochastic structure than ours,
but assumes only a single riskless asset, money.



any event e in IN | its probability is P(e). This information structure is rather standard and
may be easily and intuitively represented by an event tree. The representation of uncertainty
according to filtration IV is finite dimensional, that is §2 is finite. We use FE; to denote the
expectations operator associated with N,.

A typical individual faces a wage rate W}, , and a vector of prices of all other goods, W, ;,
and is characterized by an exogenous maximum amount of leisure in period ¢, L,. The vector
W, = (Whu, Wy, is a stochastic process that is adapted to the filtration M. Let L,, the
endowment of leisure in period ¢, be a stochastic process that is also adapted to IN. We use
H, to denote the value of the endowment of leisure: H; = Whjfjt. The randomness of prices
is assumed to introduce no additional source of uncertainty.

Let ui (¢, Gy | N;) denote a utility function as a function of leisure ¢; and a vector of other
goods, G; and be conditional on all new information available to the individual as of time
t, Ny. Such a general dependence allows for taste shocks. Utility per period, u;(¢;, Gy | -) is
assumed to be concave, twice-differentiable and increasing with respect to all of its arguments
(0, Gy). To w(- | -) there corresponds an indirect utility function

ve(b; W | Ny) = e ey w(l, G | ), (1)
with the standard properties.

We introduce additional notation to describe the asset structure in the economy. We
assume that there exist K + 1 securities, k € {0,1,2,..., K}, that households may trade
costlessly each period for current consumption and labor. We assume that security 0 is a
riskless one-period bond. To simplify matters, we assume that K is finite [c.f. Altug and
Miller (1990); He and Pearson (1991a)] and that all securities are one-period securities. Let
qx,: denote the quantity of security k held by the individual from period ¢t — 1 to period ¢, sy
its period ¢t price, and assume for simplicity (and without loss of generality) that securities
pay no dividends.

Let N;-measurable variables be defined as follows: F; is the market value of financial
and A; the market value of total wealth at the beginning of period ¢ (before expendi-
ture decisions for that period are made), F; = Zk:K:O Skaqey; t=1,...,T; F} is the
end-of-period financial wealth (after expenditure decisions in period ¢ have been incurred),
EFr = Z?:o Qri+156e;t = 1,...,T.; by is total expenditure on consumption and leisure, full

expenditure, in period t. We then have:

by = g/,th + Wil (2)

The household’s budget constraint in period ¢ is:



The securities trading (portfolio) strategy is a predictable (K +1)-dimensional process q, with
qa={(qt---,qx.),t =1,...,T}, where predictable means that (qo, . .., gx,) is measurable
with respect to NV; 1. The (K +1)-dimensional process s = {(soz, ..., Skt), t=0,1,...,T},
is N;-adapted.

The problem faced by the typical individual may now be restated as follows.

Problem 1. Find a net asset decumulation path b = {b;,0 < t < T}, and a portfolio
strategy ¢ = {(qots Q1 ts---,qxs) t=0,1,....T — 1} to mazimize:

d 1
vi(bi; Wi | V) + B { > (T vi(bys Wy [ Ny ¢ (4)
j=t+1

subject to constraints (3), to a given value for financial wealth at the beginning of the process,
Fy = ZZ;( 8k,04K,0, and to a requirement that the individual be solvent at the end of period
T.

Once b has been found, the consumption of leisure and all other elements of the con-
sumption bundle (¢, G;) follows Roy’s identity. In dynamic optimization problems existence
and uniqueness are ensured provided that some regularity conditions are satisfied.?> Here we
are interested in exploring the economic intuition of the problem by means of assumptions
which are much stronger than needed for existence and uniqueness | See Bhattacharya and

Majumdar, op. cit. |.

2.1 Complete vs. Incomplete Markets

It is well known that with complete markets, Problem (1) is vastly simplified. All trades,
denoted by an N;-measurable vector (¢;, G;) and an N;_j-measurable vector (qo¢, - - . , gk ¢) for
eacht € {1,...,T—1}, occur at time period 0 and satisfy a single lifetime budget constraint.
This constraint is obtained by requiring that the present value of lifetime expenditure minus

the present value of lifetime receipts, both evaluated at the contingent claims prices, not

®The weakest such conditions are those of Bhattacharya and Majumdar (1989). They require the fol-
lowing: (Al) the state space be a nonempty Borel subset of a complete separable metric space; (A2) the
choice set be a compact metric space for all possible values of the state variables; (A3) v(-) be uppersemi-
continuous, if v(-) is bounded, and continuous otherwise, forall feasible values of the choice variables and
of the decision variables; and U(z) = Y ;- (1 + p) fvp(z) < oo, forall z in the state space, where
Vo (%) = SUPgec(y) [0(@,d)|,  vki1(®) = Supgec() [ vr(2)7(dz|2,d), k =0, 1,..., d denotes the decision
and C(z) denotes the choice set, and 7(dz | ,d) the law of motion; (A4) The law of motion w(dz|z,d) is a
weakly continuous function of (z, d), if v(z, d) is bounded. Otherwise, the mapping (z,d) — [ ¢(z)7(dz|z, d)
must be continuous for all Borel measurable 1 satisfying |i)(z)| < U(z) + 1, forall = in the state space.



exceed initial wealth Fj. Under complete markets, such a valuation is equivalent to taking
expectations.

