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Abstract

This paper proposes e¢ cient estimation methods for panel data limited depen-
dent variables (LDV) models possessing a variety of complications: non-ignorable
persistent heterogeneity; contemporaneous and intertemporal endogeneity; observ-
able and unobservable dynamics; and imperfect regime classi�cation information. It
�rst shows how a simple modi�cation of estimators based on the Random E¤ects
principle can preserve the consistency and asymptotic e¢ ciency of the method in
panel data despite non-ignorable persistent heterogeneity driven by correlations be-
tween the individual-speci�c component of the error term and the regressors. The
approach is extremely easy to implement and allows straightforward classical and om-
nibus tests of the signi�cance of such correlations that lie behind the non-ignorable
persistent heterogeneity. The method applies to linear as well as nonlinear panel data
models, static or dynamic. Two major extensions of the existing literature are that
the method works for time-invariant as well as time-varying regressors, and that these
dependencies may be non-linear functions of the regressors.
The paper then combines this modi�ed random e¤ects approach with two simulation-

based estimation strategies to overcome analytical as well as computational intractabil-
ities in a widely applicable class of nonlinear models for panel data, namely the class
of LDV models with contemporaneous and intertemporal endogeneity. The e¤ective-
ness of the estimation methods in providing asymptotically e¢ cient estimates in such
cases is illustrated with three discrete-response econometric models for panel data.
An important problem handled by the framework developed in this paper involves
contemporaneous and intertemporal simultaneity caused by strategic interactive ef-
fects or contagion across economic agents over time.
The �nal contribution of the paper is the development of an algorithm that allows

for the �rst time e¢ cient maximum likelihood estimation (MLE) of a panel data
LDV model with regime classi�cation imperfections in the presence of Markovian
state dependence.
Keywords: Limited Dependent Variable Models, Simulation-Based Estimation,

Endogeneity, Correlated Random E¤ects, Initial Conditions in Nonlinear Dynamic
Panel Data Models, Regime Misclassi�cation Information
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1 Introduction

This paper proposes e¢ cient estimation methods for panel data limited dependent
variables (LDV) models possessing a variety of complications: non-ignorable persis-
tent heterogeneity; contemporaneous and intertemporal endogeneity; observable and
unobservable dynamics; and imperfect regime classi�cation information. Section 2
shows how a simple modi�cation of estimators based on the Random E¤ects prin-
ciple can preserve the consistency and asymptotic e¢ ciency of the method in panel
data despite non-ignorable persistent heterogeneity driven by correlations between the
individual-speci�c component of the error term and the regressors. The approach
is extremely easy to implement and allows straightforward tests of the signi�cance
of such correlations that lie behind the non-ignorable persistent heterogeneity. The
method applies to linear as well as nonlinear panel data models, static or dynamic.
In addition, the method works for time-invariant as well as time-varying regressors,
and allows for nonlinear dependencies, thus providing important extensions to the
existing literature.
In Section 3 we combine this modi�ed random e¤ects approach with two simulation-

based estimation strategies to overcome analytical as well as computational intractabil-
ities in an important class of nonlinear models for panel data, namely the class of LDV
models with contemporaneous and intertemporal endogeneity. The simulation-based
methods are: (a) Method of Maximum Simulated Likelihood employing the Geweke-
Hajivassiliou-Keane importance-sampling simulator (MSL/GHK) and (b) the Method
of Simulated Scores with Gibbs resampling (MSS/GRS). Subsection 3.1 sets up the
theoretical framework, while Subsections 3.2.1-3.2.3 present three illustrative appli-
cations that employ the estimation strategy developed here. The e¤ectiveness of the
estimation methods in providing asymptotically e¢ cient estimators in such cases is
illustrated with three discrete-response econometric models for panel data. Appli-
cation 1 is a simultaneous system determining a binary LDV indicator and trinomial
ordered LDV indicator, whereas application 2 extends the endogeneity over time.
An important problem handled by the framework developed in this paper involves
contemporaneous and intertemporal simultaneity caused by strategic interactive ef-
fects and contagion across economic agents over time. More speci�cally, application
3 illustrates how to user our framework to model strategic interactions over time
across subjects in experimental settings and contagion across countries in interna-
tional �nance. Subsection 3.2.4 shows how our methods allow for �exible serial and
contemporaneous correlations in the unobservable disturbances of our panel models.
The �nal contribution of the paper is presented in Section 4 where we discuss

panel data LDV models with regime classi�cation imperfections in the presence of
Markovian state dependence. It develops a novel algorithm that allows for the �rst
time e¢ cient maximum likelihood estimation (MLE) of this class of models. Our
algorithm relies on a recursive set of matrix equations.
Section 5 concludes.
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2 Problem I: Non-Ignorable Persistent Heterogene-
ity

Consider three classic cases of panel data models with time-varying and time-invariant
regressors x and z respectively:
A. Linear Static:

yit = x
0
it� + z

0
i + �it (1)

B. Linear Dynamic:

yit = �yi;t�1 + x
0
it� + z

0
i + �it (2)

C. Nonlinear with nonadditive errors:

yit = h (x
0
it� + z

0
i + �it) (3)

where h(�) is a known function, allowed to be nondi¤erentiable and discontinuous.
LDVmodels are clearly a special version of this. For simplicity, we assume a balanced
data set indexed by i = 1; � � � ; N and t = 1; � � � ; T . We concentrate on the common
situation of large N , and small to moderately large T .1 In each case, suppose that �it
follows the one-factor error components structure �it = �i+ �it, with E(�itjX;Z) = 0
and � and � independent for any i,t. We let X and Z denote the matrices of the
complete sample data on the time-varying and time-invariant regressors respectively.
A usual problem in many practical cases is that �i may be believed to be corre-

lated with one or more of the regressors (x0it; z
0
i). We de�ne this problem as �Non-

Ignorable Persistent Heterogeneity,�which results in inconsistency of estimators based
on the Random-E¤ects (RE) principle. This problem very frequently leads applied
researchers to adopt Fixed-E¤ects type estimators (FE), which are not a¤ected by
such random e¤ects-regressors correlations. These decisions are predicated on the
well-known fact that such correlations normally wreak havoc to estimators that are
based on the standard RE principle of accounting for the non-sphericality of the er-
ror term distribution through suitable generalized least squares (GLS) and maximum
likelihood estimation (MLE) methods.
Estimators based on the FE principle either eliminate or condition upon the per-

sistent heterogeneity term �i and are thus consistent irrespective of any regressor-
heterogeneity correlations. These estimators for (1) yield Ordinary Least Squares
estimation after applying either �rst-di¤erencing (wit � wi;t�1) or the within trans-
formation (wit � 1

