Some Practical Issues in Maximum Simulated Likelihood*

Vassilis A. Hajivassiliou
London School of Economics

October 1999

Abstract

In this Chapter!, I explore ways of recapturing the efficiency property for estimators
that rely on simulation. In particular, I show that this can be achieved by exploiting
two-step maximum simulated likelihood (MSL) estimation methods that are familiar
from classical applications. I also construct a diagnostic test for adequacy of number
of simulations employed to guarantee negligible bias for the MSL and provide some
evidence on the computational requirements of the Geweke-Hajivassiliou-Keane (GHK)
simulator as a function of (a) the dimension of the problem and (b) the number of
simulations employed in a vectorized context. I outline how one can derive a similar
approach for checking the adequacy of the number of Gibbs resamplings in simulation
estimation methods that employ this technique.
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esis testing methods and provide test statistics (simulated Wald, Lagrange Multiplier,
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1 Introduction

Estimation of econometric models is often hampered by computational complexity.
The likelihood and moment functions that characterize an estimator cannot be com-
puted with sufficient speed and accuracy to make the iterative computational search
for the estimator feasible. Recent research has developed a marriage of simulation
and estimation methods to overcome these computational obstacles. Generally, such
methods sacrifice the efficiency of classical estimators for consistency, with simulation
noise causing the efficiency loss. In order to make simulation an attractive technique,
the number of replications of the simulations must be restricted to small values. Oth-
erwise the repeated computation of the functions required for iterative solution of the
estimators remain unmanageable.

After presenting an overview of simulation-based estimation of limited dependent
variable models (LDV) in section 2, this chapter explores methods for recapturing
the efficiency property for estimators that rely on simulation in section 3. The tech-
niques exploit estimation methods that do not require iterative computation, which are
already familiar from classical applications. The leading example is linearized maxi-
mum likelihood estimation (LMLE) discussed in subsection 3.1, which computes an
asymptotically efficient estimator from an initial v/N-consistent estimator. Because
simulation methods for estimation do offer such initial estimators, one can apply the
LMLE technique. In addition, because the LMLE does not require iteration, one can
apply simulation with relatively high numbers of replications to reduce the simulation
noise to potentially negligible levels. In section 3.2 I discuss the optimal determination
of the number of simulations to employ in practice for this type of estimators.

In section 4 I first explain some practical computational advantages of maximum
simulated likelihood (MSL) over the method of simulated moments (MSM) and then
construct in 4.2 a diagnostic test for adequacy of number of simulations employed to
guarantee negligible bias for the MSL. In 4.3 I provide some evidence on the computa-
tional speed of the GHK simulator as a function of (a) the dimension of the problem
and (b) the number of simulations employed in a vectorized context. I outline how
one can derive a similar approach for checking the adequacy of the number of Gibbs



resamplings in simulation estimation methods that employ this technique.

Given the computation of estimators, classical hypothesis test statistics typically
do not involve iterative computation either. Therefore, I also show in section 5 how
to suitably introduce simulation into classical hypothesis testing methods and provide
test statistics (simulated Wald, Lagrange Multiplier, and Likelihood Ratio Tests in 5.1
5.3) that are free of influential simulation noise. This provides improvements in power
comparable to the improvements in efficiency of estimators. Examples are given in
subsection 5.4 for hypotheses of major interest in LDV models.

Finally, I explain in section 6 how simulation-variance-reduction techniques, most
notably antithetics, can improve even further the practical performance of the GHK
simulator. Section 7 concludes.

2 Estimation in LDV Models

2.1 The Computational Complexity of LDV Models

Consider the problem of maximum likelihood estimation given the N observations on
the vector of random variables y drawn from a population with cumulative distribution
function (c.d.f.) F(0,Y) = Pr{y < Y}.? Let the corresponding density function with
respect to Lebesgue measure be f(6,y). The density f is a parametric function and the
parameter vector 6 is unknown, finite-dimensional, and # € ©, where © is a compact
subset of RE. Estimation of § by maximum likelihood (ML) involves the maximization
of the log-likelihood function £y (0) = 22[:1 log f(0;y,) over ©. Often, finding the root
of a system of normal equations Vgl (0) = 0 is equivalent. In the limited dependent
variable models that I consider here, F' will be a mixture of discrete and continuous
distributions, so that f may consist of nonzero probabilities for discrete values of y
and continuous probability densities for intervals of y. These functions are generally
difficult to compute because they involve multivariate integrals that do not have closed
forms, accurate approximations, or rapid numerical solutions. As a result, estimation
of 6 by classical methods is effectively infeasible.

In general, and particularly in LDV models, one can represent the data generating
process for y as an ‘incomplete data’ or ‘partial observability’ process in which the
observed data vector y is an indirect observation on a latent vector y*. In such case,
y* cannot be recovered from the censored random variable y. Let Y* be a random
variable from a population with c.d.f. F(Y*) and support A. Let B be the support

2The discussion in this section follows closely the exposition in ?. See that study for a deeper and
more extensive theoretical analysis of the problem.



of the random variable Y = 7(Y™*) where 7 : A — B is not invertible. Then Y is a
censored random variable.

In LDV models, 7 is often called the ‘observation rule;” and though it may not
be monotonic, 7 is generally piece-wise continuous. An important characteristic of
censored sampling is that no observations are missing. Observations on y* are merely
abbreviated or summarized, hence the descriptive term ‘censored.” Let A C R™ and
B CR’.

The latent c.d.f. F'(6;Y™) for y* is related to the observed c.d.f. for y by the integral
equation

ﬂan:/ dF (8;"). (1)
{y*|r(y*)<Y'}

The p.d.f. for y is the function that integrates to F'(6;Y). In this paper, integration
refers to the Lebesgue-Stieltjes integral and the p.d.f. is a generalized derivative of the
c.d.f. This means that the p.d.f. has discrete and continuous components. Everywhere
in the support of Y where F' is differentiable, the p.d.f. can be obtained by ordinary

differentiation: 8JF(0 ¥)
f(e;Y):aYVl...aYJ' (2)

In the LDV models I consider, F' generally has a small number of discontinuities in some
dimensions of Y so that F is not differentiable everywhere. At a point of discontinuity
Y? 1 can obtain the generalized p.d.f. by partitioning Y into the elements in which F
is differentiable, {Y7,..., Y/} say, and the remaining elements {Y, 1, ...,Y;} in which
the discontinuity occurs. The p.d.f. then has the form
FO:Y) = 5525 - [F(6;Y) — F(6;Y —0)]

V1.0V, . (3)
= f(07Yia . 7YJ’) : PT{Y} = Y;daj > J/|07Yi> . 7YJ’}7
where the discrete jump F(0;Y) — F(0;Y — 0) reflects the nontrivial probability of the
event {Y; =Y 5> J'}.3
It is these probabilities, the discrete components of the p.d.f., that pose computa-
tional obstacles to classical estimation. One must carry out multivariate integration
and differentiation in (1)—(3) to obtain the likelihood for the observed data — see the
following example for a clear illustration of this problem. Because accurate numerical

3The height of the discontinuity is denoted by

F(@;Y)fF(H;YfO)Eling(@;Y)—F(@;Y—e).



approximations are unavailable, this integration is often handled by such general pur-
pose numerical methods as quadrature. But the speed and accuracy of quadrature is
inadequate to make the computation of the MLE practical except in special cases.