We use Ai(+), a measure defined on N; for each ¢t € {0,1,...,T}, to denote prices of
contingent claims defined in terms of the numeraire good in period ¢ [ Altug and Miller,
op. cit. ]. For example, for any event, represented by a set e; € N;, the nonnegative real
number A;(e;) denotes the period 0 price of a unit of the numeraire good to be delivered
on date t, contingent on event e; occurring. The usual assumption is that A; is absolutely
continuous with respect to P. This assumption implies a “density”, denoted by m)\t,
of contingent claims prices, technically the Radon-Nikodym derivative of A; with respect to
P. Hence, Ai(er) = ﬁ ., \(w)P (dw). We may now write the lifetime budget constraint

corresponding to (3) under complete markets as follows [ibid, p. 547]:

o1
Eq {Z mxt b, — Ht]} < Ap. (5)

=0
The necessary conditions for the maximization of (4), ¢t =1,...,T, subject to (5) are:
0
=0 (bs Wi [ Ny) = s (6)
b,

for all measurable sets of V; and Vt € {1,...,T}. pis a Lagrange multiplier associated with
the individual’s lifetime budget constraint (5), reflecting individual characteristics, and A, is
the ( density of ) contingent claims price, reflecting market conditions.

In the absence of complete markets, individuals may not be able to transfer purchasing
power across all states of nature. The endowment of leisure may not be sold at the begin-
ning of the process via the contingent-claims markets. Now trades take place as uncertainty
evolves sequentially, and the sequence of budget constraints must be satisfied for all mea-
surable subsets of Ny and t € {0,1,...,T}. Analytically, the most tangible consequence is
that the Lagrange multiplier in the corresponding first-order conditions, the counterpart of

(6), does not assume that particular form. Instead, it satisfies the following conditions:

1 Skt+1
= E ’ ; k=0,1,...,K;t=0,1,...,T. 7
VYt 1+, t {%+1 St } ( )
where —, is the Radon-Nikodym derivative of the period ¢ Lagrange multiplier associated

(1+p)
with the individual’s period ¢ constraint.

Market incompleteness is reflected neatly on the difference between \; and ~;. We elab-
orate further on this below. If markets are complete, the Lagrange multiplier ~; assumes
the special form v, = pA;. In that case, v is multiplicatively separable with respect to

individual characteristics, encapsulated in p, and market information, expressed by the



(market-dependent) density );, defined in (7). ¢ Otherwise, the Lagrange multiplier v
is a time-dependent random variable, with a domain in the dual space corresponding to
the space where the consumption bundle, securities and prices are defined, that depends on

individual characteristics and the economy’s asset structure.

2.2 Liquidity Constraints

Liquidity constraints express the (rather reasonable) restriction that individuals may not
borrow against their future labor income and consequently the individual’s end-of-period
assets may not become negative in any period. ” Even if markets were complete in the sense
of full spanning (all states of nature are accessible) imposition of liquidity constraints imposes
a certain type of incompleteness. It is this type of incompleteness which is examined by He
and Pages (1993). With the notable exception of Altug and Miller (1990), who formally test
and find evidence in favor of complete markets, and of Runkle (1991), who finds evidence in
favor of the permanent income hypothesis, most other empirical research to date, including
notably Zeldes (1989a), have provided evidence against unconstrained versions of the life
cycle model. Similar conclusions may be drawn from the literature on decisions of firms.®
If individuals are not allowed to hold negative financial wealth at the end of period ¢,
then the expenditure plan {b; : ¢ =0,1,...,7} and {4, : t=1,2,...,T} must satisfy a

sequence of liquidity (i.e., borrowing) constraints:

At—thO, t:0,1,...,T. (8)

That is, with probability one the individual can never run into debt. We will not restrict
trading in assets in any other way. It is possible, in particular, that the individual can short
one asset and long another asset. Therefore, condition (8) translates into a requirement that
the present value in terms of contingent-claims prices of expenditure for all possible paths
leading up all realizations of the relevant random variables in every period must not exceed
the present value of the endowment of leisure plus initial financial assets. Note that since
assets left at the end of the lifetime horizon are not valued by the individual, (8) implies

A7 = br. In contrast, in the complete markets case, where constraints (8) are absent, that

6The multiplicative separability of the Lagrange multiplier in the complete markets case lies at the heart
of the innovative estimation procedure in Altug and Miller (1990).