T

PT
t=1wit), where wit stands in for the dependent variable yit and

all the regressors xjit and z
l
it; for (2) they yield Instrumental Variables estimation

using su¢ ciently older lags of the dependent variable (yi;t�l, l > 1) [see Arellano and

1Exogenously unbalanced data sets can be readily accommodated. In case the causes of unbal-
ancedness are endogenously determined, all models become of category C, since a valid probability
model characterizing the data availability necessarily introduces a nonlinearity of type (3).
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Bond (1991)[1]]; and for (3) they are in general inconsistent due to the incidental
parameters problem.2

It is our view that abandoning RE estimation in favour of FE in such situa-
tions is premature, unnecessary, and likely to have rather unfortunate consequences.
This is because well-understood shortcomings of estimators based on the FE princi-
ple include, inter alia: (a) FE-type methods provide no estimates in general for the
time-invariant coe¢ cients ; (b) since N �i parameters are implicitly or explicitly
estimated, such methods su¤er substantial e¢ ciency losses as compared to methods
based on the RE principle; and (c) the within and �rst-di¤erencing transformations
typically reduce very signi�cantly the signal-to-noise ratio of the time-varying regres-
sors, thus resulting in serious inconsistencies in FE-based methods. These shortcom-
ings can be explained in an intuitive way by noting that the FE-based methods sweep
away also ignorable heterogeneity (that is uncorrelated with regressors). Hence, they
clean out �too much� and make it harder to precisely identify the e¤ects of main
interest (�).

2.1 Modi�ed Random E¤ects Estimation

We show how a simple modi�cation of estimators based on the RE principle, following
ideas of Mundlak (1978)[25] and Chamberlain (1984)[5], can preserve the consistency
and asymptotic e¢ ciency of the RE methodology.
Our approach models explicitly the suspected non-ignorable persistent hetero-

geneity by characterizing its correlation with the regressors as:

E(�ijX;Z) = �i = g(X;Z) (4)

and considering speci�c functions g(�). For example for the case without time-
invariant regressors zi, Mundlak (1978)[25] proposed �i = �x

0
i�� where �xi� � 1

Ti

PTi
t=1 xit

is the time average of the regressor vector.3 An alternative proposal was Chamberlain
(1984)[5] who instead modelled this conditional mean as E(�ijX) =

PTi
t=1 rtxit where

rt are period-speci�c weights.
It is important to emphasize that, in marked contrast to the Mundlak-Chamberlain

work, our framework explicitly allows for the presence of time-invariant regressors,
which should be useful in many real-world applications.4 To this end, we introduce
three assumptions concerning the conditional mean function g(�) characterizing the

2In very speci�c cases, consistent FE estimators exist for (3), e.g., the conditional logit model of
Chamberlain (1980)[4].

3Hajivassiliou (1985)[10] used a similar approach for deriving formal tests of regressor-
heterogeneity correlations in a switching regressions framework.

4AsWooldridge (2005)[26] explains (see his sections 11.3.2 and 15.8.2), the Chamberlain-Mundlak
setup allowed �only time-varying explanatory variables". Yet the whole focus of the approach here
is to analyze the presence of time-invariant regressors and the major impact of that on interpreting
the coe¢ cients (for policy analysis etc.)
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correlation between the unobserved persistent heterogeneity �i and regressors x and
z:
Assumption 1: g(�) is a linear function of the regressors;
Assumption 2: g(�) depends only on the regressor data for individual i; and
Assumption 3: g(�) only depends on the regressors in a time-invariant way.
Assumptions (1)-(3) are satis�ed by the Mundlak error model after extending it

for the presence of invariant regressors, by de�ning:

E(�ijX;Z) = g(X;Z) = �x0i�� + z0i� (5)

If we now write
��i � �i � �x0i�� � z0i� (6)

this new persistent heterogeneity term has by construction conditional mean zero.
We can thus substitute out �i from (1), (2), and (3) in each of the three classic cases
considered and collect terms.
Speci�cally, for each of the canonical models above we obtain:
A. Modi�ed Linear Static:

yit = x
0
it� + �x

0
i�� + z

0
i( + �) + �

�
i + �it (7)

B. Modi�ed Linear Dynamic:

yit = �yi;t�1 + x
0
it� + �x

0
i�� + z

0
i( + �) + �

�
i + �it (8)

C. Modi�ed Nonlinear with nonadditive errors:

yit = h (x
0
it� + �x

0
i�� + z

0
i ( + �) + �

�
i + �it) (9)

Since by construction E(��i jX;Z) = 0 and E(�itjX;Z) = 0 by assumption, this ap-
proach results in modi�ed models with well-behaved random persistent heterogeneity
e¤ects that do not pose consistency problems for GLS/MLE estimation: the solution
proposed here thus involves simply adding the time-averages of the time-varying re-
gressors as additional regressors in the right hand side of the respective panel data
model and proceeding with the RE estimator that is appropriate for each case. Con-
sequently, our modi�ed RE estimators will have the usual optimality properties: for
case A the optimal RE/GLS estimator corresponds to OLS of the model (7) made
spherical by applying the transformation (wit � � �wi�); for case B, optimal RE corre-
sponds to full information maximum likelihood (FIML) and three stage least squares
(3SLS) applied to (8) written as a cross-sectional simultaneous equations system of
T equations, one per period [see Barghava and Sargan (1982)[2]]; and for case C, e¢ -
cient estimation is achieved through MLE, possibly with the aid of simulation-based
inference in case likelihood contributions involve high dimensional integrals. This
case is the focus of Section 3 below.5

5For nonlinear dynamic models, the methods of Wooldridge (2005)[26] are useful for handling
the initial conditions problem inherent in such models.
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The RE modi�cation presented here o¤ers several important extensions to the
existing literature: �rst, as already noted above, our framework extends the Mundlak-
Chamberlain approach to accommodate the empirically important case of time-invariant
regressors. Implications and interpretation of this extension are discussed in Sub-
section 2.2. The second extension, discussed in Subsection 2.3, is the development
of formal tests for the presence of non-ignorable heterogeneity. The third useful ex-
tension is the following: If it is believed that the correlation function g(X;Z) should
allow for nonlinearities in the regressors, we can modify suitably Assumption 1 so
as to expand (5) to contain polynomials in �xi� and zi and hence obtain the new
conditional mean function:

E(�ijX;Z) =
LX
l=1

�
(�xi�)

l
�0
�l +

MX
m=1

((zi)
m)

0
�m (5�)

This speci�cation allows for the �rst L powers of �xi� and the �rst M powers of zi
to characterize the nonlinear time-invariant dependency of E(�ijX;Z) on the regres-
sors.6