2.2 Score Functions

For models with censoring, the score for # can be written in two ways which I will use
to motivate two approaches to approximation of the score by simulation:

s(0;y) = Veln f(0;y) = % (4)
= E[Velnf(6;y)|y] (5)

where Vy is an operator that represents partial differentiation with respect to the ele-
ments of 6. The ratio expression in (4) is simply the derivative of the log-likelihood and
simulation can be applied to the numerator and denominator separately. The second
expression (4), the conditional expectation of the score of the latent log-likelihood, can
be simulated as a single expectation if Vg In f(6; y*) is tractable. ?, 7, and ? have noted
alternative ways of writing score functions for the purpose of estimation by simulation.

2.3 Simulation-Based Estimation of LDV Models

I begin with the application of simulation to approximating the log-likelihood function.
Next, I consider the simulation of moment functions. Because of the simulation biases
that naturally arise in the log-likelihood approach, the unbiased simulation of moment
functions and the method of moments is an alternative approach. Finally, I discuss
simulation of the score function. Solving the normal equations of ML estimation is
a special case of the method of moments and simulating the score function offers the
potential for efficient estimation.

Throughout this section, I will assume that we are working with models for which
the maximum likelihood estimator is well-behaved. In particular, I suppose that the
usual regularity conditions are met, ensuring that the ML estimator is the most efficient
consistent, uniformly asymptotically normal (CUAN) estimator.

2.3.1 Simulation of the Log-Likelihood Function

One of the earliest applications of simulation to estimation was the general computation
of multivariate integrals in such likelihoods as that of the multinomial probit by Monte
Carlo integration. Crude Monte Carlo simulation can approximate the probabilities of



the multinomial probit to any desired degree of accuracy, so that the corresponding
maximum simulated likelihood (MSL) estimator can approximate the ML estimator.

Definition 1 (Maximum Simulated Likelihood) Let the log-likelihood function for

the unknown parameter vector 6 given the sample of observations (yp,,n =1,...,N) be
N
(n(0) = log f(6; yn)]
n=1

and let f(0;y,w) be an unbiased simulator so that f(0;y) = Eu[f(6;y,w)|y] where w is
a simulated vector of R random variates. The maximum simulated likelihood estimator
18

Orrsr = arg mgxng(H)

where

N
In(0) = "log f(0;yn, wn)
n=1
for some given simulation sequence {wy,}.

It is important to note that MSL estimator is conditional on the sequence of sim-
ulators {wy}. For both computational stability and asymptotic distribution theory, it
is important that the simulations do not change with the parameter values. See ? and
? for an explanation of this point.

Note that unbiased simulation of the likelihood function is neither necessary nor
sufficient for consistent MSL estimation. Because the estimator is a nonlinear function
(through optimization) of the simulator, the MSL estimator will generally be a biased
simulation of the MLE even when the criterion function of estimation is simulated
without bias because

E [Z(@)} =((0)/=~E [arg mgmxg(ﬁ)] = arg mgxxﬁ(@).

Note also that while unbiased simulation of the likelihood function is often straightfor-
ward, unbiased simulation of the log-likelihood is generally infeasible. The logarithmic
transformation of the intractable function introduces a nonlinearity that cannot be
overcome simply. However, to obtain an estimator with the same probability limit as
the MLE, a sufficient characteristic of a simulator for the log-likelihood is that its sam-
ple average converge to the same limit as the sample average log-likelihood. Only by
reducing the error of a simulator for the log-likelihood function to zero at a sufficiently
rapid rate with sample size can one expect to obtain a consistent estimator.



For LDV models with censoring, the generic likelihood simulator f (0; Y, wy,) is the
average of R replications of one of the simulation methods described elsewhere:

R
f(@ ynawn =5 Z 9 ymwnr

The simulation error will generally be Op(1/R). Thus, a common approach to approx-
imating the log-likelihood function with sufficient accuracy is increasing the number
of replications per observation R with the sample size N. This statistical approach
is in contrast to a strictly numerical approach of setting R high enough to achieve a
specified numerical accuracy independent of sample size.

2.3.2 Simulation of Moment Functions

The simulation of the log-likelihood is an appealing approach to applying simulation to
estimation, but this approach must overcome the inherent simulation bias that forces
one to increase R with the sample size. Instead of simulating the log-likelihood function,
one can simulate moment functions. When they are linear in the simulations, moment
functions can be simulated easily without bias. The direct consequence is that the
simulation bias in the limiting distribution of an estimator is also zero, making the need
to increase the number of simulations per observation with sample size unnecessary.
This was a key insight of ? and ?.

Method of moments (MOM) estimators have a simple structure. Such estimators
are generally constructed from ‘residuals’ that are differences between observed random
variables y and their conditional expectations. These expectations are known functions
of the conditioning variables x and the unknown parameter vector € to be estimated,
let E(y | «,0) = p(0;z). Moment equations are built up by multiplying the residuals
by various weights or instrumental variable functions, z,, and specifying the estimator
as the parameter values which equate the sample average of these products with zero:
The MOM estimator éMO w is defined by

N
1 N R
_N g Zn(X, QMOM) [yn - N(QMOM; $n,wn) =0. (6)

Simulation has an affinity with the MOM. Substituting an unbiased, finite-variance
simulator for the conditional expectation p(6;x,) does not alter the essential conver-
gence properties of these sample moment equations. I therefore consider the class of
estimators generated by the method of simulated moments (MSM).