"Before one prohibits entirely trading of the income endowment process, one may consider trading the
expected value of the endowment process, that is by allowing borrowing against that expected value. An
analogue is pursued by Clarida (1987) who examines the possibility that one may borrow against the lower
support of the distribution of labor income.

8Please see Bond and Meghir (1994) and sources cited therein .



is the only constraint. Accounting for liquidity constraints is simplified by the notation we

introduce below.

3 LIQUIDITY CONSTRAINTS - PRIMAL APPROACH

Our results are summarized in a number of propositions, which are presented in this sec-
tion. Our assumption that the representation of uncertainty is finite allows us to deal with
optimization problem defined in a finite dimensional vector space. This assumption may be
relaxed at the cost of additional mathematical complication, which is not strictly necessary.

We now introduce some additional notation. Let n; denote the number of cells in N,
ny =| NV, | and let L = Ztho | N; |. Any N-adapted process can be characterized by its
values at these L cells. It is most convenient to allocate the first coordinate to date 0’s cell,
the next n; coordinates to date 1’s cells, the next ny coordinates to date 2’s cells, and so on.
[see He and Pearson (1991a)]|.

Any bundle of full expenditures b may be fully characterized by a vector B € RZ’.
Similarly, the value of the endowment of leisure may also be represented by a vector H € R”.
Under the assumption that all asset markets are open each period then M = (1+ K) Z;‘F;OI
N, | is the total number of dimensions needed to represent all possible trades in assets. Let
Z denote the L x M matrix representing all investment opportunities. Rows represent some
all possible outcomes (states of nature) in all periods. Columns represent payoffs of all assets
in all states of nature. A dynamic trading strategy Q@ = {q, t =1,...,T}, where ¢ is the
(K + 1)-dimensional vector (qog, - - -, qKt), may be accordingly be represented by a vector in
RM. Recall that k.t 18 Ni_1-measurable, that is, gx; is set in period ¢t — 1 and denotes assets
purchased in ¢ — 1 and liquidated in ¢. We will refer to it as qx(14—1;t).

Let 14 denote the generic element in N;. The elements of N;,; that may be reached from
v, are denoted by N,,1 N1y The opportunity to invest in security £ in event v, generates an
element equal to —sg (1) in the v-th row of Z, which corresponds to buying security k in
v, and element(s) {sk(7); j € Nix1 N4} in the respective rows of Z, which correspond to
the cost of closing out the position next period. The first 1 + K columns of Z are allocated
to investment strategies in period 0, the next 1 + K to the investment strategies at the first
node of Ny, etc. For the riskless security k = 0, we define the one-period riskless rate of
return, which may be time-dependent, as follows: 1+ 0,41 = %

The expenditure bundle produced by a dynamic trading strategy @ is given by:
B=ZQ+ H. 9)
Various restrictions on trades may be represented conveniently in this setting. If certain

7



securities are not available for trading at certain states (or, more generally, markets are
incomplete) then the matrix Z would be missing certain columns. Prohibition of short-sales
constraints may be represented by imposing nonnegativity on the relevant components of Q.

The market value of total wealth in a state 14, as defined in (3), may be written in the

new notation as

K

A(”t) = Z q}c,t(thl)Sk(Vt) + h’<yt)7 th € Nt; t= 07 17 s JT' (1())

k=0
Liquidity constraints according to (8) may now be expressed as :

K

> ars(ir)si(v) + h(v) —b() >0, Vi € Ny, t=0,1,...,T, (11)

k=0
where suitable adjustments are made if some of the K +1 securities are not available for trad-
ing in some state and period. Let (1+p)~'m(1;) denote the Lagrange multiplier corresponding
to the v4-th row of (9). Let (1 + p)~'((14) denote the Lagrange multipliers corresponding to
(11), respectively, which are construed as N;-adapted processes. The Lagrange multipliers
(14 p)~'n(y) and (1 + p)~*((14) are positively valued components of L-dimensional vectors
that belong to the dual of R”, that is they belong to ]Rfr.

Proposition 1 offers necessary and sufficient conditions for an equivalent statement of
Problem 1, subject to liquidity constraints (11).
Proposition 1.