2.2 Interpreting Coe¢ cients of Time-Invariant Regressors �xi�
and zi

It is a direct consequence of our approach that the time-invariant regressor co-
e¢ cients  are not identi�able separately from parameter vector �, as can be seen
from equations (7)-(9). At �rst glance this may appear as a limitation of the ap-
proach we propose. Upon further re�ection, however, one realizes that our ap-
proach actually yields the correct marginal e¤ects with respect to changes in regressor
variables, taking into account both the direct as well as the indirect e¤ects of such
changes. To illustrate, consider a change in time-varying regressor j, say �xjit and
a change in a time-invariant regressor m, say �zmi . Given that we focus on the case
E(�ijX;Z) = g(X;Z) where we assume speci�cally that g(X;Z) is well modelled by
�x0i�� + z

0
i�, it follows that for panel data Model A the expected marginal e¤ect of a

change �xjit that is relevant for policy-making purposes is:
7

�E(yitjX;Z)=�xjit = �j +
1

T
�j

while for a change �zmi it is:

�E(yitjX;Z)=�zmi = m + �m

6Alternatively, we could specify the time-average of the lth power of xit. I.e., we would use:
1
T

PT
t=1(xit)

l instead of (�xi�)
l.

7This formula needs to be adjusted accordingly in case the change in xj is assumed to persist for
longer than one period.
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Our method provides estimates of both marginal e¤ects as derived here, since it
yields separately parameter vectors � and � as well as the combined vector  + �.
Similar logic gives also the marginal e¤ects for cases B and C, mutatis mutandis.8

2.3 Testing for Non-Ignorable Persistent Heterogeneity

Our approach enables also straightforward testing of the signi�cance of correlation
between the regressors and the persistent heterogeneity term (i.e., the individual-
speci�c component of the error term), which would render it non-ignorable: under
the maintained hypothesis of this paper, a classical test (by employing any of the
traditional methods of Lagrange Multiplier, Likelihood Ratio, or Wald) of the time-
averages �xi� when entered as additional regressors, provides a formal test as to whether
the conditional mean functionE(�ijX;Z) indeed depends on theX regressors. To the
extent that the conditional mean model is only an approximation, such signi�cance
tests should be viewed as omnibus speci�cation tests of the presence of important
Regressor-Heterogeneity correlations that are modelled less precisely.
Finally, speci�cation tests in the Wu-Hausman mould can be constructed by com-

paring alternative estimators of the � parameters. In particular consider the tradi-
tional FE estimator �̂FE that is consistent irrespective of Heterogeneity-Regressor
correlations; the traditional �̂RE estimator that is consistent and e¢ cient under the
assumption of no Regressor-Heterogeneity correlations E(�ijX;Z) = 0; and the mod-
i�ed RE �̂MRE estimator here that is consistent and e¢ cient under the correlation
model E(�ijX;Z) = �x0i��+z0i�. Constructing Wu-Hausman quadratic forms based on
pairing �̂MRE with �̂FE on one hand and with �̂RE on the other yields straightforward
speci�cation tests in this context.

3 Problem II: LDV Panel Models with Contem-
poraneous and Intertemporal Simultaneity

It is now shown that the approach developed above can be readily applied to general
additive and non-additive nonlinear panel data models, which may be static or dy-
namic, through the introduction of Simulation-Based inference. For an introduction
to these methods, see inter alia Hajivassiliou (1993)[11]]. For the dynamic case, the
framework here extends the Barghava and Sargan (1982)[2] approach to nonlinear
dynamic models.

8Note that under certain scenarios (e.g., Hausman and Taylor (1981)[17]) it may be possible to
extend the FE approach to recover estimates of the time-invariant parameters . That would allow
one to identify separately the indirect e¤ect vector � from the combined estimate generated by our
modi�ed RE method. In general, whether one desires the combined direct plus indirect  + � or
the two parameters separately will depend on the speci�c policy analysis one has in mind.
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To focus on the most challenging case, namely nonlinear models with non-additive
errors, we consider the leading case for the non-additive error nonlinear model of
equation (3): this is the LDV model for panel data with Ti periods of observation on
individual unit i = 1; � � � ; N . This model is de�ned by a Gi � Ti � 1 vector of limited
dependent variables yi induced by anMi �Ti�1 vector of latent variables y�i observed
through the partial observability rule:

yi = �(y
�
i ):

The limited dependent vectors yi are independently drawn across i and the Gi� 1 yit
and Mi � 1 y�it vectors are stacked in the obvious way to form the Gi � Ti � 1 yi and
Mi � Ti � 1 y�i vectors:

yi �

0BBBBB@
yi1
...
yit
...
yiTi

1CCCCCA and y�i �

0BBBBB@
y�i1
...
y�it
...
y�iTi

1CCCCCA
Particularly useful LDV models yi = �(y�i ) correspond to a set of linear inequalities
on y�i de�ned by lower and upper limit vectors ai and bi respectively, with:

yi = �(y
�
i ) such that fy�i ja(yi) < y�i < b(yi)g: (10)

It should be noted that the function characterizing the latent vector y�i may depend
on, in addition to exogenous regressors, the limited vector y and the latent vector
y�of other economic agents and from di¤erent points in time.

3.1 Estimation by Simulation: Maximum Simulated Likeli-
hood (MSL) and Simulated Scores (MSS)

It is well known that maximum simulated likelihood in conjunction with the Geweke-
Hajivassiliou-Keane simulator (MSL/GHK) and the method of simulated scores based
on Gibbs resampling (MSS/GRS) overcome the well-known computation intractabil-
ities of the multiperiod (panel) limited-dependent-variable models. See inter alia
Börsch-Supan and Hajivassiliou (1993)[3], Hajivassiliou, McFadden, and Ruud (1996)[16],
Hajivassiliou and McFadden (1998)[15].
In this paper we stress an additional feature of the MSL/GHK and MSS/GRS

methods that is less well known and understood, namely that it overcomes analytical
intractabilities associated with LDV models (for both panel and cross-sectional data)
with complicated error correlations and endogeneity.
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Let us �rst de�ne the MSL method: Let the log-likelihood function for the un-
known parameter vector � given the sample of observations (yi; i = 1; : : : ; N) be

`N(�) �
NX
i=1

[log f(�; yi)] (11)

and let ~f(�; y; !) be a simulator that is: (1) unbiased so that f(�; y) = E![ ~f(�; y; !)jy]
where ! is a simulated vector of R random variates, and (2) a continuous function of
� and !. The maximum simulated likelihood estimator is

�̂MSL � argmax
�

~̀
N(�) (12)

where

~̀
N(�) �

NX
n=1

log ~f(�; yn; !n) (13)

for some given simulation sequence f!ng.
When ~f(�) is generated according to the GHK method, which is based on the im-

portance sampling principle, ~f satis�es the unbiasedness and continuity requirements
of the MSL de�nition.
We next turn to MSS estimation: de�ne the score of observation i by s(�; yi) =

r� log f(�; yi) where r� is the �rst derivative operator with respect to �. Adding up
over all observations, we have

sN(�) =
NX
i=1

s(�; yi) =
NX
i=1

r� log f(�; yi) (14)