Definition 2 (Method of Simulated Moments) Let i(0;x,w) =1/R Zf;l a(0; x,w,)
be an unbiased simulator so that u(0;x) = E[f(6; x,w) | x] where w is a simulated ran-
dom variable. The method of simulated moments estimator is

Orrsn = argmin ||3y (0)]|
where
N
Sn(0) = 1/NZ Wi (0) [yn — [1(0; 25, wn)] (7)
n=1
for some sequence {wy,}.

2.3.3 Simulation of the Score Function

Interest in the efficiency of estimators naturally leads to attempts to construct an
efficient MSM estimator. The obvious way to do this is to simulate the score function
as a set of simulated moment equations. Within the LDV framework however, unbiased
simulation of the score with a finite number of operations is not possible with simple
censored simulators; the efficient weights are nonlinear functions of the objects that
require simulation. Nevertheless, it may be possible with the aid of simulation to
construct good approximations that offer improvements in efficiency over simpler MSM
estimators.

There is an alternative approach based on truncated simulation. It was shown in ?
that every score function can be expressed as the expectation of the score of a latent
data generating process taken conditional on the observed data. In the particular
case of normal LDV models, this conditional expectation is taken over a truncated
multivariate normal distribution and the latent score is the score of an multivariate
normal distribution. Simulations from the truncated normal distribution can replace
the expectation operator to obtain unbiased simulators of the score function.

I define the method of simulated scores as follows.*

Definition 3 (Method of Simulated Scores) Let the log-likelihood function for the
unknown parameter vector 0 given the sample of observations (yn,m = 1,...,N) be
InB) = SN log f(0;yn). Let i(6;yn,wn) = 1/RST L (6 Y, war) e an asymptoti-
cally (in R) unbiased simulator of the score function s(0;y) = Vn f(0;y) where w is
a simulated random variable. The method of simulated scores estimator is

Orrss =argmingee ||5n (0)]| where 5y (0) = 1/N SN fi(0;yn,wn) for some sequence

{wn}-

4The term was coined by ?.




Truncated Simulation of the Score The truncated simulation methods provide
unbiased simulators of the LDV score (4). Such simulation would be ideal, because
R can be held fixed, thus leading to fast estimation procedures. The problem is that
these truncated simulation methods pose new problems for the MSS estimators that
use them.

The Accept/Reject (A/R) method provides simulations that are discontinuous in
the parameters. A/R simulation delivers the first element in a simulated sequence that
falls into a region which depends on the parameters under estimation. As a result,
changes in the parameter values cause discrete changes in which element in the sequence
is accepted. See 7 and ? for treatments of the special asymptotic distribution theory
for such simulation estimators. Briefly described, this distribution theory requires a
degree of smoothness in the estimator with respect to the parameters that permits
such discontinuities but allows familiar linear approximations in the limit. See ? for
an illustrative application.

The Gibbs resampling simulation method can also be used here. This method is
continuous in the parameters provided that one uses a continuous univariate truncated
normal simulation scheme. But this simulation method also has a drawback: Strictly
applied, each simulation requires an infinite number of resampling rounds. In practice,
Gibbs resampling is truncated and applied as an approximation. The limited Monte
Carlo evidence that I have seen suggests that such approximation is reliable.

3 Statistically Efficient Simulation-Based Estima-
tion

In this section, I discuss various approaches of obtaining statistically fully efficient
simulation estimators that are computationally feasible. Often, simulation estimation
methods sacrifice the efficiency of classical estimators for consistency, with simulation
noise causing the efficiency loss. I show how one can recapturing the efficiency property
for estimators that rely on simulation by exploiting two-step estimation methods that
are familiar in classical applications. A critical issue is the selection of a value of the
number of replications to attain a negligible level of asymptotic efficiency loss due to
simulation.

3.1 Two-Step Estimators

In LMLE, the score and the information need only need to be evaluated once (or
very few times). This is in contrast to obtaining the simulation estimators themselves



through some iterative scheme, which requires the repeated evaluation of simulated
functions. Whenever functions to be simulated only need to be evaluated once, then a
large number of replications, R, can be used in the simulation. This implies, of course,
that the additional noise contributed by simulation can be negligible (assuming that,
as is typically the case, the simulators are consistent, as R grows without bound, for
the true expressions). As a result, all the standard asymptotic properties of estimators
and test statistics not based on simulation still hold.

Hence, an efficient estimation procedure can be outlined as follows: In step 1,
I obtain a consistent but inefficient estimator 6y, using MSM for example. In step
2, a LMLE step is carried out, using the optimal score expressions corresponding
to full-information maximum likelihood, using a very high number of operations in
approximating these score expressions. “Operations” in this context means number of
simulations if the MSL version of the scores is used, and Gibbs resamplings if the MSS
version is used. This is computationally appealing, since the second-step (intractable)
optimal scores need to be approximated only once.

Let us explain this approach in greater detail. When the MLE Oy is the root of the
score equations

En [S(éN,y,ﬂﬁ)} =0,

O is consistent, asymptotically normal, and statistically efficient, under standard reg-
ularity conditions. Given an initial v/ N-consistent estimator 6y, the LMLE 60

On =0n + Hy' En (50w, y, )]

is an asymptotically equivalent estimator, where Hy is a consistent estimator of the
information matrix E {Var [s(6,y,z) | z]}. Two estimators are popular. When

BN = VarN [S(éNJ Y, IL’)} )
the LMLE is often called the Gauss-Newton two-step estimator. When
HN = En [Ves(éNv Y, l’)} 5

the LMLE is called the Newton-Raphson two-step estimator. Subject to standard
regularity conditions (see, for example, ?) both two-step estimators are asymptotically
equivalent to Oy in the sense that plim v N (éN — éN) = 0. Hence, these two estimators
share the consistency and efficiency properties of 0 ~, even though they are considerably
more tractable computationally given that they are based on the inefficient but simple-

to-calculate preliminary estimator 6y and evaluate only once the (intractable) scores
of QN.



This result is readily transportable to estimation by simulation. Let the tractable
but inefficient estimator be MSM, and the intractable but efficient one be MSS. Since
the score expressions need only be evaluated once at the MSM estimate, one can afford
to base this calculation on a huge number of replications, R. Since this implies that the
simulated score expressions only add negligible simulation noise since R is very large,
no modification of the standard asymptotic theory for estimation without simulation
is necessary.