(a) Problem 1, subject to liquidity constraints, may be restated as

ity {{b?%%%%} D D () P {[welb(); W () | M) = (m(w4) + C (1)) b))

t=0 v ENy

+(() [Z Gk, (Ve1) sk (1) + h(”t)]

+7(1) [Z (lgre(vie1) = @re1 (V)] sk(v) + h(’/t))] }} : (12)
(b)  Necessary and sufficient conditions for Problem (12) are: (9) and
0
8b(yt)vt(b(yt); W) [ Ni) = 7(u) + (1) (13)



m) = (14p) 7 DD Pl | 1) [rv) + ()] Sgi@‘;),vvf € Nt =0,1,..., 71,

Ve 1EN 11N

(14)
Vk € {0,1,...,K}. If (11) holds as a strict inequality, ((v;) = 0 and the individual is
unconstrained in period t; otherwise ((v;) > 0 and the individual is constrained in period t.
Proof. The restatement of Problem 1 according to (a) above readily follows if we adjoin
constraints (9) and (11) and multiply each one by p(14). Thus the adjoined state-by-state
constraints may be brought under the summation operators. Then (b) follows by rewriting

and applying the Kuhn-Tucker theorem [ Luenberger (1969) |.

Oood

This result corresponds neatly to Proposition 4.1 in He and Pearson (1991a), p.7, except
that we do not assume absence of arbitrage. The 7(-)’s in (14) are elements of RY, the same
space as the (unique) state price vector when market are complete, but are now individual-
specific. In contrast, He and Pearson (1991a) require that asset prices would be martingales
under the corresponding equivalent measure. It is therefore clear that the presence of liquid-
ity constraints complicates the problem. If (11) never hold as equalities, then all {(v;) =0
and we are back to the complete markets case. The problem is separable in terms of the
7(1)'s, which are determined by conditions (14). These conditions yield a unique state price
vector, if markets are complete, which is normalized in terms of 7(14) and depends upon the

asset structure only. 7(1p) plays the role of p in (6).

3.1 Asset Demands

As a byproduct of this analysis we may use duality to characterize asset demands. Specif-
ically, let V(A(11); W (v) | Vi) the value function of dynamic programming, defined as the
optimal value obtained from the maximization of argument of the max operator in (12)
above, when truncated at the respective points in time. Maximization is subject to con-
straints (10) and (11), as adjoined according to (13) and to (14), except that we invoke (10)

to express remaining utility as a function of A(1;) and of the other state variables. That is :

VIA(); W (e); so(v), - - -, s (1) | Ne| =

{W?}R)} : {{b?ﬁ}((_)} Lo (b(v); W) | Ny) — () + C(1r)) b))



K

+ () Aw) + ()] Aw) = (1) > Grra (W)sk(1)

k=0
1 K
+— Z p(Vi | )V ZQk(Vt; t+ 1) sk(ve); W(viat; so(Wesa)s - -+ Sx(ee1) | | New)
I+p
Vt+1€NtﬂVt k=0
(15)
It follows from the envelope property that asset demands are given by
3V(§A((Vt));-|')
. _ Se\Vt
(it + 1) = ~ g (16)
OA(vt)

This is the multi-period counterpart of Perraudin and Sgrensen (1989) who use an one-period

version of (16) to derive asset demands from an indirect utility function.

4 LIQUIDITY CONSTRAINTS -DUAL APPROACH

Let us define the auxiliary variable X (1) in terms of the Lagrange multipliers introduced in
(21):

X)) =n(n)+C¢(n), Vbe N, t=1,....,T=1; X(vr)=n(vr). (17)

{X(v;) | N;}, admits the standard interpretation as the marginal utility of wealth, a non-
negatively valued stochastic process adapted to N;. Since X (1) is N;-adapted, it may be
represented by an L-dimensional vector X, X € ]Ri. Pursuing duality, we will rewrite the
expression for lifetime utility in (12) to eliminate b(-), and ¢(-). This amounts to exploring
the saddle point property of the Lagrangean to rewrite Problem 1 as a minimization problem.

By definition (17) above and in view of Proposition 1, X, X € R, is an N;-adapted

positive stochastic process that satisfies:

I+oi1
X > — X Yy, € Ni.t=0,1,....T —1. 18
(Vt) =1+, Z p(Vt+1 | Vt) (Vt+1), Vi t IR ) ( )

Vi1 €ENgp1 Nt

and

(14 0¢11) Z PV | V) X (ve41) =

Vi1 ENg 1N
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s;(v ,
E PVt | yt)X(z/tH);('(—:)l), Vie{l,...,K}VYy, € Ny, t=0,1,...,T—1. (19)
M

vip1€N 1Ny

Let D denote the set of X’s that satisfy (18)— (19), a closed convex set in R’ Equality in (18)
means that the corresponding liquidity constraint (11) holds as a strict inequality (constraint
not tight) and the individual is not constrained in period t. This is simply a restatement of
(7). Strict inequality in (18) means that the individual is constrained in period t. Condition
(18) says that the marginal utility of wealth is a supermartingale.” Conditions (19) require
that the gross rates of return, weighted by the respective marginal utility of expenditure, are
equalized across all assets which are held in the portfolio in a particular period.