Let ~s(�; y; !; rG) be a simulator based on rG Gibbs resamplings that is: (1) as-
ymptotically unbiased as rG �!1 so that ~s(�; y; !; rG) �! E![~s(�; y; !)jy] where !
is a simulated vector of rG random variates, and (2) a continuous function of � and
!. The simulated scores estimator �̂MSS is then the argument that solves the vector
equation:

~sN(�) = 0 (15)

where

~sN(�) �
NX
i=1

~s(�; yi; !i; rG) (16)

For detailed description and analysis of the GHK and Gibbs simulators, the reader
is referred to Hajivassiliou and McFadden (1998)[15]. It is proved there that the
MSL/GHK estimator will be consistent, asymptotically normal, and fully e¢ cient
provided that R, the number of simulations employed per individual observation i,
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rises without bound at least as fast as
p
N . It is also proved there that the MSS/GRS

estimator will be consistent, asymptotically normal, and fully e¢ cient asymptotically
if in addition rG rises without bound at least as fast as lnN .
Therefore, what remains for us to establish in the following section is that LDV

models for panel data with all the complications discussed in the outset of this paper,
possess likelihood contribution and score functions that can be written as sets of
linear inequalities of the form (10). Speci�cally we need to show that these models
correspond to:

fZijai < Zi < big (17)

with conditioning probability
Pr(ai < Zi < bi) (18)

where the Mi � 1 latent vector is distributed Zi � N(�Zi ;�Zi).The optimality prop-
erties of the MSL/GHK and MSS/GRS estimators for these models will then follow
directly.9 Consequently, we will be able to illustrate that our framework is applicable
to a very general class of nonlinear, non-additive panel data models with complicated
dynamics.10

3.2 Three Illustrative Applications with Contemporaneous
and Intertemporal Endogeneities

The key di¢ culty with the models of Applications 1 and 2 is the presence of contem-
poraneous endogeneity between discrete LDV indicators at a given point in time, as
well as spreading over time. Furthermore, Application 3 introduces the additional
important problem of endogenous LDV factors because of strategic and social inter-
actions. Without the estimation strategies introduced in this paper, researchers were
stumped as to how to derive analytically and then compute e¢ ciently the likelihood
contributions and scores for these types of models.

9In terms of implementing these methods, one can rely on the modular procedures for GHK and
GRS that return the simulated probability, ~PGHK , and the simulated score, ~sGRS , as a function of
the following arguments:
m=dimension of multivariate normal vector Z;
mu=EZ;
w=V(Z);
wi=w�1;
c=Cholesky factor of w;
vectors a and b, de�ning the restriction region a < Z < b;
r=number of replications;
u=a m� r matrix of i.i.d. uniform [0,1] variates.
These procedures are publicly available at:
http://econ.lse.ac.uk/staff/vassilis/pub/simulation/
Versions are available in three alternative programming languages: C, Fortran, and Gauss.
10This generality is in marked contrast to the existing literature, which develops specialized, ad

hoc methods to handle highly speci�c models (e.g., see Wooldridge (2005)[26].
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3.2.1 Application 1: Simultaneous Determination of a Binary LDV Indi-
cator and a Trinomial Ordered LDV Indicator

In this application, the MSL/GHK and MSS/GRS estimators provide asymptotically
e¢ cient simulation-based estimation of the Liquidity and Employment Constraint
Indicator model of Hajivassiliou and Ioannides (2007)[14]. Traditional approaches
deemed this model to be computationally as well as analytically intractable due to
the contemporaneous as well as across-periods endogeneity due to dynamics in the
limited dependent variables.
De�ne two latent dependent variables y�1it and y

�
2it and for simplicity drop the it

subscripts:

y1 =

�
1 if y�1 > 0 (liquidity constraint binding);
0 if y�1 � 0 liquidity constraint not binding:

(19)

y2 =

8<:
�1 if y�2 � �� overemployed
0 if �� � y�2 < �+ voluntarily employed
+1 if �+ � y�2 under-/unemployed:

(20)

y�1 = 1(y
�
2 < �

�)11 + 1(�
� < y�2 < �

+)12 + x
0
1�1 + �1 (21)

y�2 = 1(y
�
1 > 0)� + x2�2 + �2 (22)

where 1(event) is the usual indicator function de�ned by 1(event) =
�
1 if event is true
0 if event is false

.

Since (y1; y2) lie in f0; 1g�f�1; 0; 1g, the 6 possible con�gurations may be enumerated
as follows:

y1 y2 y�1 y�2
0 -1 11 + x1�1 + �1 < 0; x2�2 + �2 < �

�

0 0 x1�1 + �1 < 0; �� < x2�2 + �2 < �
+

0 +1 12 + x1�1 + �1 < 0; �+ < x2�2 + �2
1 -1 11 + x1�1 + �1 > 0; � + x2�2 + �2 < �

�

1 0 x1�1 + �1 > 0; �� < � + x2�2 + �2 < �
+

1 +1 12 + x1�1 + �1 > 0; �+ < � + x2�2 + �2

In terms of the unobservables as in the GHK simulator implementation described
above, the probability of a (y1; y2) observed pair is equivalent to the probability:

a �
�
a1
a2

�
<

�
�1
�2

�
<

�
b1
b2

�
� b (23)

where (�1; �2)0 � N(0;��), and a and b are given by:
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y1 y2 a1 a2 b1 b2
0 -1 �1 �1 �(11 + x1�1) �� � x2�2
0 0 �1 �� � x2�2 �x1�1 �+ � x2�2
0 +1 �1 �+ � x2�2 �(12 + x1�1) +1
1 -1 �(11 + x1�1) �1 +1 �� � � � x2�2
1 0 �x1�1 �� � � � x2�2 +1 �+ � � � x2�2
1 +1 �(12 + x1�1) �+ � � � x2�2 +1 +1
The variance-covariance matrix captures the contemporaneous correlation be-

tween �1 and �2. Given the binary nature of y1, �11 is normalized to 1. Section
3.2.4 below explains how our estimations take full account of this contemporaneous
correlation as well as �exible forms of serial correlation. Section 2 above showed
how to allow the random error components to be correlated with the regressors.