3.2 Choosing the Number of Simulations R

I now discuss a method for choosing the level of R. This is essentially a sampling design
question, where one is asking how many replications are needed to get a certain level of
statistical precision. First, estimate the simulation noise contribution to the variance.
Second, determine R to reduce this to a% of the sampling variance of the classical
estimator. Note that a similar analysis can be developed for choosing an acceptable
value of Gibbs resampling rounds for calculating the MSS/Gibbs estimator.

Let the covariance matrix of an MSM estimator be written

Var(0) = Q¢ + Lo

R
where Q¢ represents the covariance matrix for the classical estimator that the MSM
estimator approximates, and (g represents the covariance matrix contributed by sim-
ulation noise. In the special case where the simulation process and the data generating
process are the same (except for parameter values), Q¢ = {2g and one can choose R
easily to reduce the contribution of simulation to a fraction considered negligible, say
one percent.

In general, ¢ # (g and the problem of choosing R is less transparent. I sug-
gest a method based on bounding the contribution of simulation in least favorable
circumstances. It is convenient to consider variances of all linear combinations of the
parameters to be estimated and ensure that the variance of the most variable linear
combination contains no more than a tolerable fraction of simulation variance, say e.
Formally, one can choose R so that

1 a'Qga

—max ——— <€, € > 0.
R a Var(a')

To make this analytically convenient, note that
/ 1 !/
a (Qo + EQs) a>afloa

10



so that
a'Qsa a'Qsa

Var(a/f) — a'Qca
and a conservative solution can be obtained from finding R such that

1 a'Qsa
— max

R o dQca

<e€ e>0.

The maximization problem has a (presumably) well-known solution. The first order
conditions state that

aQca-Qga—a'Qsa-Qoca= 0
'Qsa
Q' — =21 ) 0=
<:>< C S a’QCa )a/ 0

so that @ must be proportional to an eigenvector of Q;'(s. Restricting attention to

eigenvectors,
a'Qga

/Q—IQ —
@30 2osa a'Qca
so that the possible values for the objective function are the eigenvalues of QEIQS and
the largest value of the objective function is the largest such eigenvalue, call it A\*. 1
conclude that one should set R = \*/e.

4 Improving the Performance of MSL

Let us begin with a preliminary computatational issue that, though very simple and
potentially extremely important, it does not appear to be widely recognized in practice.
I am referring to the fact that the tails of the multivariate normal density function die
out very rapidly indeed. For example, the standard normal c.d.f. ®(g) is less than
about 1.e — 14 for ¢ approximately less than —12. What this means is that in practice
the calculation of multivariate normal rectangle probabilities will cause underflows
(implying severe problems in evaluating their logarithms) unless the arguments of these
functions remain not too far from the center of the distribution. In the canonical model
in our context where the probabilities of interest are of the form

probla < Z <b), Z~ N(X3,Q)

it will typically be very useful to first standardize the X’s (except for the intercept) to
0 sample mean and 1 sample variance, calling the standardized regressors X*. Then

11



the analysis is carried out with X* as the regressors, thus alleviating some of the com-
putational problems with the trial arguments of the prob(-) expressions getting too far
out in the tails. Given the simple linearity of the transformation of the standardization
operation, re-mapping from the estimates corresponding to the X* regressors to those
corresponding to the orginal X is obvious.

With this practical suggestion in mind, let us proceed to some computational char-
acteristics of the MSL and M.SM estimators. The fact, stated in the previous section,
that consistency and asymptotic normality of the MSL estimator requires that R grow
without bound faster than v/N begs several questions. First, one needs to ask why
use MSL that is biased for finite R as opposed to MSM that is CUAN for any (finite)
R. The answer is given in subsection 3.1. Subsection 3.2 develops a diagnostic test
for simulation bias, thus enabling one to adopt the following two-step strategy: (1)
compute an MSL estimator which is biased, but computationally attractive and (2)
test for magnitude of bias and re-estimate if necessary.

4.1 Computational Attractiveness of MSL over MSM

Researchers have noted that the MSM can be numerically unstable (?, ?7), whereas
MSL is relatively straightforward (?, 7). The MSM estimation criterion function is
constructed from a set of moment equations. In this sense, the MSM estimation cri-
terion function is an artificial construct: the distance function. The MSL criterion
function has the properties of a log-likelihood function, giving MSL an inherently more
tractable criterion function. The computational differences between MSM and MSL
are analogous to the differences in identification between the classical MOM and MLE.
For the former, identification is a more difficult exercise.

I can give some concreteness to the nature of some of the problems encountered in
estimation with simulation by examining the simple binary probit as an example. In
this model, I can write the log-likelihood function as

((B) = ylog ®(z'B) + (1 — y)log [1 — («'B)] .

The MLE avoids regions of the parameter space in which the fitted probability values
are near zero, because the contribution of such terms to the log-likelihood function
approaches negative infinity. The score function for binary probit is often written as

L N
Swn i —ewny) Y )
{ KB ify =1

s(0;y, )

®(2'3)

—¢@'B) e, _
et iy =0

12



and the information matrix is

)
o@H - 2@h) "

These expressions have familiar MOM interpretations. The denominator ®(2'3) [1 — ®(2'3)]
reflects the heteroskedasticity in the residual y — ®(2’3) and the numerator ¢(z'(3) cap-
tures the nonlinearity of the regression function ®(z'3). In the balance, the MLE is
largely driven to avoid poor in-sample predictions of the sample outcomes in y.

The noise in the instrumental variables employed by MSM estimators can easily ob-
scure this efficient weighting. One typically constructs the MSM estimator by replacing
all of the analytical p.d.f. and c.d.f. terms with unbiased simulations. In this way,
one attempts to approximate the efficient score. For example, a particular simulated
moment function could be

J(0;x) =

. B f(@'B,w)
90:9,0.0) = 2 m e R B on)]

ly — F(2'f, ws)] (8)

where the w’s are simulations and f and F' are chosen so that

E. [F(zw)] = @(2)
E.[f(zw)] = ¢(2)

Care must be taken to ensure that w; and wy are independently distributed, otherwise
the MSM estimator is inconsistent because the residual y— F(z'(, w2) will be correlated
with the simulated weighting term. An MSM estimator then seeks to minimize a
distance function:

BMSM = arg mgn |E~n [9(0;y, z,w)]|

The operator Ex denotes the empirical expectation over the sample observations.