We define the Legendre-Fenchel transform of v, (b; - | N;), wi(X;- | M), which is known

in the economics literature!” as the profit function:

(X (1n); W) [ Ny) = max @ v(b(vg); W) | Ne) — X(14)b(1y). (20)

b(v)>0
This definition originates in the firm’s problem, where it applies literally: a profit function
wi( K3, pr) gives the maximum profit to be earned when capital K; is given, and the optimal
quantities of all of the firm’s variable inputs are employed. The neoclassical theory of the
firm treats capital as a quasi-fixed factor, whose adjustment via investment I; is subject
to transactions costs, c¢(I;, K;). The resulting net profit function w; (K, p;) — ¢(I;, K;) along
with the adjoined constraint take the place of the indirect utility function.

Under the assumption that the indirect utility function v; is concave with respect to b,
then the profit function w;(X; W | -) is convex and decreasing in X. Duality, as expressed
in Proposition 1 and definitions (17) and (20), leads to the following Proposition.
Proposition 2.

(a) The dual of Problem 1 may be stated as:

min : FEy {Z Z (14 p) e (X (1) W () | M) + X(Vt)h(l/t))]} + X (No)Fp. (21)

XED t=0 1N

(b)  Problem (21) has a unique solution.

(¢)  If X* is a solution to Problem (21), then

9Browning and Robb (1985) were the first to recognize that Frisch demands are still useful when capital
markets are imperfect and the marginal utility of wealth is a supermartingale, rather than a martingale.

10See McFadden (1978) for the first use and Browning et al. (1985) for a recent one, which our approach
is most closely related to.

11



b* (1) = f(X* (1) | M), (22)

is a solution to Problem (12), where f(- | )'! is defined as:

ft(x|/\/t):ir;f: {bz(); %(b;WU\@)Sx}. (23)

(d) The optimal expenditure function given by (22) and (23) yields a vector of demand
functions for leisure and other goods that coincide with the Frisch demands.

Proof. The strict concavity of the indirect utility function v; implies convexity of the
profit function v;. This fact implies that the statement of Problem according to Proposition
1 is subject to the theory of convex programming. The finite dimensional representation of
uncertainty ensures that the liquidity constraints are represented by linear inequalities, so
that Problem 1 is equivalently stated as a problem of minimizing a globally convex function
subject to linear inequality constraints.

Part (a) above follows as a classical statement of duality. E.g., see Luenberger (1969),
Chapter 8. Existence of a solution is guaranteed, provided that a regularity condition!?
is satisfied. Such a condition is indeed satisfied here. A solution, which suggests that
the individual spend her labor income and neither borrow nor invest, satisfies the liquidity
constraints and thus is feasible. Financial assets at every period in time represent the
current value of initial assets. Under the assumption of strict concavity of v; the solution
to the dual problem involves minimization of a strictly convex function and is subject to a
convex constraint and thus is unique. Thus part (b) follows.

Part (c) follows trivially from the definition of the profit function in (20). For part (d),
it suffices to recognize that according to its definition in (20), the profit function w;(z; W)
coincides with the profit function defined by McFadden (1978) for production settings and
adapted to systems of preferences by Browning, Deaton and Irish (1985).

oag

An important economic interpretation of the dual formulation follows from (21) and
complements the one obtained by Browning et al. (1985). X (14) denotes the marginal utility
of period t expenditure. This follows from (13) and (17). The minimand in (21) denotes
discounted lifetime profit from consumption and from the sale of the endowment of labor. To
the primal problem of maximizing lifetime expected utility (Proposition 1) there corresponds

the dual problem of finding values for marginal utility in every period and state (that is,

L £ is the inverse function of % with respect to b.
128ee Luenberger (1969), Chapters 8 and 9. The more recent literature, e.g. Duffie (1992), refers to such
a condition as Slater condition, ibid. p.10, 228.
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for the inverse of the price of utility) so that the total expected profit from consumption be
minimized. Clearly, Propositions 2 and 3 imply an one-to-one correspondence between A(v;)
and X (v4).