3.2.2 Application 2: Simultaneous Determination of Two Binary Indica-
tors with Observable Dynamic Endogeneity

In our second illustrative application, the MSL/GHK and MSS/GRS estimators pro-
vide asymptotically e¢ cient simulation-based estimation of the Currency and Bank-
ing Crises model of External Financing of Falcetti and Tudela (2007)[8]. Traditional
approaches deemed this model to be computationally as well as analytically even more
intractable than the one discussed in the previous application, because of the compli-
cated dynamics across multiple periods involving the endogenous limited dependent
variables.
De�ne two latent dependent variables y�1it and y

�
2it and two binary limited depen-

dent variables y1it and y2it as follows:

y1it =

(
1 if y�1it � x01it�1 + 1

�PL
s=1 y2i;t�s > 0

�
�  + �1it > 0; ;

0 if otherwise:
(24)

y2it =

�
1 if y�2it � x02it�2 + �2it > 0;
0 if otherwise:

(25)

where the distributed lag on the RHS of (24) is over L periods. For concreteness, in
the illustration here we use L = 4, which is a natural choice if the data are quarterly.
Consider the probability expression for t � 5:

Prob(y1it; y2it; � � � ; y1iTi ; y2iTijX1i; X2i; y1i;t�1; � � � ; y1i;t�4; y2i;t�1; � � � ; y2i;t�4; �) (26)

We de�ne X1i � [x1i1; x1i2; � � � ; x1it; x2it; � � � ; x1iTi ; x2iTi ]. For a typical observation it:

y1it=1 y�1it > 0 �1it + x
0
1it�1 + 1

�P4
s=1 y2i;t�s > 0

�
�  > 0

y1it=0 y�1it < 0 �1it + x
0
1it�1 + 1

�P4
s=1 y2i;t�s > 0

�
�  < 0

Bit=1 y�2it > 0 �2it + x
0
2it�2 > 0

Bit=0 y�2it < 0 �2it + x
0
2it�2 < 0
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Therefore:

Prob(y1it; y2itjX1i; X2i; y1i;t�1; � � � ; y1i;t�4; y2i;t�1; � � � ; y2i;t�4; �) = (27)

Prob

 
(1� 2y1it)

"
�1it + x

0
1it�1 + 1

 
4X
s=1

y2i;t�s > 0

!
� 
#
< 0; (1� 2y2it) [�2it + x02it�2] < 0

!
(28)

In terms of the canonical GHK and GRS formulations:�
a1it
a2it

�
<

�
�1it
�2it

�
<
b1it
b2it

(29)

we obtain the con�guration:

y1it y2it a1it a2it b1it b2it
0 0 �1 �[x0it� +Hy2it] �1 �x02it�2
0 1 �1 �[x0it� +Hy2it] �x02it�2 1
1 0 �[x01it�1 +Hy2it] 1 �1 �x02it�2
1 1 �[x01it�1 +Hy2it] 1 �x02it�2 1

where Hy2it � 1
�P4

s=1 y2i;t�s > 0
�
.

As already mentioned, Section 3.2.4 below explains how our estimations take
full account of this contemporaneous correlation as well as �exible forms of serial
correlation, and Section 2 above showed how to allow the random error components
to be correlated with the regressors.

3.2.3 Application 3: Strategic Interaction E¤ects across Economic Agents

We now consider general dynamic LDV models with strategic interactive e¤ects,
which can arise because of game-theoretic considerations in laboratory experimental
settings or because of macroeconomic contagion in panels of countries. Liu et al
(2008)[23] provide an example of the �rst type. Here we will show how to cast
these models in the linear inequality framework (10), thus making our MSL/GHK
and MSS/GRS simulation-based approaches directly applicable. Consequently, our
approach eliminates the need for the ad hoc specialized methodology developed by
Liu et al. (2008)[23].
For individual agent i, consider the latent dependent variables for periods 1 to

t. We assume i = 1; � � � ; N . Let uit denote the time-varying component of the
corresponding error (assumed to be i:i:d: over i and t in the simplest version) and
let the heterogeneity component �i be i.i.d. over i. Assuming that uit enters in an
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additive form, the latent values are given by:

y�it = hit(y
�
i;t�1; y

�
i;t�2; � � � ; y�i0; y1;t�1; y2;t�1; � � � ; yN;t�1; y1;t�2; y2;t�2; � � � ; yN;t�2;

� � � ; y11; y21; � � � ; yN1; y10; y20; � � � ; yN0; Xt; �i) + uit
... (30)

y�i2 = hi2(y
�
i1; y

�
i0; y11; y21; � � � ; yN1; y10; y20; � � � ; yN0; X2; �i) + ui2

y�i1 = hi1(y
�
i0; y10; y20; � � � ; yN0; X1; �i) + ui1

while the observed limited value yit follows a binary threshold crossing speci�cation

yit �
�
1 if y�it > 0
0 otherwise

. The hit(�) functions are assumed to follow a Polya scheme

that makes them linear in their arguments.11

This speci�cation makes the latent value for i in period t depend on: (a) all lagged
values of same individual agent back to the initial time 0; (b) the observed binary
choices y of all individuals (including own) from all the previous periods for t � 1,
t � 2, � � � , 2, 1, and 0; (c) the exogenous regressor values, Xt, for all individuals in
that period; and (d) the heterogeneity e¤ect �i. In a game-theoretic experimental
setting as in Liu et al (2008)[23], feature (b) represents strategic interactions across
agents, while in a macroeconomic panel model of countries, where y�it represents the
propensity of a country i in period t to run into external �nance problems, feature
(b) captures the phenomenon of crisis contagion spreading across countries.
The full vector of latent variables is:

Y � = (y�11; � � � ; y�1t; � � � ; y�1T ; � � � ; y�i1; � � � ; y�it; � � � ; y�iT ; � � � ; y�N1; � � � ; y�Nt; � � � ; y�NT )0

Conditional on the strictly exogenous regressors, this vector is stochastically driven by
�i, i = 1; � � � ; N and uit, i = 1; � � � ; N , t = 1; � � � ; T . Note that our methods above
allow �i to be correlated with the regressors through the modi�ed RE framework of
Section 2. Our methods also allow uit to follow more complicated processes than
i:i:d: over i and t, e.g., ARMA(p; q). Since the set of equations (30) speci�es that
y�it depends on all the past latent variables of this individual i, as well as the past
observed binary choices of every individual, the set can be summarized as:

BY � = CY +DX + �

where � contains the two error components � and u. The observed set of choices Y
corresponds to linear restrictions on the elements of Y � through the binary scheme

yit �
�
1 if y�it > 0
0 otherwise

and hence the model is equivalent to:

a(Y;X; �) < Y � < b(Y;X; �)

11The initial conditions y10; y20; � � � ; yN0 do not pose particular modelling problems in this setting,
since it is reasonable to assume that they are exogenous in an experimental setting. Similarly, the
latent initial conditions y�10; y

�
20; � � � ; y�N0 are assumed to be 0.
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where a and b are vectors of lower and upper bounds similar to the ones speci�ed by
Liu et al. (2008)[23]. These bounds depend on Y , X, and �, where � is the parameter
vector to be estimated that combines B, C, D and the parameters characterizing the
variance-covariance structure of �. Consequently, the MSL/GHK and MSS/GRS
methods can be employed as a �black-box�without the need for ad hoc derivations
of the likelihood function etc.