But the MSM restriction on the w’s has an important side-effect. It vitiates the in-
timate relationship between the regression function and the weighting function so that
poor in-sample predictions are no longer as costly as in the log-likelihood function. In
practice, one frequently finds an MSM algorithm searching in regions of the param-
eter space where the weights are diminished rather than the residuals. The result of
this failure is that in small samples, the MSM estimator can be very poorly behaved,
wandering into unlikely regions of the parameter space.

The noise in the instrumental variables employed by MSL estimators does not have
this effect. In the MSL, one solves the quasi-maximum-likelihood problem

BMSL = arg mﬁax Enylog F(2'B,w) + (1 — y)log[1 — F(2'B3,w)]

13



so that (8) is altered by equating w; = wy and f(z,w) = dF(z,w)/dz yielding the
alternative moment function
T f(x//gu wl)
F(a'8,w) [L = F(2'5,w1)]
L[ e
= T —f(2'Bwr) Fu—=0 .
-F@Bw)] © Y7

1—F(2/B,w1)]

g(g;yvl'?w) [y_F(xlﬁvwl)]

Like the MLE, the MSL estimator will avoid regions of the parameter space that
yield poor in-sample predictions. Even for crude simulators, this yields optimization
problems that do not lead numerical algorithms to the edges of the parameter space.

It is well understood that this stability comes at the cost of inconsistency in the
MSL estimator. But experience shows that the magnitude of the inconsistency is
frequently small. With a modest R, an estimator that is practically consistent can be
constructed by MSL. Given the computational attractiveness of the MSL estimator, I
suggest a diagnostic test for whether the magnitude of the inconsistency is important
in inference.

4.2 A Diagnostic Test for Simulation Bias
Given the MSL estimator é, where

0 = arg max (y(6;y, 7, w) <= 9(0;y,z,w) =0,
€
we know that bias arises from the condition

E [9(00; y, z,w)] # 0.

As R grows, this expectation approaches zero and the inconsistency disappears. Under
the hypothesis that the MSL estimator is consistent,

Varlg (65y,2,0) | w, 0 =6 = E{glby,.]g s,z |}

The basis for a test of consistency is to check the necessary condition that
Elg0;y,z,w)|w, Ozé] =0.

For any R and é, we can easily compute the expectation and variance of the MSL
score function. Let y(f) denote a simulation of the data generating process for y at

14



0 conditional on z, where this additional simulation is independent of w, and let Eg
denote the empirical expectation of functions of y(#) over S replications of y(6). Then

m = Eg {g [é;y(é),x,w}}

and

V = Varg {g [é, y(6), x,w} }

are unbiased simulators of E {g 0y, z,w| | z, w, = é} and Var {g 0;y,z,w| | z, w, 0
Under the hypothesis that the MSL estimator is consistent,

[Ex (V)] 2 VSN Ey (m) % N (0,1)

as N — oo. Thus a simple specification test, similar in spirit to the ? specification
test, can be constructed from the Wald statistic:

w= SN - [Ex(m)] [Ex(V)] ™" [Ex(m)]

evaluating the moments at the particular 6 of interest, 6. Under the null hypothesis of
MSL consistency, w has an asymptotic distribution that is central chi-square with K
degrees of freedom, where K is the dimension of 6.

We interpret an insignificant statistic as evidence that the variation in the estimator
is large relative to the simulation bias. Therefore, if the precision of the MSL estimator
is satisfactory, there is negligible inconsistency in the MSL estimator itself. The statistic
w measures the difference between the MSL estimator and a one-step estimator towards
bias-correction as advanced by 7. In cases where the test statistic w is considered to
be non-negligible, the researcher can inspect a local estimate of the bias in the MSL
estimator. If E(m) # 0, then the first-order approximation of the MSM estimator that
solves

En (9(0;y,7,w] —Es{g[0;y(0),z,w]}) =0
18 .
b6=Jm
where

J= [Vg En (g [é;y,x, w} — Eg {g [é;y(é),x,w] })}1

The precision in the estimated bias § can be evaluated using the estimated covariance
matrix JExV J'. Although testing whether 6 is significantly different from zero is
equivalent to w, looking at the outcome in the parameter space rather than the moment
space may be more meaningful.
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Keep in mind that this analysis is conditional on w, treating the simulated score as
an exact function. Another way to look at this approach is to think of 8 as a potentially
misspecified MLE, as in 7. This diagnostic has the same spirit as White’s information
test, except one is conducting the test based on first, rather than second, moments.
This is possible because the entire data generating process is specified in the MSL
setting, permitting us to draw from that DGP given 6.

If the MSL estimator fails to pass this test, the statistic can also be used to compute
the level of R that will yield an acceptable estimator. The researcher can experiment
with increasing R until the w statistic is acceptably small. Having found such a level,
he can return to reapply the MSL at this higher value.

4.3 Investigating the Computational Speed of the GHK Sim-
ulator

The leading simulator for multivariate normal rectangle probabilities of the form en-
countered in ML estimation of LDV models is the Geweke-Hajivassiliou-Keane ap-
proach. See ? for extensive Monte-Carlo evidence that this simulator is to be pre-
ferred over all other known simulators for this problem. To outline this method, define
q(u,a,b) = & 1(®(a)- (1—u)+P(b)-u), where 0 < v < 1 and —co < a < b < co. Then
g is a mapping that takes a uniform (0,1) random variate into a truncated standard
normal random variate on the interval [a, b].

Proposition 1 Consider the multivariate normal M x 1 random vector Y ~ N(Xf3,Q)
with 0 positive definite, the linear transformation Z = FY ~ N(FX(3,Y), with F non-
singular and ¥ = FQF', and the event B = {a* < Z = FY < b*}, with —oco < a* <
b* < 4o00. Define P = [,n(z FX3,5)dz, a = a* — FX(, b = b* — FX(, and let
L denote the lower-triangular Cholesky factor of . Let (uy,---,up) be a vector of

independent uniform (0,1) random variates. Define recursively for j =1,--- M:
ej = q(uy, (a; — Ljnex — -+ = Ljj1e;1)/Ljj, (bj — Ljey — -+ — Lyjj1e51)/Ly;)
(9)
Q; =@ ((bj — Ljser — -+ — Lyj-1€j-1)/Lyj;) — @ (@i — Ljper — -+ — Lj,j—lej—l)/L(jj) -
10)

Define e = (e1,- -+, en), Y = X8+ F 'Le, and Qle) = Q1-...- Qu. Then Y is a
random vector on B, and the ratio of the densities of Y andY aty = X3+ F~'Le,
where e is any vector satisfying a < Le <b, is P/Q(e).