We may obtain an interesting corollary of Proposition 2 by multiplying each of the in-
equalities (11) by X (1) — (1 +p) 7' 22, ey arwn PPt | yt)X(ytH)S’; 1&1 Vi, € Ny, t =
0,1,...,7—1. We note that each of these terms is positive when (11) holds as an inequality
and is zero otherwise. By taking expectations as of t = 0, summing up over all the v;’s, and

in view of (19) we have that:

X(NO)F0+EO{ZX ) yt} EO{ZX V)b } (24)

t=0

Equation (24) constitutes the transformation of the sequence of constraints (11) into a
single one resembling (5). p(v)X*(v) is an individual-specific implicit system of Arrow-
Debreu prices (or shadow prices). If the p(.) X (.)*’s were to be interpreted as Arrow-Debreu
state prices and the individual were allowed to sell her labor at these prices at time ¢ = 0, then
the individual’s optimal consumption decisions would be identical to those of the original
problem with liquidity constraints.'®> Duality implies that a constrained optimum, such as
point C, Figure 1, may be visualized as an unconstrained one.

The interpretation of the solution to the liquidity constrained problem in terms of an
equivalent unconstrained problem is seemingly akin to the permanent income hypothesis.
The present value of the lifetime endowment of leisure looks like a linear function of the
endowment of leisure in each period, but it is not. The respective discount factors, which
are the coefficients that multiply each of the terms in the sequence, and which we have
interpreted as individualized implicit Arrow-Debreu prices, are themselves functions of initial
assets, of individual characteristics that enter as preference parameters, and of the entire
specification of the stochastic structure. Those same coefficients should also be used in

discounting expenditures.

4.1 Dual Dynamic Programming

We explore the recursiveness properties of the solution to Problem 1 as characterized by
Proposition 2 to develop a dual dynamic programming formulation, which in view of Propo-
sition 2 part (d) is interesting in its own right. Our approach adapts to discrete-time settings
the method developed by He and Pages (1993). To our knowledge, this is the first such de-

velopment.

13¢.f. He and Pages (1993), p. 22.
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The dual problem, defined in (21), may be amenable to a dynamic programming formu-
lation by means of a value function in the usual way [Bertsekas (1987)]. Let X € D, where
the set D C R’ was defined so as to satisfy (18) and (19) above. The dual counterpart of

the value function defined in (15) is:

JT<X(I/T,1)) = inf B {wT(X<I/T); W(VT) | NT)

{X(vr)eDr (X (vr_1]}

+X (vr)h(vr) | Nr—1} ,Yvor—y € Np—y

JT,1<X(VT,2)) = inf ) {wT,1<X(VT,1); W(I/T71> | NT71>

{X(l/Tfl)E'DTfl[X(VT72)]}

+X (vr_1)h(vr—1) + (1 + p)_lJT(X(VT—l)) | NT—Q} ,Vur_o € Np_y

J(X (1)) = inf s E{wi (X (v); W) | Ny)

{X () eDe[X (ve-1)1}

+X ()h() + (14 p) " T (X () } (25)

Jo(X (No)) = 0(X (No); W(No) | No)) + X (No)h(No) + (1 + p) ' J1(X (No));

T(F) = int s X(No)Fo+ Jo(X(No))

where we have suppressed dependence on the si(-)’s and the sets Dy[-], t =0,1,...,T are

defined as follows:

DX (v—1)) = {X(ve41) > 0: X(vpy1) satisfies (18) and (19), Vi, € N, Vg € NypaNiyk.
(26)

Clearly, Dy[] is a closed convex set in R”, where n, = |N; N 14—, and thus a convex set.
This reformulation of the stochastic dynamic programming problem would be standard,
were it not for constraining the unknown function X (1;) at each state to satisfy a constraint
in terms of expectations. At each state in period 7" — 1, the individual decides on X (vr)
conditional on X (vp_1). Similarly, at each state in period T — 2, the individual decides on
X (vp_1) conditional on X (v7_3), and so on back to period 0, when X (Np) is chosen. Once
X (Np) has been chosen, then all contingent plans may carried out as uncertainty unfolds over

time. We note that if an individual is constrained in some state v; then X (1,1 1) depends only
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on 4,1 and not on X (14); otherwise it does. Therefore, existence of a sequence of consecutive
states {1, ..., 17} during which the individual is unconstrained implies that X (24) depends
only upon X(v;). The primal version of this result is, of course, well-known. We now put
our results formally in terms of Proposition 3.

Proposition 3.

(a) There exists a process X.(v¢), which is adapted to Ny and is obtained by solving
(80) recursively as explained below, such that X*, the optimal solution to Problem 1 may be

characterized as follows:

1. If X* (1) < X(v), then X*(vy) satisfies (18) as an equality.

2. If X*(vy) = Xc(n), then X*(v,) satisfies (18) as an inequality.

We say that 1 above is the unconstrained case, with (11) holding as an inequality , and that

2 is the constrained case, with (11) holding as an equality.