3.2.4 Treatment of Flexible Serial and Contemporaneous Correlations in
the Panel Structure

In the previous three subsections, we have described how the probability of the LDV
yi can be expressed in terms of the fundamental GHK/GRS implementation through
the vector of linear inequalities:

ai < �i < bi (31)

The suitably stacked �i will have variance-covariance matrix with structure charac-
terized by the precise serial correlation assumptions made on the �it�s. In particular,
one-factor random e¤ect assumptions will imply an equicorrelated block structure
on ��, while the more general assumption of one-factor random e¤ects combined
with an AR(1) process for each error implies that �� combines equicorrelated and
Toeplitz-matrix features. In addition, in case it is believed that the model exhibits
non-ignorable individual heterogeneity in the form of regressor-random e¤ects cor-
relations, the modi�ed random e¤ects approach described above in section 2 can be
invoked.
Through this representation, the probability of a complete sequence of the ob-

servable LDV behaviour for individual unit i, Pr(yi), conditional on regressors and
parameters, corresponds to:

Prob(ai < �i < bi)

Consequently, our approach incorporates fully:

1. the contemporaneous correlations in vector �it;

2. the full variance-covariance structure in �i, e.g., a one-factor plus ARMA(p,q)
serial correlations in �i;

3. the interdependencies and spillovers among the LDVs due to contemporaneous,
intertemporal, or strategic/social interaction factors; and

4. non-ignorable individual heterogeneity in the form of regressor-random e¤ects
correlations.

It is important to note that most features of our modelling approach summarized
by properties 1.-4. are thus testable, since they correspond to contemporaneous and
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intertemporal restrictions on model parameters.12

One other important issue with our modelling approach that is not addressed in
this paper is the identi�cation issue of coherency. The interested reader is referred
to Hajivassiliou (2010)[13] which develops some novel methods for establishing the
coherency conditions of the models we discussed above.13

4 Problem III: Imperfections in Regime Classi�-
cation in LDV Switching Models

The �nal problem we discuss are regime classi�cation imperfections for classic panel
data LDV models and present an algorithm for overcoming certain intractabilities of
such models. These problems appear quite prevalent in empirical work that models
LDV response in a panel data context.
For concreteness, we consider the general switching-regression model with two

states, indexed by s = 1; 2. We consider the sequence of T observations on individual
i in a panel data set, and drop the individual index i for convenience:

y�st = hs(Xs�s) + �st s = 1; 2; t = 1; :::; T (32)

y�3t = h3(Zt�) + �3t (33)

y�4t = y
�
3t + �t: (34)

Here, y�1t, y
�
2t, y

�
3t, and y

�
4t are latent variables, unobservable by the econome-

trician; X1, X2, X3, and Z are matrices of explanatory (exogenous) variables; and

12This is in great contrast to the Arellano-Bond (1991)[1] and Honoré-Kyriazidou (2000)[19] ap-
proaches, where �rst-di¤erencing plus IV-type of estimation is used to estimate panel data models
with observable dynamics that are linear and non-linear LDV respectively. In the A/B and H/K
approaches the variance-covariance error structure is typically necessary for identi�cation hence
cannot be tested.
13Another remaining modelling issue for our panel LDV with observable dynamics is the likely

endogeneity of the initial conditions in such models. The approximate solution we propose here
considers the marginal LDV model for the initial condition and estimates it while allowing for �exible
correlations with the future periods. This is the nonlinear analogue of the solution proposed by
Barghava and Sargan (1982)[2] for the linear dynamic model and uses the best nonlinear regression
for the latent variable of the initial condition by using all data for all periods available to the
econometrician, which of course was not available to the decision-maker at the time t. This approach
implies a new error term (ui1) for the approximate initial condition equation that is di¤erent from
the other periods�structural equations errors (�it). As Heckman (1981b)[18] explains, in general the
error ui1 does not have the same distribution as the �s (assumed here to be Gaussian), nor is it likely
that such a stable representation of the initial condition will exist. Such approximations are shown
by Heckman�s Monte-Carlo evidence not to be too critical when working with panel data with a
moderately large time dimension (about 8 or higher). This gives con�dence in the quality of the
approximate solution described here in case relatively large number of time-periods are available for
each individual in the panel. The leading alternative approach to the problem of initial conditions
in dynamic panel data LDV models is that of Wooldridge (2005)[26].
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(�1t; �2t; �3t; �t)
0 is multivariate normally distributed, i:i:d: over time, with zero-mean.

The functions hi(�), i = 1; 2; 3, are known to the econometrician up to the vectors of
parameters �1, �2 and �, which will be estimated.
The econometrician observes the (endogenous) variable Yt, which is generated as

follows:

Yt =

�
y�1t iff y�3t � 0
y�2t iff y�3t < 0

(35)

In standard terminology, the two equations (32), s = 1; 2, are termed the �switched"
equations and (33) the�switching" equation. Using the indicator function introduced
above, we de�ne the dummy variables It � 1 (y�3t � 0) and Dt � 1 (y�4t � 0).
The econometrician observes Dt but not It. As long as �2� > 0, Dt is an imperfect
measurement of It. In this sense, �t can be thought of as errors in the coding of the
regime information.
In its general formwithout measurement errors in regime classi�cation, the switching-

regression model was used by Lee (1978)[21] to study union/nonunion wage determi-
nation.14 As Lee and Porter (1984)[22] explain, using inaccurate regime classi�cation
information in ML estimation leads to inconsistency. Moreover, Goldfeld and Quandt
(1975)[9] show that if perfect information is not used, ML estimation is seriously in-
e¢ cient.
Lee and Porter (1984)[22] allowed for a constant probability that observations were

misclassi�ed into the two regimes; their only explanatory variable in the switching
equation, Z, was a constant. But assuming a constant probability of misclassi�cation
is inappropriate if one expects the probability of misclassi�cation to vary over time,
and especially so if one has exogenous information represented by Zt, which, as theory
suggests, should a¤ect switching.
We model the misclassi�cation probability as a monotonic function of the (un-

observable) propensity of the industry to be in a particular regime measured by the
latent variable y�2t. For example, in the disequilibrium version of the switching model
(Fair and Ja¤ee (1972)[7], it seems plausible to assume that the probability of mis-
classi�cation is smaller the larger the level of excess demand in the system. We
demonstrate shortly that the coding error equation (34) incorporates this property
into the model.
The contribution of an (independent) observation t to the likelihood function of

the switching-regression model with coding error can be derived as follows. First
observe that

for Dt = 1 : (y
�
4t � 0) if y�3t � 0; �t � �y�3t Yt = y

�
1t (It = 1)

if y�3t < 0; �t � �y�3t Yt = y
�
2t (It = 2)

for Dt = 2 : (y
�
4t < 0) if y�3t < 0; �t < �y�3t Yt = y

�
2t (It = 2)

if y�3t � 0; �t < �y�3t Yt = y
�
1t (It = 1)