Proof: 7, 7.
These studies also show that combining Proposition 1 about the GHK simulator
together with importance-sampling arguments, one can show that GHK is a smooth,
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unbiased, and consistent simulator for the likelihood contributions P; and their deriva-
tives Fp;, and a smooth, asymptotically unbiased, and consistent simulator for the
logarithmic derivatives of the P(-) expressions.

It is instructive to give here a complete implementation of the GHK simulator in

the GAUSS computer matrix language.®,®,”

proc 1 = ghk(m,mu,w,wi,c,a,b,r,u);

local j,ii,ta,tb,tt,wgt,v,p;

j=1

ii = 1;

ta = cdfn((al1,1]-mul1,1])/(c[1,1]+1.e-100))*ones(1,r);
tb = cdfn((b[1,1]-mul1,1])/(c[1,1]1+1.e-100))*ones(1,r);
tt = cdfinvn(ull,.].*xta+(1-ull,.]).*xtb);

wgt = tb-ta;

do while j < m;
j =3+
ta = cdfn(((alj,1]-mulj,1])*ones(1l,r)-c[j,iil*tt)/(c[j,jl+1.e-100));
tb = cdfn(((b[j,1]-mulj,1])*ones(1l,r)-c[j,iil*tt)/(c[j,jl+1.e-100));
tt = ttlcdfinvn(ulj,.].*ta+(1-ulj,.]) .*tb);
ii = iilj;
wgt = wgt.*(tb-ta);

endo;

v = cxtt;

tt = (ones(m,1)*wgt) .*v;

p = sumc(wgt’)/r;

retp(p);

endp;

As can be seen from the timing experiments reported in Table 1 and Figures 1 and 2,
the computational time of the GHK simulator is almost linear in the dimension of the
multivariate vector Z given the number of simulations employed, as well as approxi-
mately linear in the number of simulations given the dimension. This is an extremely
convenient feature of this method, making it applicable even for problems of very high

®The inputs to the routine are: m=dimension of multivariate normal vector Z; mu=EZ; w=V(Z);
1. c=cholesky factor of w; the restriction region is defined by a < Z < b; r=number of
replications; u=a m x r matrix of i.i.d. uniform [0,1] variates.

6To guard against possible division by 0, a very small positive number (1.e — 100) is added to
denominators.

"edfn=standard normal c.d.f. function and cdfinvn=inverse of the standard normal c.d.f. function.

wi=w"
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dimensionality without making the implied computational burden intractable.?

5 Simulation-Based Diagnostic Tests

In this section I discuss the use of the simulation estimation principles introduced
above to devise classical hypothesis testing methods that are free of influential simu-
lation noise. These tests also rely on the fact that whenever intractable expressions
do not need to be calculated repeatedly, one can afford to employ a huge number of
simulations, thus eliminating the impact of additional noise introduced by the simu-
lations. I illustrate the ideas by developing several new diagnostic tests for popular
econometric models.

Consider the classical problem of testing a nested hypothesis (possibly non-linear)
against a sequence of local alternatives:

HO : 9(9*) =0
Hi: g(0%) = 75 1)

where ¢(-) is a function R? — R” defining the r restrictions on the unknown p-
dimensional parameter vector 8*. Under H;, the unconstrained maximum likelihood
estimator

~

On = arg mngN(Q) (12)
is asymptotically efficient, while under Hy the constrained MLE
On = argmeaxﬁN(Q) s.t. g(@) =0. (13)
is efficient. I use the definitions:
J = E [lo(z]07) - ly(2|0")'] = — E [op([6")] (14)

and

N N
le = Z%(%’WAN) '£9($i|éN),7 le = Z%(%’WN) '59($¢|§N)/,

=1 1=1
N R ~ N _
Joy = — Zﬁg@(%iwjv), Jon = — 2699(*%'91\7)7 (15>
i=1 =1

8Some slight non-linearities observed are primarily caused by the fact that due to limitations with
random-access-memory workspace at high M x R values, virtual memory is employed, involving disk-
reading and writing. As is well-known, virtual disk-based memory is orders of magnitude slower than

real RAM.
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where ly(-) = %(9') and lgo(+) = %. Note that by the local nature of the deviations
from Hj, all four estimators for the true J are consistent under local H; as well,
because even though v/N(g(fx) — g(6*)) converges in distribution to a normal random
vector with a nonzero mean under H;, the unnormalized by v/ N quantity g(On)—g(0%)
converges in probability to 0. (The same holds for fy).

It should be noted that linear and non-linear hypotheses of interest typically involve
restrictions on the coefficients of explanatory variables, as well as restrictions on the
elements of the variance-covariance matrix of the latent variable vector. For example,
in the context of discrete choice models, special hierarchical structures correspond to
certain correlations among the elements of the unobservable utilities being zero. I will
give explicit examples of such hypotheses in subsection 5.4 below.

5.1 Wald Tests

As I explained in the Introduction, simulation estimators that are asymptotically equiv-
alent to the unconstrained maximum likelihood estimator Ay can be obtained by several
methods, notably Two-Step methods beginning from consistent but inefficient esti-
mates (e.g., MSM or MSL tested for bias). Once such an estimator is available, one
can define the familiar Wald test statistic for 11 as:

-1 .

Wy = 9(0n)' g+ I 4] 9(6x) (16)

As is well-known, this statistic converges to a x?(r) distribution under either Hy and
to a non-central x*(r) with non-centrality parameter A = &'gg(6*)" - J~" - go(6*)6 under
local H;. Since the calculation of Wy will be done only at 6y, a very large num-
ber of simulations can be used in evaluating the quantities g(-), go(:), and J(-), thus
introducing only negligible simulation noise.

It is useful to point out that for tests of exclusion or other linear restrictions,
the simulated Wald test approach simply corresponds to obtaining the unrestricted
coefficients with moderate numbers of simulations, and then constructing standard ¢
and x? tests based on estimates of the variance-covariance matrix of the regression
coefficients calculated with a huge number of simulations.

5.2 Lagrange Multiplier Tests

Such tests are based on the CUAN estimator that is efficient under the null hypothesis
(i.e., equivalent to the restricted estimator 0y ), and requires the evaluation of the scores
corresponding to the estimator efficient under H; (i.e., equivalent to the unrestricted
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estimator éN) The imposition of the restrictions will frequently mean that efficient
estimation under Hy will be tractable without the use of simulation, while the efficient
scores will require simulation. The LM statistic is of the form:

LMy = Uno(0n) Ty Uno(On) (17)

Since the scores will only be evaluated once, the standard asymptotic theory of La-
grange Multiplier (LM) tests remains applicable by basing the score calculations on a
very large number of simulations.