(b) The threshold values {X. (1) | Ni} are defined recursively according to (30), for
t=T,T —1,...,0 and form a N;-measurable process that characterize fully the optimal

policy.

(c) Duality implies that the quantity in (31) below, evaluated at the optimum, is equal
to minus the total value of financial assets as of the beginning of period t, —F*(1) =
—A(Vt) + h(Vt).

(d) To the threshold values {X.(v;) | Ni} there correspond threshold values A.(v;) for
A(wy), the state variable of the primal problem, such that b*(v,) = A(1y), if A(n) < Ac(n),
and b(v) < A(v), otherwise, where A(vy) is defined in (10).
(e) The envelope property holds, that is:
d 0

d—%J*(Fo) = X(No) = (N
and similarly for 0 <t <T.
Proof: We note first that the minimization problem in the right hand side of (25) for t = T in-

volves a minimand that is a convex function of X (vr) and is subject to X (vr) € D[ X (vr-1)],

vo(b(No); - | No), (27)

which is a closed convex set in ]Rf‘rT, where np = | Ny Nvr_4|. We describe the solution by
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defining X.(vr) as the solution to:

0
aX—(VﬂWT<' | NT) + h(VT) = O, VVT c NT N vr_1. (28)

It follows from the properties of wor that if a solution to the above equation exists, it is
unique under our assumptions. The minimand in the right hand side of (25) for ¢t = T
and the constraint that X (vr) € Dr(X,,._,) both involve expectations with respect to vr,
conditional on vy ; and subject to X (vr_1). Therefore, the optimality condition for period
T may be interpreted as b(vr) = h(vr) + £(X(vr—1)), where £(.), &(.) > 0, denotes the
Lagrange multiplier corresponding to constraint (18). If the latter at the optimum holds as
equality, that is

X (VT—l) = 1_’_; Z p(VT | VT_l)X (VT),VVT_l c NT_1, (29)

vreENTNYr_1

then the individual is unconstrained in period 7" — 1, in which case {(X(vr—1)) > 0, and
X*(vr) < X(vr). In that case X (vr) is a function of X (vr_;). If, on the other hand, (18)
holds as inequality, the individual is constrained in period 7'—1. In such a case b(vr) = h(vr)
and X*(vr) = X.(vr), and thus independent of X (vr_1).

Let us define X (vr 1) as the unique value of x which satisfies:

- 1
&g; ~(w; W(vr—1) | Nooa) + h(vr-a) + —QJT(x) =0 (30)

1+ p0x
By the envelope property, 2 Jr(z) = —£(z). It follows by comparing (28) and (30) that cet.

par. X, is nonincreasing over time.
Working recursively we may establish that since w; is convex and decreasing in X (1),
so is Ji11(X (1)), the dual value function defined in (25). Should the quantity

th ) 1 8
—— (X5 W () | M) + h(wn) + %

X Ji1(X) (31)

become 0 in an interior point of D;[X (14_1)], then such a point is unique and defines the
optimal value X*(1;). Otherwise, the minimum is characterized by a point on the boundary
of Dy[X(v,_1)], such that expression (31) is negative, and (18) holds as an equality.'* The

optimal value of X (1) may thus be characterized as follows:

X*(1y) = max Xc(yt),Ti;l > p | )X () ¢ (32)

Vi1 €ENg 1Ny

147t is worth noting that constrained (unconstrained) behavior corresponds to an optimum in the interior
(boundary).
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The threshold value X, defines a critical boundary in the nonnegative halfspace of R}, where
ny = |Ny N vp_1|. This boundary splits the dual halfspace into two regions, the lower one
corresponding to unconstrained behavior and the higher one to constrained behavior [Figure
2]. Returning to the primal space, this implies a separation in the space of the market value
of wealth in the beginning of each period, which includes financial assets plus the value of
the endowment of leisure.

Finally, to show uniqueness of the optimal solution, it suffices to show that (30) implies a
unique X (Np). Since w; is a convex decreasing function and J; (X (Np)) is a convex function
of X(Ny) then generically a unique non-negative X (Np) exists for which the infimum is
attained. Parts (a) and (b) have been proven.

Part (c) follows as a standard statement of the envelope property.!® It allows an interpre-
tation of the condition for optimality. If —A(v;) + h(v;) = 0, the individual is constrained in
period ¢t — 1; if, on the other hand, —A(v;) 4+ h(;) < 0, then the individual is unconstrained
in period t — 1.