(36)

14Fair and Ja¤ee (1972)[7], inter alia, used the model to analyze markets in disequilibrium.
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Let us use the notation pdjit � prob(Dt = djIt = i), pdit � prob(Dt = d; It = i),
pdt = prob(Dt = d), �it = prob(It = i), and fit = pdf(y�i t), where d and i take values
1 or 2. For simplicity assume that �1t and �2t are independent of �3t and �t.
Note that the pdji�s involve bivariate integrals of the form

pdji =

Z Z
SDI

f(�3; �)d�3d� =

Z
SI

f(�3)d�3; (37)

where � � �2��, and the regions of integration (as described in (36)) are the sets:
SDI = f�2

>
<

I
� Z�; �

>
<

D
� (Z� + �2)g and SI = f�2

>
<

I
� Z�g,

where
>
<

I
� f� if I = 1; < if I = 0g and

>
<

D
� f� if D = 1; < if D = 0g:

The customary distributional assumption of normality is imposed.
The coding error model with the likelihood function de�ned by using (36)�(37)

possesses the desired property that the misclassi�cation probability is highest at the
borderline case when a regime switch appears most likely, and falls monotonically as
the exogenous classifying information becomes stronger. To see this, �rst note that
the probabilities of misclassi�cation are:

(D = 1jI = 2) : p1j2 = Pr(�t � �y�3tjy�3t < 0)
(D = 2jI = 1) : p2j1 = Pr(�t < �y�3tjy�3t � 0)

(38)

Figures 1-3 in the Appendix present probability plots for the misclassi�cation case
of D = 1 and I = 2 as a function of the exogenous part of the switching equation,
Z�.15 Various values of the standard deviation of the coding error � are considered.
As can be seen from Figure 1, the conditional probability of misclassi�cation, p1j2, is
monotonic in Z� in the desired direction, rising when the signal Z� tends to suggest
the wrong regime more strongly. For example, when the true state of the system is
I = 2, higher values of Z� are further at odds with the truth, hence Prob(D = 1jI =
2) rises. As the standard deviation of the coding error � rises, the signal becomes less
informative; in the limit, when �� !1, the misclassi�cation probabilities (Prob(D =
djI = i); d 6= i; ) approach 0.5 . Hence, we con�rm that the switching model with
coding error introduced here possesses the desired property that the misclassi�cation
probability falls as the tendency to lie in a particular regime rises. In Figure 2 we
see that the joint probability of misclassi�cation p12 has a unique mode at the least
informative value of the signal, Z� = 0, since in such a case it is most di¢ cult to
correctly classify the particular period.
An important caveat is that the coding-error switching-regression model allows

only a limited degree of systematic misclassi�cation. For example, despite the pres-
ence of the coding errors, the only change in the discrete part of the model, (38), is in
the variance of the latent variable y�3t, which is, of course, unidenti�ed. This is illus-
trated in Figure 3. Hence, one can obtain consistent estimates for � up to scale despite

15The corresponding plots for the case with D = 3 and I = 1 are exact mirror images with respect
to Z� = 0 of those in Figures 1-3 and are not given separately.
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such misclassi�cation.16 This, however, does not imply that the presence of the cod-
ing error is unimportant, because ML estimation of the complete discrete/continuous
switching-regression model would still yield inconsistent results if the measurement
errors were neglected.17

4.1 A Markovian Switching Model with Imperfect Classi�-
cation

Aiming for greater realism, we now introduce Markovian elements to the switching
model introduced above. Because of the i:i:d: assumptions across i and t on the
error vector (�1t; �2t; �3t; �t)

0, the models of the previous section exhibit a Bernoulli
switching structure, conditional on the exogenous variables. This is characterized by
a transition matrix

It = 1 It = 0
It�1 = 1 � t 1� � t Bernoulli
It�1 = 1 � t 1� � t

(40)

In (40) the transition probabilities ��s depend on time only through the exogenous
variables, but not on the past state variable. Next we introduce a model that allows
the switching process to exhibit Markov dependence over time.
If It is a Markov process, then it has the transition structure

16The importance of this restrictive feature of my measurement errors model will be investigated
in future work.
17A natural extension of the model with imperfect regime classi�cation allows M multiple indica-

tors D1; :::; DM of regime classi�cation. This is the nonlinear analogue of the classic MIMIC model
of Joreskog and Goldberger (1975)[20]. We then obtain 2M+1 categories with respect to D1; :::; DM ,
and I. For example, in the case of two imperfect classi�cation indicators, I de�ne R � Z� and give
the eight possibilities in that case:

D1 D2 I �2 � �1 �2 � �2 �2
1 1 1 � R � R � R
1 1 0 � R � R > R
1 0 1 � R > R � R
1 0 0 � R > R > R
0 1 1 > R � R � R
0 1 0 > R � R > R
0 0 1 > R > R � R
0 0 0 > R > R > R

(39)

The likelihood contributions will in general involve (M+1)�fold integrals, which can be calculated
by numerical methods forM up to 2 or 3. This modelling approach, like the coding-error model with
a single indicator, (32)�(33), also has the desirable property that the misclassi�cation probabilities
vary over the sample period depending on the true probability of switching. The higher dimension
integrals implied by multiple imperfect indicators can be accommodated by simulation estimation
methods. See Hajivassiliou (1993)[11] for a discussion.
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It = 1 It = 0
It�1 = 1 � 11t 1� � 11t Markov
It�1 = 1 � 10t 1� � 10t

(41)

where � ijt = Prob(It = ijIt�1 = j).18 Speci�cally, to introduce a Markov structure
of order 1, we modify the switching equation so that the true propensity to switch,
y�2t, depends on the lagged state It�1, i.e.,

It =

�
1 if Zt� + �It�1 + �2t � 0
0 otherwise.