5.3 Likelihood Ratio Tests
The familiar LR statistic

LRN =2- [EN(HAN) — éN(éN)], (18)

which is asymptotically equivalent to Wy and LMy under both Hy and local Hi, is
computationally more burdensome than either test since it requires one to obtain ef-
ficient estimators under both Hy and H;. The same basic principle is still applicable,
however, namely that the calculation of the two components of LRy can be based
on a very large number of simulations, thus obviating the need for the development
of special asymptotic results to allow for simulation noise. This fact makes the ap-
plication of LRy tests very appealing, because they do not require the derivation of
possibly complicated expressions like £y, go(:), or J(-), but only the evaluation of
the log-likelihood function at two points. Analogously to the concluding remarks in
the simulated Wald section, the simulated LR test for simple restrictions corresponds
to obtaining the restricted and unrestricted parameter estimates based on moderate
R, and then employing a huge R for the two restricted and unrestricted likelihood
function evaluations that are needed for the LR statistic.

5.4 Testing Hypotheses in Discrete Choice Models

As examples, I discuss here two discrete choice models to illustrate concretely the main
issues involved with simulation-based testing.

5.4.1 The Multinomial Probit Model
The MNP model is defined as:

Yy; = arg m’?X{y;‘D LYYk (19)
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where y ~ N(X;0,€;) denotes the J x 1 vector of latent utilities of the J alternatives.

The following cases have been identified in the literature as being particularly useful
for modelling discrete choice settings in practice. Let wy, be the (£, m)th element of
the variance-covariance matrix €2;.

Version | Description Restrictions on {2

P1 General MNP none

P2 MNP with nested hierarchical structure | off-diagonal blocks of 0

P3 Independent but heteroskedastic MNP | wy,, = 0, for all £ #m

P4 Independent and homoskedastic MNP wem = 0, for all £ £ m,
wee = ¢ for all ¢

All three classical testing approaches discussed above are applicable in these cases.
Of special usefulness are the Wald and LR tests because all hypotheses under test in-
volve estimating the model with and without equality restrictions imposed, and letting
the final round of calculations be based on a very large number of simulations.

In terms of computation, P4 and P3 are extremely straightforward since they cor-
respond to likelihood contributions that are products of J — 1 univariate normal c.d.f.’s
(9(z)) integrated over the normal p.d.f. of the normalizing utility. Since this integral
is of the form fj;o g(2) exp(—2%/2)dz, Hermite Gaussian quadrature can be used. Al-
ternatively, though not necessary, one could always use simulation estimation. This
would provide a good test of the accuracy of simulation-based versus quadrature-based
estimation. Models P2 and P1 require simulation-based estimation.

5.4.2 The Multinomial Ordered Probit Model

As with the MNP model, individual ¢ chooses alternative k that offers the highest
utility y,. The analyst, however, observes the full ranking of the J alternatives in
terms of the utility they yield, i.e., the analyst observes the J-dimensional vector of
indices
yi = (b1, ky)
such that
Yie, < Yiky < 0 < Ui, (20)

If such information is available, the resulting estimators will be, in general, much better
behaved than the ones from the MNP model, since, as ?? shows, the informational
content of the MNP model can be quite low in view of the severity of the MNP filtering.
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6 Antithetics

Antithetics is one of the leading “variance-reduction” simulation techniques and can
be explained as follows: Suppose we want to approximate a function g(u) by using the
average over 2R simulations:

2R

1
Sna,ZR = ﬁ Z g(ur)
r=1

where u, are i.i.d. draws from the appropriate distribution. As a result, simulator Sy, 2r
with no-antithetics and 2R simulations has variance %2R -V (g(u)) = 55V (g(u)). To
introduce antithetics, we define the estimator based on only R i.i.d. u, draws defined

by:

i.e., for each u, we average g(-) both at u, and at —u,. This simulator has variance
T L 2 V(g(w) + 2cov(g(ur), 9(—u))] = 55 (V(g(u) + cov(g(u), g(—u))). De-
pending on whether or not ¢(-) is monotonic, the covariance term will be negative,
implying that the variance of the simulator that employs antithetics with R simu-
lations will be lower than the basic simulator with 2R independent simulations. In
addition, S, r may offer also computational advantages over the S,,2r simulator, if
the relative savings in drawing R fewer u,’s (R vs. 2R) are substantial relative to per-
forming the same number of g(-) evaluations in the two cases (R g(u)’s plus R g(—u,)’s
vs. 2R g(u)’s).

For more extensive discussion of the use of antithetics in further improving the
GHK simulator, see 7. Tables 2a—2c below summarize the results from the same set of
84 Monte-Carlo experiments analyzed in 7. That study did not investigate antithetic
variance-reduction and concluded that the best method overall was the GHK simulator,
followed by the parametric cylinder function simulator (PCF) under certain conditions.
In the experiments here, the simulators considered were GHK and PCF as well as
GHKA, which is the GHK method with antithetics built into it. The improvements
in terms of mean-squared-error performance controlled for computational requirements
in terms of CPU time are quite uniform and substantial. Given how simple it is to
program the antithetic modification into the GHK method, the results here suggest
that GHKA should supplant the basic GHK as the simulator of choice for routine
applications.
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7 Conclusions

In this Chapter, I explored ways of recapturing the efficiency property for estimators
that rely on simulation. In particular, I showed how this can be achieved by exploiting
two-step maximum simulated likelihood (MSL) estimation methods that are familiar
in classical applications. I also constructed a diagnostic test for adequacy of number
of simulations employed to guarantee negligible bias for the MSL and provided some
evidence on the computational requirements of the Geweke-Hajivassiliou-Keane (GHK)
simulator as a function of (a) the dimension of the problem and (b) the number of
simulations employed in a vectorized context.

This chapter also showeed how to suitably introduce simulation into classical hy-
pothesis testing methods and provide test statistics (simulated Wald, Lagrange Multi-
plier, and Likelihood Ratio Tests) that are free of influential simulation noise.