To establish part (d), we note from Proposition 2, part (c), that the existence of X.(14)
implies the existence of b.(14), be(11) = f(Xc(v¢) | My) such that if X (1) = X.(14), then
Ac(n) = be(rr) = b*(1y). Tt then follows from the monotonicity and strict concavity of v
with respect to b that:

b () = A(n), it A(n) < Ac(w) = fF(Xe()IN);

b*(n) < A(wy), if A(n) > Ac(w).

Finally part (e) for ¢ = 0 follows from the definition of J*(Fp) by differentiating with
respect to Fy. For ¢ > 0 we note that the problem may be truncated at any point in
time t, t < T, and state v; and the value of remaining utility be considered as a function
of financial wealth as of the beginning of period ¢ and conditional on state vy, F () =
Zszo qr(Vi—1;t)sk(v;). Then everything applies with the obvious change in notation. The
proof of Proposition 3 is thus complete. oo

The advantage of duality theory readily follows from (32). The multidimensional primal
problem is tranformed into a scalar dual problem, where the unknown dual variable follows
a linear stochastic difference equation, subject to a boundary. The boundary is defined in

terms of fundamentals and defines the critical region.

15This is one of the ways in which the discrete- and continuous-time formulations differ. When trading
takes place continuously, there is no counterpart to before and after trading. The respective proposition in
He and Pages gives an expression for wealth.
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4.2 Consequences for Econometric Modelling

In econometric research where the underlying analytical model may be formulated as a
stochastic dynamic programming model, it is testable implications of (7) or (18) that have
been relied upon principally.!® Most of the literature does not specify in detail the sources
of stochastic shocks. It is, therefore, essential that the analytical premises of such empirical
research may be as general as possible.

It may be argued that our approach is more general than previous ones, in the sense
that our dual dynamic programming formulation is set within a very general representation
of uncertainty. Generalizing the assumption of finite dimensionality of that representation
is a matter of elegance. It is thus quite important that both b* and X* are in general
N;-adapted. Consequently, they vary continuously with the underlying parameters of the
decision problem.

A stronger statement may be made about the dependence of the Lagrange multiplier
on total wealth. It is easiest to think about this as of the beginning of the process. We
note that from the definition of J*(F,) and Proposition 3 we may obtain that X (Np) is a
monotone decreasing function of Ag = Fy+h(Ny). This is straightforward once we recall that
wo(-) and J;(-) are non-increasing convex functions of X (Ny). By working in like manner we
can show the same for X (1;). As we discussed earlier above, if the X (1;)'s were known as
functions of parameters and prices then the problem could be solved as if (24) were the only
constraint. That same fact suggests in estimation one should be careful so that the most
general dependence for X on the information set is allowed for.

No general statement about the threshold value of assets may be made, except that it,
too, is N;-adapted. About the determinants of Frisch demands we note that even though
their functional form is invariant to whether or not constraints are active, their reduced
forms in terms of the determinants of the Lagrange multipliers are not. It is this fact which
Hajivassiliou and Ioannides (1990) exploit in developing a switching — regression estimation
model.

We indicated above that the existence of a sequence of unconstrained states {v, ..., 5}
implies that X (14) depends only upon X (1), and marginal utility of wealth is, from (18), a
martingale in the intervening years. Similarly, if an individual is constrained in some state
v then X (1441) depend only on 1441 and not on X (14). These implications are, of course, in
principle, testable via the overidentifying restrictions implied by the martingale hypothesis.

Frisch demand theory exploits a correspondence between marginal utility of wealth and

wealth for a given individual. The role of the Lagrange multiplier as a sufficient statistic in the

16See MaCurdy (1985) for a review of empirical research using Frisch demand models.
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life cycle model may be equivalently assumed by total assets (or, net asset decumulation).
Unfortunately, many empirical studies of individuals’ behavior are forced to rely on data
(such as the U.S. Panel Study of Income Dynamics ) where neither assets nor net asset
decumulation are observed, but still retain Frisch demand theory in structuring empirical
investigations.

Firms’ behavior lends itself neatly to a demonstration of the usefulness of duality theory
in empirical investigations. Unlike the case of individuals, the objective which publicly traded
firms are supposed to optimize according to neoclassical theory may be observable. The dual
variable of interest in the case of firms’ behavior is associated with a capital accumulation
constraint and thus interpreted as the marginal value of capital, known as marginal q. Under
certain identifying assumptions | Hayashi (1982) | marginal ¢ may be equated to average
q, and thus observable as the ratio of the value of a firm’s capital, which is provided by
the stock market, to the replacement cost of capital. Alternatively, it may be computed
from the present value of the future stream of net profits associated with a marginal unit
of investment. Such a linkage with the g—theory of investment enhances the attractiveness
of duality theory. If investment is unconstrained, duality leads to a stochastic difference

equation which is linear in the unknown (dual) variable.
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