(42)

With perfect classi�cation information, this structure is straightforward to esti-
mate since19

p[Y; I; I0jX] � p[Y1; � � � ; YT ; I1; � � � ; IT ; I0jX1; � � � ; XT ] (43)

= p[YT ; IT jIT�1; XT ] �p[YT�1; IT�1jIT�2; XT�1] � � � p[Y2; I2jI1; X2] �p[Y1; I1jI0; X1] �p[I0]:
The likelihood function for process (43), however, becomes extremely intractable

in the presence of imperfect regime-classi�cation information because it then requires
the evaluation of 2T terms. The reason is as follows. We can readily show that

p[Dt; ItjIt�1] = (44)

Itp[Dt; It = 1jIt�1] + (1� It)p[Dt; It = 0jIt�1]
p[Yt; DtjIt�1] = (45)

Dt[f1Itp[1; 1jIt�1]+f0(1�It)p[1; 0jIt�1]]+(1�Dt)[f1Itp[0; 1jIt�1]+f0(1�It)p[0; 0jIt�1]];
where It is determined by (42). But the econometrician only observes Dt, given

by

Dt =

�
1 if Zt� + �It�1 + �3t + �t � 0
0 otherwise.

Since It�1 is unobserved by the econometrician for all t, the likelihood function is

p[Y;DjX] =
X
IT

X
IT�1

� � �
X
I2

X
I1

X
I0

p[YT ; Dt; IT jIT�1] � � � p[Y1; d1; I1jI0] � p[I0]: (46)

Because each pair of consecutive terms involves It�1 , the likelihood p[Y;DjX]
will in general require the evaluation of 2T terms, a patently intractable task when
T is of the order of 20-30 as it is frequently the case with several panel data sets.
To solve this problem, we show in Appendix I how extending ideas in Cosslett and

18One expects positive serial persistence, in the sense of �11t > �10t.
19Note that it is not crucial how one treats p[I0], since this term has asymptotically vanishing

in�uence. This is in contrast to the longitudinal data set case.
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Lee (1985)[6] and Moran (1986)[24], a recursion relation can be derived that makes
evaluation of (46) feasible.
Note again that the approach here di¤ers fundamentally from earlier approaches

in that the probability of misclassi�cation is not constant but varies monotonically
with the magnitude of Zt� + �It�1 . A priori, this is a realistic feature. Given
the dependence over time described in (42), one should expect the probability of
misclassi�cation to vary over time; it should be highest close to the boundary points
when a switch occurs. These properties are exhibited by the conditional probability
expressions above.20

5 Conclusions

This paper proposed e¢ cient estimation methods for panel data LDV models pos-
sessing a variety of complications: non-ignorable persistent heterogeneity; contempo-
raneous and intertemporal endogeneity; observable and unobservable dynamics; and
imperfect regime classi�cation information. We �rst showed how a simple modi�ca-
tion of estimators based on the Random E¤ects principle can preserve the consistency
and asymptotic e¢ ciency of the method in panel data despite non-ignorable persis-
tent heterogeneity driven by correlations between the individual-speci�c component
of the error term and the regressors. The approach is extremely easy to implement
and allows straightforward tests of the signi�cance of such correlations that lie be-
hind the non-ignorable persistent heterogeneity. The method applies to linear as well
as nonlinear panel data models, static or dynamic. In addition, the method works
for time-invariant as well as time-varying regressors, and allows for the heterogeneity
components to depend nonlinearly on regressors. These two features extend the
existing literature in important dimensions. A particular focus of the approach was
to analyze the presence of time-invariant regressors and to provide an interpretation
of the coe¢ cients of such regressors, which should prove especially useful for policy
analysis and many real world applications.
We then combined this modi�ed random e¤ects approach with two simulation-

based estimation strategies to overcome analytical as well as computational intractabil-
ities in a widely applicable class of nonlinear models for panel data, namely the class
of LDV models with contemporaneous and intertemporal endogeneity. We showed
that the approach can be readily applied to general additive and non-additive non-
linear panel data models, which may be static or dynamic. For the dynamic case,
the framework of this paper extends the Barghava and Sargan (1982)[2] approach to
nonlinear dynamic nonlinear models. The simulation-based methods we employed
were maximum simulated likelihood employing the GHK importance-sampling simu-

20There is a cost, however, in terms of computational complexity because the conditional proba-
bility expressions p[Dt; ItjIt�1] now involve bivariate normal integrals (and in general (M + 1)�fold
integrals when M imperfect regime indicator variables are available).
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lator and the method of simulated scores with Gibbs resampling. The e¤ectiveness
of the estimation methods in providing asymptotically e¢ cient estimators in such
cases was illustrated with three discrete-response econometric models for panel data:
a simultaneous system determining a binary LDV indicator and a trinomial ordered
LDV indicator; a model with simultaneous determination of two binary indicators
with observable dynamic endogeneity; and a model with an important type of con-
temporaneous and intertemporal simultaneity due to strategic interactive e¤ects over
time across economic agents or �nancial crisis contagion across countries.
The �nal contribution of the paper was to discuss panel data LDV models with

regime classi�cation imperfections in the presence of Markovian state dependence,
and to develop a novel algorithm that allows for the �rst time e¢ cient maximum
likelihood estimation of this class of models.
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6 Appendix I: A Matrix Recursion for Markovian
Switching with Imperfect Classi�cation

Our aim is to facilitate evaluation of the likelihood function (46). The di¢ culty in
evaluating it directly is that each pair of consecutive terms involves It�1; hence, each
likelihood evaluation will require calculating 2T terms, which is a computationally
prohibitive task.21

De�ne the set of available endogenous information at time t by St, i.e., St �
(y1; D1; y2; D2; :::; yt; Dt). Further de�ne Qt(It) � p[St; It]. Since we can always write

Qt(It) = p[St�1; yt; Dt; It] =
X
It�1

p[St�1; It�1; yt; Dt; It]; (47)

it follows that

Qt(It) =
X
It�1

p[yt; Dt; ItjIt�1; St�1]:p[It�1; St�1] =
X
It�1

p[yt; Dt; ItjIt�1] �Qt�1(It�1);

(48)
where we have used the Markov structure p[yt; Dt; ItjIt�1; St�1] = p[yt; Dt; ItjIt�1]

and the de�nition Qt�1(It�1) � p[It�1; St�1]. But calculation of (48) only requires
information up to t, as the following matrix equation shows:�

Qt(2)
Qt(1)

�
= (49)

�
p[yt; It = 2jIt�1 = 2] p[yt; It = 2jIt�1 = 1]
p[yt; It = 1jIt�1 = 2] p[yt; It = 1jIt�1 = 1]

�
�
�
Qt�1(2)
Qt�1(1)

�
or,

Qt =Mt �Qt�1: (50)

The likelihood (46) can thus be calculated recursively from (49) and

p[y;DjX] =
X
IT

QT (IT ) = QT (0) +QT (1):

21A proof of identi�cation of this imperfect regime classi�cation switching model can be obtained
from the author upon request.
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Figure 1: Conditional Probabilities
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Figure 2: Total Probabilities
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Figure 3: Joint Probabilities
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