Finally, I explained how simulation-variance-reduction techniques can improve sub-
stantially the practical performance of the GHK simulator and presented extensive
Monte-Carlo evidence confirming this.
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Computational Speed of GHK:
Effects of Dimensionality and Number of Simulations

Table 1
[ [ M=42 [ M=8 [ M=16 | M=32 | M=64 ||

R= 20P 1¢© 3 2 3 5
R= 50 2 4 3 4 11
R= 100 3 5 4 8 11
R= 250 4 6 8 16 33
R= 500 5 7 17 27 76
R= 1000 8 16 33 72 176
R= 2500 16 38 82 181 444
R= 5000 38 77 165 429 | 1022

a M =dimension of Z ~ N(0,Q).

b Number of replications in GHK simulator.
¢ Time in 1/100¢h seconds.

d Q = Toeplitz matrix with p = 0.5.

Note: Restricted region considered is the orthant Z; > 0, Vi.
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Figure la
Time vs. Dimension M, Given Replications R
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Figure 1b

Time vs. Dimension M, Given Replications R
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Figure 2
Time vs. Replications R, Given Dimension M
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Table 2a
Relative MSE Efficiency: (GHK vs. GHKA)

|| Quantity Simulated | Simulator | Relative MSE Efficiency* ||
P(Z € B)® GHKA 0.8783
P(Z € B)® GHK 0.7283
OP /0 GHKA 0.9904
OP /0 GHK 0.4532
OP /O GHKA 0.9900
OP /O GHK 0.4160
0P /01 GHKA 0.9395
0P /001, GHK 0.6857
OP /05 GHKA 0.9692
OP /0 GHK 0.5653
OP /0 GHKA 0.9508
OP /090 GHK 0.6209
Avg. for all Linear Derivs. GHKA 0.9680
Avg. for all Linear Derivs. GHK 0.5482
Oln P/0um GHKA 0.9889
dln P/0u GHK 0.4714
Oln P/0us GHKA 0.9895
Oln P/Ops GHK 0.4455
dln P/0Q GHK 0.6983
Oln P/0Q GHK 0.5828
Oln P /0y GHKA 0.9475
Oln P /0y GHK 0.6509
Avg. for all Logarithmic Derivs. | GHKA 0.9668
Avg. for all Logarithmic Derivs. | GHK 0.5698

a Relative Mean-Squared Error efficiency of simulator S averaged over 84 experiments =
1 284 Lowest MSE for a specific experiment
84 £~«i=1 MNSKE of simulator s for experiment i

b Number of simulations for each simulator selected so as to require equal amounts of CPU time.

Note: Bivariate random vector Z ~ N(u, (). Fourteen rectangular regions B and
six correlation structures for ) analyzed as described in 7.
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Table 2b
Relative MSE Efficiency: (PCF vs. GHKA)

Quantity Simulated Simulator | Relative MSE Efficiency®
P(Z € B)P PCF 0.2685
P(Z € B)P GHKA 0.9621
OP /0y PCF 0.3622
OP /0w GHKA 0.8693
OP /O PCF 0.2993
OP /O GHKA 0.9303
0P /001, PCF 0.6477
0P /001, GHKA 0.6947
OP /0 PCF 0.5730
OP /0 GHKA 0.7961
OP /090 PCF 0.4784
OP /09 GHKA 0.8595
Avg. for all Linear Derivs. PCF 0.4721
Avg. for all Linear Derivs. GHKA 0.8300
dln P/0u PCF 0.4474
Oln P/0m GHKA 0.8687
Oln P/0us PCF 0.4481
Oln P/0us GHKA 0.8732
dln P/0Q, PCF 0.6959
Oln P/0Q, GHKA 0.6948
Oln P/0Q o GHKA 0.7813
Oln P/0Qs PCF 0.6737
Avg. for all Logarithmic Derivs. | PCF 0.5815
Avg. for all Logarithmic Derivs. | GHKA 0.7898

a Relative Mean-Squared Error efficiency of simulator S averaged over 84 experiments =
1 284 Lowest MSE for a specific experiment
84 £«i=1 MNSE of simulator s for experiment ; -

b Number of simulations for each simulator selected so as to require equal amounts of CPU time.

Note: Bivariate random vector Z ~ N(u,$2). Fourteen rectangular regions B and
six correlation structures for () analyzed as described in 7.
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Table 2c

Relative MSE Efficiency: (GHK vs. PCF vs. GHKA)

|| Quantity Simulated

| Simulator | Relative MSE Efficiency* ||

P(Z e B)P PCF 0.2499
P(Z € B)P GHK 0.7738
P(Z € B)P GHKA 0.8418
OP /0 PCF 0.3614
AP /o GHK 0.4299
OP /0y GHKA 0.8685
oD 01 PCF 0.2981
OP/Os GHK 0.4523
OP /O GHKA 0.9288
OP /08, PCF 0.6470
OP /08, GHK 0.5201
OP /011 GHKA 0.6942
OP /05 PCF 0.5730
OP /05 GHK 0.4872
OP /05 GHKA 0.7961
OP /0 PCF 0.4748
OP /0 GHK 0.6063
OP /09 GHKA 0.8441
Avg. for all Linear Derivs. | PCF 0.4709
Avg. for all Linear Derivs. | GHK 0.4992
Avg. for all Linear Derivs. | GHKA 0.8263
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Table 2c¢ (continued)
Relative MSE Efficiency: (GHK vs. PCF vs. GHKA)

|| Simulator | Quantity Simulated | Relative MSE Efficiency® ||
dln P/0u PCF 0.4443
dln P/0uy GHK 0.4447
dln P/0uy GHKA 0.8635
Oln P/0us PCF 0.6254
Oln P/0ps GHK 0.4283
Oln P/0us GHKA 0.8690
dln P/0Q, PCF 0.6926
dln P/0Q; GHK 0.5320
Jln P/0Q; GHKA 0.6894
Oln P/0Q PCF 0.6396
dln P/0Q GHKA 0.7763
Oln P /0 GHKA 0.7268
Avg. for all Log Derivs. | PCF 0.6146
Avg. for all Log Derivs. | GHK 0.4850
Avg. for all Log Derivs. | GHKA 0.7850

a Relative Mean-Squared Error efficiency of simulator S averaged over 84 experiments =
1 284 Lowest MSE for a specific experiment
84 £~«i=1 MNSKE of simulator s for experiment i

b Number of simulations for each simulator selected so as to require equal amounts of CPU time.
¢ Bivariate random vector Z ~ N(u,{2). Fourteen rectangular regions B and six correlation

structures for Q analyzed as described in 7.
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